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ABSTRACT
We present a new strongly polynomial algorithm for generalized

�ow maximization. The �rst strongly polynomial algorithm for

this problem was given very recently by Végh; our new algorithm

is much simpler, and much faster. The complexity bound O ((m +
n logn)mn log(n2/m)) improves on the previous estimate obtained

by Végh by almost a factor O (n2). Even for small numerical param-

eter values, our algorithm is essentially as fast as the best weakly

polynomial algorithms. The key new technical idea is relaxing pri-

mal feasibility conditions. This allows us to work almost exclusively

with integral �ows, in contrast to all previous algorithms for the

problem.
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1 INTRODUCTION
In the maximum generalized �ow problem, we are given a directed

graphG = (V ,E) with a sink node t ∈ V and gain factors γe > 0 on

the edges. Flow entering at edge e gets rescaled by the factor γe > 0

when traversing the edge. The goal is to maximize the amount of

�ow sent to the sink. The problem has a rich history: it was �rst

formulated by Kantorovich [15] in 1939, in the same paper where

Linear Programming was introduced. We refer the reader to [1,

Chapter 15] for applications of the model.
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Early combinatorial algorithms were developed by Dantzig [4]

and by Onaga [20]. The �rst polynomial-time combinatorial algo-

rithm was given by Goldberg, Plotkin, and Tardos [8] in 1991. A

large number of weakly polynomial algorithms were developed in

the subsequent 20 years, e.g. [2, 6, 10–13, 16, 23, 24, 28, 29, 31, 33].

Let n denote the number of nodes, m the number of edges of the

graph, and let be B be the largest integer in the description of the

gain factors, capacities, and node demands. Among the previous

algorithms, the best running times are the O (m1.5n2
log(nB)) inte-

rior point method by Vaidya [29]; and theO (mn(m +n logn) logB)
combinatorial algorithm by Radzik [23]. Interior point methods can

obtain fast approximate solutions for lossy networks, i.e. if γe ≤ 1

for all arcs. The result of Daitch and Spielman [3] �nds an additive

ε-approximate solution in Õ (m3/2
log

2 (B/ε )), recently improved

by Lee and Sidford [17] to Õ (m
√
n log

O (1) (B/ε )).1 However, these

results do not obtain an exact solution.

Resolving a longstanding open question, the �rst strongly poly-

nomial algorithm was given in [32], with running time O (n3m2).
The main progress in the algorithm is that, within a strongly poly-

nomial number of steps, we can identify at least one arc that must be

tight in every dual optimal solution. Consequently, we can reduce

the size of the instance by contracting such arcs. The algorithm is

based on continuous scaling, a novel version of the classical scaling

method. The algorithm is technically very complicated. Our new

algorithm works along broadly similar lines, and also involves arc

contractions as a main vehicle of progress, with path augmentation

and relabelling operations being used to �nd an arc to contract. But

our algorithm introduces a number of new conceptual and technical

ideas compared to [32] and previous literature.

We give a detailed technical overview and comparison at the

beginning of Section 3, after having de�ned the basic notation and

concepts. Here we brie�y highlight a key novelty. Unlike all previ-

ous combinatorial algorithms, we do not maintain a feasible primal

solution (i.e., �ow). Instead, we ensure that the dual solution has a

certain property that keeps us “within reach” of a feasible primal

solution that respects certain complementary slackness conditions.

So while our algorithm is a primal-dual algorithm, in a sense it does

not keep track of the “real” primal but only a proxy for it. Working

with an infeasible primal solution turns out to have major bene�ts;

in particular, we are able to work almost exclusively with integer

�ows, simplifying matters dramatically.

Our running time bound is O ((m + n logn)mn log(n2/m)). Be-

sides the substantial improvement over [32], this is also better than

the interior point method of Vaidya [29] for arbitrary values of the

1
The notation Õ (.) hides further polylog(m) factors.
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complexity parameter B, and better than Radzik’s combinatorial

algorithm [23] if B = ω (n2/m).

The context of strongly polynomial Linear Programming. The ex-

istence of a strongly polynomial algorithm for Linear Programming

(LP) is a central open question. Consider an LP in the following

standard form, with A ∈ Rn×m , b ∈ Rn , c ∈ Rm .

min c>x

Ax = b

x ≥ 0.

(LP)

An LP algorithm is strongly polynomial, if the number of elemen-

tary arithmetic operations is bounded by poly(n,m). Furthermore,

the algorithm must be in PSPACE, that is, the numbers occurring in

the computations must remain polynomially bounded in the input

size. The most general strongly polynomial computability results

are due to Tardos [27], and to Vavasis and Ye [30]. In these results,

the running time only depends on the matrix A, but not on the

right hand side b or on the cost c . Tardos [27] assumes that A is

integer, and obtains a running time poly(n,m, log∆), where ∆ is

an upper bound on the largest subdeterminant of A. In particular,

if all entries in A are integers of size poly(n,m), this algorithm is

strongly polynomial. These are called “combinatorial LP’s” since

most network optimization problems can be expressed with small

integer constraint matrices. Vavasis and Ye [30] waive the integral-

ity assumption, replacing ∆ with a more general condition number.

A di�erent, natural restriction on (LP) is to impose constraints on

the nonzero elements. Assume that every column of the constraint

matrix A has only two nonzero entries, but these can be arbitrary

numbers. LetM2 (n,m) ⊆ Rn×m denote the set of all such matrices.

The results [27, 30] do not apply for LPs with such constraint matri-

ces. It is easy to see that every LP can be equivalently transformed

to one with at most three nonzeros per column.

For the dual feasibility problem, that is, �nding a feasible solu-

tion to A>y ≥ c for A ∈ M2 (m,n), Megiddo [18] gave a strongly

polynomial algorithm. In fact, the notion of strongly polynomial

algorithms was formally de�ned in the same paper (called “gen-

uinely polynomial”). The primal feasibility problem, that is �nding

a feasible solution to Ax = b, x ≥ 0 for A ∈ M2 (n,m), can be

reduced to generalized �ow maximization [32, Section 8]. Hence

the algorithm in [32] as well as our new algorithm, give a strongly

polynomial algorithm for primal feasibility.

It remains an important open question to solve the optimization

(LP) for a constraint matrix A ∈ M2 (n,m) in strongly polynomial

time. This problem reduces to the minimum cost generalized �ow

problem [14]. As our new algorithm gives a simple and clean solu-

tion to �ow maximization, we expect that the ideas developed here

bring us closer to resolving this problem.

2 PROBLEM AND PRELIMINARIES
Let R+ and R++ denote the nonnegative and positive reals respec-

tively; similarly let Z+ and Z++ denote the nonnegative and positive

integers. Let
¯R = R∪{∞}, and similarly for other cases. For a vector

x , ‖x ‖p denotes its p-norm. For a vector h ∈ RX and any S ⊆ X ,

we use h(S ) to denote

∑
x ∈S hx .

LetG = (V ,E) be a simple directed graph, which we assume to be

connected in an undirected sense. Let n := |V | and m := |E |. For an

arc set F ⊆ E, let

←

F := {ji : ij ∈ F } denote the reversed arc set, and

↔

F := F∪
←

F . For a subset S ⊆ V , we let E[S] denote the set of arcs with

both endpoints inside S . Further, we let δ− (S ) and δ+ (S ) denote the

set of incoming and outgoing arcs, respectively. If S = {i}, we use

the simpli�ed notation δ− (i ) and δ+ (i ). Let di := |δ− (i ) ∪ δ+ (i ) |
denote the total degree of i .

An instance of the generalized �ow problem is given as I =

(V ,E, t ,γ ,b), where (V ,E) is a directed graph, t ∈ V is a sink node,

γ ∈ RE++ is the vector of gain factors, and b ∈ RV \{t } is the vector

of node demands. Let us partition the nodes according to the sign

of the demand.

V − := {i ∈ V \ {t } : bi < 0},

V 0
:= {i ∈ V \ {t } : bi = 0},

V + := {i ∈ V \ {t } : bi > 0}.

The net �ow at a node i is de�ned as

∇fi :=
∑

e ∈δ− (i )

γe fe −
∑

e ∈δ+ (i )

fe .

We are ready to formulate the generalized �ow maximization prob-

lem.

max ∇ft

s.t. ∇fi ≥ bi ∀i ∈ V \ {t }

f ≥ 0.

(P)

The problem can be formulated in multiple equivalent variants. In

particular, a standard formulation is to use arc capacities and zero

node demands. All these formulations can be e�ciently reduced to

(P); in fact, every LP in the form Ax = b,x ≥ 0 for A ∈ M2 (n,m)
reduces to (P) (see [32, Section 8] for the reductions). The special

case when γe = 1 for all e ∈ E corresponds to the standard network

�ow model; we will refer to standard network �ows as regular �ows

to di�erentiate from generalized �ows. The dual program can be

transformed to the following form. The dual variable for node i
would be µt /µi . Nodes other than t are allowed to have µi = ∞;

this corresponds to dual values 0.

max µt
∑

j ∈V \{t }

bj

µ j

s.t. µ j ≥ γi j µi ∀ij ∈ E

µt ∈ R++

µi ∈ ¯R++ ∀i ∈ V \ {t }.

(D)

Our main result is the following.

Theorem 2.1. There exists a strongly polynomial algorithm, that,

for any input instance I = (V ,E, t ,γ ,b), �nds optimal solutions to

(P) and (D) in O ((m + n logn)mn log(n2/m)) arithmetic operations.

Relabellings. We interpret the dual solutions as relabellings, the

basic vehicle of our algorithm. This is a standard technique used in

the vast majority of generalized �ow algorithms. A feasible solution

µ ∈ ¯RV++ to (D) is called a feasible labelling. We de�ne

f
µ
i j :=

fi j

µi
∀ij ∈ E.

The multiplier µi can be interpreted as a change of the unit of

measurement at node i . An equivalent problem instance is obtained
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by de�ning

γ
µ
i j := γi j ·

µi
µ j
, ∇f

µ
i :=

∇fi
µi
, and b

µ
i :=

bi
µi
.

We use the convention γ
µ
i j = 1 if µi = µ j = ∞. Then the feasibility

of µ to (D) is equivalent to γ
µ
e ≤ 1 for all e ∈ E. We call an arc e ∈ E

tight with respect to µ, if γ
µ
e = 1. Let Eµ and

↔

Eµ denote the set of

tight arcs for µ in E and in

↔

E, respectively.

For a �ow f ∈ RE+ , we de�ne the residual graph Gf = (V ,Ef )
with Ef = E ∪ {ji : ij ∈ E, fi j > 0}. The latter set of arcs are

called reverse arcs. For a reverse arc ji , we de�ne γji := 1/γi j , and

fji := −γi j fi j . By increasing (decreasing) fji by α on a reverse arc

ji ∈ Ef , we mean decreasing (increasing) fi j by α/γi j .
Let us de�ne the excess of a node i under f µ to be the amount

∇f
µ
i − b

µ
i ; so f µ is feasible if all nodes have nonnegative excess.

We also de�ne the total (positive) excess and the total de�cit of f µ

as

Ex( f , µ ) :=
∑

i ∈V \{t }

max

{
∇f

µ
i − b

µ
i , 0

}
(1)

and Def ( f , µ ) :=
∑

i ∈V \{t }

max

{
b
µ
i − ∇f

µ
i , 0

}
. (2)

In the analysis, it will be more convenient to work with the follow-

ing relaxed version of the total excess.

Ξ( f , µ ) :=
∑

i ∈V \{t }

max{∇f
µ
i − b

µ
i , 2}. (3)

Fitting pairs and optimality. Let f ∈ RE+ and µ ∈ RV++. We say

that ( f , µ ) is a �tting pair, if µ is feasible to (D), and fe > 0 implies

γ
µ
e = 1. We also say that f �ts µ, or µ �ts f . Equivalently, ( f , µ ) is

a �tting pair if the entire support of f is tight with respect to µ.

Note that the de�nition requires that µ is �nite, and feasible to

(D), but not the feasibility of f to (P). In fact, we will allow �ows

f ∈ RE+ in the algorithm that violate the node balance constraints

in (P). Fitting captures a complementary slackness property. For the

case when µ is �nite, optimality can be described as follows. The

lemma is an immediate consequence of complementary slackness.

Lemma 2.2. Let ( f , µ ) be a �tting pair such that ∇fi = bi for all
i ∈ V \ {t }. Then f is an optimal solution to (P) and µ is an optimal

solution to (D).

Note that for a �tting pair ( f , µ ), γ
µ
e = 1 for all e ∈ supp( f ).

Consequently, f µ is a regular �ow. Thus, we can use all known

results and algorithms to manipulate regular �ows. In particular,

provided an optimal solution µ to (D) Lemma 2.2 enables �nding

an optimal solution to (P) by solving a feasible circulation problem

on the set of tight arcs for µ (see Section 3.4).

We say that a feasible labelling µ is safe, if there exists a feasible

solution f to (P) such that ( f , µ ) is a �tting pair. This will be a

crucial property in our algorithm. It can be easily characterized

by a cut condition, a simple corollary of Ho�man’s theorem ([25,

Theorem 11.2]).

Lemma 2.3. The labelling µ is safe if and only if for every set

X ⊆ V \ {t } with δ− (X ) ∩ Eµ = ∅, the condition b
µ
i (X ) ≤ 0 holds.

Initial solutions. The overall scheme of our algorithm will be akin

to the two phase simplex method. In the �rst phase, we obtain a

�tting pair ( ¯f , µ̄ ) of feasible primal and dual solutions, or conclude

that (P) is infeasible or unbounded. In the second phase, we compute

an optimal solution, starting from ( ¯f , µ̄ ).
The �rst phase will be implemented by adding a dummy sink

and new arcs to the network, so that there is a trivial initial �tting

pair. The optimal solution to the �rst phase problem will be the

input �tting pair to the second phase. We describe the �rst phase

in Section 5. Hence, we make the following assumption in the

algorithm.

(?) An initial �tting pair ( ¯f , µ̄ ) is given, where
¯f ∈ RE+ is

feasible to (P) and µ̄ ∈ RV++ is feasible to (D).

For reasons of technical simplicity, we also make the following

standard assumption.

(??) There is a directed path in E from i to t for every i ∈ V .

Assuming that the objective of (P) is bounded, we can guarantee

this assumption by adding new it arcs with very small gain factors

(e.g. [8, 32]). In Section 5, we provide the explicit construction. The

main bene�t of this assumption is that every feasible solution to

(D) will be �nite.

Rounding. Our algorithm will work exclusively with �tting pairs

( f , µ ) where the relabelled �ow f µ is integral. Since the initial

�tting pair guaranteed by (?) need not have this property, we will

need the following Lemma, which follows from elementary inte-

grality properties of the �ow polytope.

Lemma 2.4. Let ( f , µ ) be a �tting pair. Then there exists a
˜f that

�ts µ, such that
˜f µ ∈ ZE+ , and b∇f

µ
i c ≤ ∇

˜f
µ
i ≤ d∇f

µ
i e.

Proof. Consider the feasible circulation problem on (V ,Eµ ),
with lower and upper node demands b∇f

µ
i c and d∇f

µ
i e. The �ow

f µ is a feasible solution; hence, there exists an integer solution д̃,

which can be found by a maximum �ow algorithm. Then
˜fi j := д̃i j µi

is the desired solution. �

We let the subroutine Round( f , µ ) implement the construction

in the above proof.

Network structures. Let us now de�ne some network structures

relevant for generalized �ows. For an arc set F ⊆
↔

E, we let γ (F ) =∏
e ∈F γe ; γ µ (F ) is de�ned similarly. A cycle C is called a �ow gen-

erating cycle, if γ (C ) > 1. For any node i incident to C , we can

increase the excess of i by sending �ow around C . We note that

for any labelling µ, γ µ (C ) = γ (C ). This immediately implies that

if ( f , µ ) is a �tting pair, then Ef may contain no �ow generating

cycles. Under assumption (??), a �ow f ∈ RE+ is optimal if and only

if ∇fi = bi for all i ∈ V \ {t }, and the residual graph Ef contains no

�ow generating cycles.

For a path P between nodes i and j, γ µ (P ) = γ (P ) · µi/µ j . This

implies that for a �tting pair ( f , µ ), a tight path from i to j is a

highest gain augmenting path. By augmenting f µ by α on a tight

path P ⊆ Ef , we mean increasing fi j by αµi for every arc ij in P .
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3 THE GENERALIZED FLOW ALGORITHM
3.1 Technical Overview
Let us say that an arc e ∈ E is contractible, if e must be tight with

respect to any optimal dual solution µ∗ to (D). The main progress

in the algorithm will be identifying a new contractible arc within a

strongly polynomial number of iterations, and reducing the size of

the graphG by contracting such arcs. Once an optimal dual solution

is found in the contracted instance, it extends straightforwardly to

the original graph. Hence in a strongly polynomial number of steps,

we will be able to �nd an optimal dual solution. Finally, a primal

optimal solution can be obtained via a single (regular) maximum

�ow computation.

The same scheme was used in [32]. In fact, this is a classical

scheme for obtaining strongly polynomial algorithms for the classi-

cal minimum-cost circulation problem. The algorithm in [32] and

ours are direct descendants of Orlin’s algorithm [21]. This runs

the classical weakly polynomial Edmonds-Karp scaling algorithm

[5] for minimum-cost circulations, only to identify an “abundant

arc”. Then the network size can be reduced by contracting such

an arc. However, the idea of using a modi�ed (rounded) problem

instance only to identify a tight constraint goes back to the �rst

strongly polynomial algorithm for minimum-cost circulations by

Tardos [26].

Compared to [32], our augmenting path subroutine for identi-

fying a contractible arc is vastly simpler and more e�cient. The

crucial idea is relaxing the feasibility of the �ow f in the augmenting

path algorithm. That is, nodes i with ∇fi < bi will be allowed. This

is a quite radical change compared to all previous algorithms. In

fact, “�xing” a node de�cit can be very di�cult: compensating for

just a tiny shortfall in node demands can be at the expense of an

arbitrarily large drop in the objective value. We avoid this problem

by maintaining that the labelling µ remains safe throughout. That

is, there exists always a feasible �ow f ′ �tting µ. Standard network

�ow theory shows, that, given �ows f ′ and f , there exists a �ow д
with ∇f ′i ≤ ∇дi ≤ ∇fi for all i ∈ V \ {t }. Consequently, д is feasible

and Ex(д, µ ) ≤ Ex( f , µ ). Then we can use the �ow д instead of f
to identify contractible arcs.

It turns out that many serious technical di�culties in previous

algorithms were due to insisting on �ow feasibility. Once feasibility

is relaxed, the algorithm suddenly becomes much simpler and more

natural. We need to maintain the safety of the labelling, but this

happens automatically, without additional e�ort. The most salient

consequences are the following.

• First of all, we can easily maintain a �tting pair ( f , µ )
throughout. In contrast, [32] had to introduce a relaxation

of this concept called ∆-feasibility, depending on the cur-

rent scaling factor ∆. An earlier algorithm that maintained

a �tting pair throughout was the algorithm of Goldfarb,

Jin, and Orlin [12], however, it came at the expense of

maintaining arc imbalances in an intricate bookkeeping

framework.

• Although our algorithm can be seen as an enhanced version

of the continuous scaling technique in [32], the description

does not even include a scaling factor, prevalent in the

previous combinatorial methods. Instead, we maintain that

the relabelled �ow f µ is integral throughout, except for the

very �nal step when an exact optimum is computed. This

is unprecedented in previous algorithms, and surprising

because the generalized �ow problem is perceived as a

genuinely non-integral problem. Let us note that the value

of µt corresponds to the scaling factor ∆ in [32] and other

scaling methods; we relax the standard requirement µt = 1

so that we can work with integer solutions.

• A main reason for the running time e�ciency is a new,

additive potential analysis, compared to the multiplicative

analysis in [32]. In both algorithms, the main progress is

measured in the potential

∑
i ∈V \{t } |b

µ
i |; once this becomes

su�ciently large, the existence of a contractible arc is guar-

anteed. The running time estimates are given by charging

the number of path augmentations against this potential.

In [32], this is measured by arguing about the cumulative

decrease in the scaling factor ∆ in a rather indirect way.

Instead, we have a very clean way of arguing that, roughly

speaking, every path augmentation decreases the potential

by one.

In a strongly polynomial algorithm, one also needs to guarantee

that the sizes of numbers remain polynomially bounded in the input

size. In [32], this required cumbersome additional rounding steps.

In contrast, this can be easily achieved in our new algorithm.

A further distinguishing feature of our algorithm is that we do

not use an initial cycle cancelling subroutine. Most combinatorial

methods start with the assuming the existence of an initial �tting

pair as in (?). In order to obtain this, �ow generating cycles have

to be eliminated �rst. Radzik [22] adapted the Goldberg-Tarjan

minimum-mean cycle cancelling algorithm [9] to cancel all �ow

generating cycles in strongly polynomial time. We avoid using this

subroutine, and instead perform our algorithm in two phases, as in

the two phase simplex algorithm. In the �rst phase for feasibility,

we obtain the �tting pair used as the starting for the second phase.

We note that the running time of our algorithm is better than the

running time of Radzik’s cycle cancelling subroutine [22].

However, this trick of using a two phase implementation is not

particular to our current algorithm. In fact, the same scheme could

be applied also to the previous algorithms, including [32].

3.2 The Overall Algorithm

Algorithm 1 Maximum Generalized Flow

Input: The instance I = (V ,E, t ,γ ,b) satisfying (??), with an

initial feasible solution ( ¯f , µ̄ ) provided as in (?).

Output: Optimal solutions to (P) and (D).

1: ∆← maxi ∈V \{t } ∇ ¯f
µ̄
i − b

µ̄
i ; µ ← µ̄∆.

2: f ←Round(
¯f , µ).

3: while V − ∪V + , ∅ do
4: ( f , µ ) ←Produce-Plentiful-Node(f , µ).

5: (I, f , µ ) ←Reduce(I, f , µ).

6: µ ←Expand-to-Original(µ)

7: f ← Compute-Primal(µ)

8: return ( f , µ ).
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The overall algorithm is described in Algorithm 1. We assume

(?), that is, an initial solution ( ¯f , µ̄ ) is given. The �rst two lines

preprocess this solution into ( f , µ ), �rst rescaling using the round-

ing subroutine. As a result, we obtain a �tting pair ( f , µ ) such that

f µ ∈ ZE+ , and further,

b
µ
i − 1 ≤ ∇f

µ
i ≤ b

µ
i + 2 ∀i ∈ V \ {t }. (4)

This property follows by the choice of ∆ and the properties of

the subroutine Round, de�ned after Lemma 2.4. The bulk of the

algorithm iterates between two subroutines, Produce-Plentiful-

Node (Section 3.5), and Reduce (Section 3.3.) Produce-Plentiful-

Node is a simple augmenting path algorithm, updating the �ows

and the labels. It is guaranteed to terminate with a “plentiful node”

(de�ned in Section 3.3), which has an incident contractible arc. The

subroutine Reduce identi�es and contracts such an arc, and updates

the �ows appropriately.

Finally, once all nodes have bi = 0, we terminate with µ being

an optimal dual solution to the current contracted instance; this is

witnessed by the optimal primal f = 0. The subroutine Expand-

to-Original naturally maps µ back to the original graph, and

Compute-Primal then computes a matching primal optimum from

this. These are described in Section 3.4

The values of n and m will always refer to the number of nodes

and arcs in the original input graph. Hence in later stages, the graph

will have less than n nodes.

3.3 Arc Contractions
In this section, we describe the subroutine Reduce, that is respon-

sible for the main progress, by contracting arcs of the graph. We

�rst formulate a su�cient condition to identify contractible arcs.

Let us call a node i ∈ V \ {t } plentiful with respect ( f , µ ), if

|b
µ
i | ≥ 3n(di + 1). (5)

Theorem 3.1. Let f ∈ RE+ and µ ∈ RV++, such that ( f , µ ) is a

�tting pair with f µ ∈ ZE+ , µ is safe, andΞ( f , µ ) < 2n. Assume further

that there exists a plentiful node i . Then there exists a contractible arc

e incident to i , and it can be found in strongly polynomial time.

We recall that Ξ was de�ned in (3). We now formulate two simple

lemmas in preparation for the proof.

Lemma 3.2. Let ( f , µ ) be a �tting pair with f µ ∈ ZE+ , and assume

µ is safe. Then there exists a �ow д ∈ RE+ �tting µ with дµ ∈ ZE+ and

bb
µ
i c ≤ ∇д

µ
i ≤ max{∇f

µ
i , db

µ
i e} ∀i ∈ V \ {t }. (6)

Further, such a �ow can be found by a single maximum �ow compu-

tation, and it satis�es Ex(д, µ ) ≤ Ξ( f , µ ).

Proof. The safety of µ provides a feasible �ow f ′ that �ts µ.

The statement is an immediate consequence of [25, Corollary 11.2j]

applied to the regular �ows f µ and f ′µ , combined with the integral-

ity of the �ow polytope. The last claim follows since ∇д
µ
i > ∇f

µ
i is

only possible if ∇f
µ
i − b

µ
i < 0, and in that case ∇д

µ
i < b

µ
i + 1. �

A contractible arc can be obtained using the following lemma.

Lemma 3.3. Let (д, µ ) be a �tting pair with µ being safe. If д
µ
e >

Ex(д, µ ) + Def (д, µ ) for an arc e ∈ E, then e is contractible.

We sketch the proof here; full details can be found in the full

version [19]. First, using safety of µ, we show that there exists a

feasible �ow д̃ �tting µ such that ‖дµ − д̃µ ‖∞ ≤ Def (д, µ ), and

Ex(д̃, µ ) ≤ Ex(д, µ ). Then, we show that there exists an optimal

д∗ with ‖д̃µ − (д∗)µ ‖∞ ≤ Ex(д̃, µ ). Both parts use simple �ow de-

composition techniques. The �rst part is a standard argument for

regular �ows. The second part uses �ow decomposition of general-

ized �ows. Similar claims have been proved in [32, Theorem 5.1] or

[23, Lemma 5]; our proof follows the same lines. The safety property

of µ is of essence: in the Appendix, we also show an example where

the �ow decomposition argument fails if safety is not assumed.

Proof of Theorem 3.1. By Lemma 3.2, we can obtain a �ow

д �tting µ such that Ex(д, µ ) ≤ Ξ( f , µ ) < 2n. By construction,

Def (д, µ ) < n − 1. Now if i ∈ V −, then∑
e ∈δ+ (i )

д
µ
e ≥ −∇д

µ
i ≥ −b

µ
i − Ex(д, µ ) > 3n |δ+ (i ) |,

implying the existence of an arc e ∈ δ+ (i ) with д
µ
e > 3n. If i ∈ V +,

then ∑
e ∈δ− (i )

д
µ
a ≥ ∇д

µ
i ≥ b

µ
i > 3n |δ− (i ) |,

implying the existence of an arc e ∈ δ− (i ) with д
µ
e > 3n. Applying

Lemma 3.3 completes the proof. �

The Reduce subroutine. We are now ready to describe the sub-

routine Reduce (Algorithm 2). This implements the steps of the

proof of Theorem 3.1 to identify a contractible arc. Once identi�ed,

such an arc a = pq is contracted in the obvious way into the node

q: we move the arcs incident to p to q, and update the gain factors

appropriately.

Algorithm 2 Subroutine Reduce

Input: An instance I = (V ,E, t ,γ ,b) and a �tting pair ( f , µ ) with

f µ ∈ ZE+ .

Output: A contracted instance with a �tting pair (д, µ ) for it,

with дµ integral.

1: Compute a �ow дµ ∈ ZE+ satisfying (6).

2: while ∃e = pq ∈ E : д
µ
e > Ex(д, µ ) + Def (д, µ ) do . Contract

arc e .

3: for i ∈ δ− (p) \ {q} do
4: Replace arc ip by a new arc iq; γiq ← γipγpq .

5: for i ∈ δ+ (p) \ {q} do
6: Replace arc pi by a new arc qi; γqi ← γqi/γpq .

7: if t < {p,q} then bq ← bq + γpqbp .

8: if t = p then rename q to t .

9: V ← V \ {p}.
10: If parallel arcs are created, keep only one with the highest

gain factor from each bundle.

11: return (I,д, µ ).
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3.4 Uncontracting and Computing the
Optimum

Once an optimal solution is found, the subroutine Expand-to-

Original(µ) reverts all contractions, starting with the last one.

When uncontracting the arc pq, we de�ne µp = µq/γpq . The fol-

lowing is an easy consequence of the de�nition of a contractible

arc; a full proof is given in the Appendix.

Lemma 3.4. Expand-to-Original(µ) yields an optimum dual so-

lution to the original instance, as long as µ is an optimal solution to

the contracted instance.

The subroutine Compute-Primal(µ ) computes an optimal pri-

mal solution f based on the �nite optimal dual solution µ, by solving

the following circulation problem on the tight arcs of µ. We set

node demands b ′i = b
µ
i for i ∈ V \ {t } and b ′t = −

∑
i ∈V \{t } b

µ
i

for the sink node t . If д is a feasible solution to this problem, then

fi j = дi j µi is an optimal solution to (P), since it is feasible and

satis�es complementary slackness with µ.

3.5 Obtaining a Plentiful Node

Algorithm 3 Produce-Plentiful-Node

Input: Fitting pair ( f , µ ) with f µ ∈ ZE+ , in a network with V − ∪
V + , ∅.

Output: Fitting pair ( f , µ ) with f µ ∈ ZE+ , such that there exists at

least one plentiful node in V .

1: while there are no plentiful nodes do
2: Augmentation part of the iteration

3: Q ← {t } ∪ {j ∈ V \ {t } : ∇f
µ
i < b

µ
i }.

4: S̄ ← {i ∈ V : ∃ a tight i-Q-path in Ef }.

5: while there exists a node i ∈ S̄ ∩V − with ∇f
µ
i ≥ b

µ
i + 1

do
6: Augment f µ by sending 1 unit from i to a vertex in Q

along tight arcs.

7: Update Q and S̄ .

8: Label update part of the iteration

9: S ← the connected component of S̄ w.r.t.

↔

Eµ containing t .
10: α0 ← mine ∈δ− (S ) 1/γ

µ
e .

11: For each i ∈ S ∩V −, choose αi ∈
[

1−∇f µi
−bµi

,
2−∇f µi
−bµi

)
.

12: For each i ∈ S ∩V +, choose αi ∈
[

3n (di+1)

bµi
,

3n (di+1)+1

bµi

)
.

13: α ← min{α0,mini ∈S∩(V −∪V + ) αi }.
14: fe ← fe/α for all e ∈ E[S].

15: µi ← µi/α for all i ∈ S .

16: return ( f , µ ).

Algorithm 3 gives the description of Produce-Plentiful-Node.

The main objective of the subroutine is to make sure a plentiful

node (as in (5)) appears. We terminate once such a node is found.

Each iteration consists of a primal update part followed by a

dual update part. In the primal update part, path augmentations on

f µ along tight arcs are performed, where each path augmentation

sends a unit of �ow from a node with excess at least one to either the

sink, or to a node with negative excess. For reasons that will become

clear in the potential analysis, we only consider path augmentations

that start from a vertex in V −.

Assume no further path augmentations are possible. Let S̄ be the

set of nodes that can reach t or a node with negative excess on a

tight path in the auxiliary graph, and let S ⊆ S̄ be the undirected

connected component in Eµ [S̄] containing t .2 Then δ (S ) contains

no incoming tight arcs, and hence there is no incoming or outgoing

�ow from S . In the label update step, we scale down all labels µi
inside S , as well as all �ow within S , by the same factor. This ensures

that f µ remains completely unchanged. The scaling stops when

either:

(i) An edge entering S becomes tight (step 10),

(ii) a node’s excess ∇f
µ
i − b

µ
i increases above 1 (step 11), or

(iii) a node in V + becomes plentiful (step 12).

In the latter two cases, we allow some �exibility; it is �ne if a node’s

excess increases above 1, but we ensure it never exceeds 2; and we

allow a node to slightly exceed its plentiful threshold. This allows

room to manoeuvre in the numerical implementation (discussed in

Section 6).

We also note that we can store only the relabelled �ow f µ during

the algorithm, rather than f itself. This will remain conveniently

integral.

4 ANALYSIS
To prove Theorem 2.1, it su�ces to prove it assuming conditions

(?) and (??). This follows from Section 5; after some initial (inex-

pensive) preprocessing, Algorithm 1 is run once for feasibility, and

then again for optimization.

We �rst show that Algorithm 1 is correct: if it terminates, it termi-

nates with an optimal solution. To bound the number of arithmetic

operations, we �rst bound the number of operations per augmen-

tation (to be de�ned momentarily), and then the total number of

augmentations.

Finally, we must show that the size of the numbers in the calcu-

lations remains polynomially bounded in the input size (in other

words, the algorithm runs in PSPACE). This requires minor techni-

cal modi�cations to the algorithm as stated; all of this we delay to

Section 6.

De�ne an augmentation to be either a path augmentation, as

performed in lines 5–7 in Produce-Plentiful-Node, or what we

will call a null augmentation: an event when a node i ∈ V − for

which ∇f
µ
i < b

µ
i at the start of a label update, but ∇f

µ
i ≥ b

µ
i after.

Unlike path augmentations, they do not modify the solution at all;

they are de�ned purely for accounting purposes. As revealed in the

analysis, null augmentations share some important features with

path augmentations.

4.1 Correctness
In this section we prove the following.

Theorem 4.1. If Algorithm 1 terminates, it terminates with an

optimal primal-dual pair.

2
The same argument would work with S = S̄ ; this selection becomes relevant for

numerical stability, discussed in Section 6. It makes no di�erence for the purposes of

this section and the next.
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We start by showing some basic properties of Produce-Plentiful-

Node.

Lemma 4.2. The following properties hold in every label update

step in Produce-Plentiful-Node.

(i) f µ remains unchanged.

(ii) α > 1 and �nite.

(iii) ( f , µ ) remains a �tting pair.

(iv) If i ∈ (V \ S ) ∪V 0
, then b

µ
i does not change.

(v) If i ∈ S ∩V −, then b
µ
i decreases. After the label update, ∇f

µ
i ≤

b
µ
i + 2.

(vi) If i ∈ S ∩V +, then b
µ
i increases. If α = αi for such an i , then

3n(di + 1) ≤ b
µ
i ≤ 3n(di + 1) + 1 after the label update.

Proof. (i) Consider any arc ij ∈ E. If i, j < S , then fi j and µi
are both unchanged; if i, j ∈ S , then fi j and µi are both scaled

by α . Arcs ij ∈ δ− (S ) cannot be tight by the de�nition of S .

For every ij ∈ δ+ (S ), fi j = 0, as otherwise ji ∈ Ef would be a

tight arc entering S . In all cases, f
µ
i j is unchanged.

(ii) Since S has no tight incoming arcs and µ is feasible at the start

of the label update, certainly α0 > 1; by (1), it is �nite, unless

S = V . Consider any i ∈ S∩V −. We have∇f
µ
i −b

µ
i < 1 initially,

since the augmentation part of the iteration terminated. Since

∇f
µ
i is unchanged and bi < 0, αi > 1 and �nite. Finally,

consider any i ∈ S ∩V +. Since i was not plentiful at the start

of the iteration, and bi > 0, it is clear that αi > 1 and �nite.

Altogether, α > 1. Moreover, since α0 is �nite if S , V , and

since V + ∪V − , ∅, α is �nite.

(iii) We need to check that µ j ≥ γi j µi is maintained for all ij ∈ E,

and with equality if fi j > 0. This is clear for i, j both in S or

both outside of S , since µi and µ j are both scaled by the same

amount. If only one of i, j ∈ S , then as observed above, fi j = 0.

If i < S and j ∈ S , then the required inequality follows from

the de�nition of α0 (and that α ≤ α0). And if i ∈ S and j < S ,

it follows because α > 1.

(iv) This is trivial.

(v) That b
µ
i decreases follows from α > 1, and the bound on

∇f
µ
i − b

µ
i from the de�nition of αi .

(vi) This follows immediately from α > 1 and the de�nition of αi .
�

It follows immediately from Lemma 4.2(i) that f µ remains inte-

gral throughout all iterations, since the augmentation part clearly

maintains integrality. It is also clear that ( f , µ ) remain always a

�tting pair.

Somewhat magically, despite the fact that we make no e�ort to

maintain the feasibility of f , or even keep de�cits bounded, safety

is preserved.

Lemma 4.3. The labelling µ remains safe throughout the algorithm.

Proof. At initialization, ( f , µ ) is a �tting pair and f is a feasible

�ow, witnessing that µ is safe. Safety is obviously maintained during

iterations of Reduce. The nontrivial part is to show that it is also

maintained during the label update steps in Produce-Plentiful-

Node. Assume µ is safe before a label update, and let µ ′ denote

the updated labels. That is, µ ′i = µi for i < S , and µ ′i = µi/α for

i ∈ S , where α > 1. We must show that the condition in Lemma 2.3

prevails for µ ′i .
For a contradiction, assume there exists a subsetX ⊆ V \ {t } such

that δ− (X ) ∩ Eµ
′

= ∅, and bµ
′

(X ) > 0. We call such a set violated.

Claim. f (δ− (X \ S̄ )) = 0.

Proof. Consider an arc ij with fi j > 0. Then both ij and ji are

in Eµ , and hence also in Eµ
′

. Since X is violated, ij < δ− (X ). And

by the de�nition of S̄ , ji < δ− (S̄ ), or equivalently, ij < δ+ (S̄ ). Since

δ− (X \ S̄ )) ⊆ δ− (X ) ∪ δ+ (S̄ ), this proves the claim. �

Claim. bµ (X \ S̄ ) > 0.

Proof. We know that δ− (S ) ∩ Eµ = ∅, since by the de�nition

of S it has no incoming tight arcs. Similarly, δ− (S̄ \ S ) ∩ Eµ = ∅. We

also have that Eµ ∩ E[S̄] ⊆ Eµ
′

∩ E[S̄], and so

δ− (X ) ∩ E[S̄] ∩ Eµ ⊆ δ− (X ) ∩ Eµ
′

= ∅.

Thus δ− (X ∩ S ) ∩ Eµ = ∅ and δ− (X ∩ (S̄ \ S )) ∩ Eµ = ∅. Since µ is

safe, it follows that bµ (X ∩ S ) ≤ 0 and bµ (X ∩ (S̄ \ S )) ≤ 0. Since

X is violated with respect to µ ′,

0 < bµ
′

(X ) = 1

α b
µ (X ∩ S ) + bµ (X ∩ (S̄ \ S )) + bµ (X \ S̄ ).

Thus bµ (X \ S̄ ) > 0. �

Now since S̄ ⊇ Q , ∇f
µ
i ≥ b

µ
i for all i ∈ X \ S̄ . The lemma now

follows, since

f µ (δ− (X \ S̄ )) − f µ (δ+ (X \ S̄ )) =
∑

i ∈X \S̄

∇f
µ
i ≥ bµ (X \ S̄ ) > 0,

contradicting the �rst claim. �

We give a needed bound on Ξ.

Lemma 4.4. Ξ( f , µ ) < 2n − 1 holds throughout the algorithm.

Consequently, Ex( f , µ ) < 2n − 1 holds throughout.

Proof. At initialization, we see Ξ( f , µ ) = 2(n−1), since ∇f
µ
i <

b
µ
i + 2 by (4). We show that Ξ( f , µ ) is non-increasing throughout

the algorithm. Consider a call to Produce-Plentiful-Node. A path

augmentation may increase ∇f
µ
i only for nodes i ∈ Q , that is, if

∇f
µ
i < b

µ
i . Hence, Ξ( f , µ ) may not increase at path augmentations.

We claim that no term in Ξ( f , µ ) increases during label update

steps. The only change could be b
µ
i . For i ∈ V \ (S ∩V −), b

µ
i is non-

increasing. For i ∈ S∩V −, Lemma 4.2(iv) implies that ∇f
µ
i −b

µ
i ≤ 2

after the label update.

Let us now consider a call to Reduce. The subroutine starts by

constructing a �ow дµ ∈ ZE+ satisfying (6). It follows easily from (6)

that Ξ(д, µ ) ≤ Ξ( f , µ ). The subroutine returns an image of д under

a series of contractions. The proof is complete by showing that

Ξ(д, µ ) is non-increasing during contractions. If we contract the arc

pq with t < {p,q}, then for the corresponding values д′,b ′, and µ ′

after the contraction, we have b ′
µ′
q = b

µ
p + b

µ
q , ∇д′

µ′
q = ∇д

µ
p + ∇д

µ
q .

The values for any i ∈ V \ {p,q, t } are unchanged. If t ∈ {p,q}, then

the corresponding term disappears from Ξ(д, µ ). Hence Ξ(д′, µ ′) ≤
Ξ(д, µ ) follows easily. �
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We are now ready to prove Theorem 4.1. The safety of the la-

belling is guaranteed through the entire algorithm by Lemma 4.3.

The subroutine Reduce only contracts arcs that are tight in ev-

ery dual optimal solution µ∗ to (D), according to Theorem 3.1,

Lemma 4.4, and the safety of the labelling. Lemma 3.4 shows that

we can uncontract the �nal solution to an optimal solution µ∗ to (D)

in the original instance. Lemma 2.2 shows that the primal solution

found by Compute-Primal is optimal to (P).

4.2 Bounding the Work per Augmentation
Theorem 4.5. If the total number of path augmentations in Al-

gorithm 1 is T , then the algorithm can be implemented in O ((m +
n logn)T ) arithmetic operations.

It is easy to see that the time complexity is dominated by the

time spent in Produce-Plentiful-Node. So we will focus only on

the operations in this routine.

We �rst give an easy bound of O (n2) arithmetic operations be-

tween two augmentations in Produce-Plentiful-Node. We ob-

serve that, between any two augmentations, S can only extend, and

it becomes larger at every label update. Indeed, as long as there is

no null augmentation, no vertex is removed from Q ; and as long

as there is no path augmentation, no arc in E[S] is removed from

Ef . The subroutine Produce-Plentiful-Node terminates with a

plentiful node if α = αi for a node i ∈ S ∩V +; and a path augmen-

tation happens once α = αi for a node i ∈ S ∩V −. If α = α0, then S
is extended by one element. Hence S can be extended at most O (n)
times between two augmentations. Each such step can be easily

implemented in O (n) time, giving a simple bound of O (n2) for the

steps between two augmentations.

This can be improved by a careful implementation of the algo-

rithm (which is not precisely as written but yields the same path

augmentations and eventual label updates). We observe that the

label update steps are essentially a multiplicative variant of Dijk-

stra’s algorithm, i.e., for �nding highest gain augmenting paths

instead of shortest paths. We also have further constraints: for ev-

ery i ∈ V + ∪ V −, there is an upper bound on the time they can

spend in the set S of reached nodes. In the description of Produce-

Plentiful-Node, we modify all labels µi in S every time S is ex-

tended; this could result in O (n2) label modi�cations. However, it

su�ces to change the labels µi at the end of the label update part.

With the use of Fibonacci heaps [7], the subroutine can be imple-

mented in timeO (m+n logn). A formal description of the modi�ed

subroutine can be found in the full version of this paper [19].

4.3 Bounding the Number of Augmentations
In this section, we will set up the required potential analysis, and

prove a strongly polynomial bound on the number of augmenta-

tions. This analysis will be further improved in Section 4.4 to obtain

the running time bound needed for Theorem 2.1.

Lemma 4.6. For any i ∈ V −, b
µ
i − 1 < ∇f

µ
i holds at any point of

the algorithm. Once b
µ
i ≤ ∇f

µ
i holds in Produce-Plentiful-Node,

this property is maintained until the end of the subroutine.

Proof. When procedure Produce-Plentiful-Node is called,

b
µ
i −1 < ∇f

µ
i holds for every i ∈ V \{t }. This true at the initialization,

since the input �ow was feasible, and the rounding subroutine may

decrease ∇f
µ
i by < 1. In every Reduce step, we construct д as a

�ow satisfying (6), with lower bound bb
µ
i c ≤ ∇д

µ
i ; this property

is preserved throughout the contractions. For the second claim,

Lemma 4.2(v) implies that ∇f
µ
i − b

µ
i can only increase for i ∈ V −

at label updates. Further, if ∇f
µ
i < b

µ
i + 1, then no augmentation

step will decrease ∇f
µ
i . So once b

µ
i ≤ ∇f

µ
i holds for i ∈ V −, this

property will be maintained until the end of the procedure. �

We measure progress via the potential

Ψ(µ ) := −
∑
i ∈V −

b
µ
i .

Let us now examine howΨ(µ ) changes during iterations of Produce-

Plentiful-Node.

Lemma 4.7. During Produce-Plentiful-Node, the potential Ψ(µ )
is increasing. If r augmentations are performed, then Ψ(µ ) increases
by at least min{r − 4n, 0}.

Proof. Monotonicity is straightforward. We measure the num-

ber of augmentations by another potential:

Φ( f , µ ) :=
∑
i ∈V −

∇f
µ
i − b

µ
i .

Call a path augmentation that begins at a node in V − and ends at a

node inV \V − a helpful augmentation, and all other augmentations

(including all null augmentations) unhelpful. Lemma 4.6 implies

that for every vertex i ∈ V −, there can be at most one augmentation

ending at i . Hence, there can be at most n unhelpful augmentations.

Every helpful augmentation decreases Φ( f , µ ) by one, and hence

during the r augmentations, Φ( f , µ ) decreases by at least r − n.

Again by Lemma 4.6, we see that −n < Φ( f , µ ) throughout.

Further, Φ( f , µ ) ≤ Ex( f , µ ) < 2n holds. Therefore, the value of

Φ( f , µ ) must increase by at least r − 4n to counter the decrease

caused by helpful augmentations. The value of Φ( f , µ ) can only

increase during label updates, which also increase the value of Ψ(µ )
by the same amount. The proof is complete. �

Lemma 4.8. Ψ(µ ) = O (mn) throughout the algorithm.

Proof. We prove that |b
µ
i | < 3ndi+3n+3 for every i ∈ V − holds

at every iteration. To verify this, note that Produce-Plentiful-

Node stops once a plentiful node is found. Hence |b
µ
i | ≤ 3n(di + 1)

before the �nal label update; by Lemma 4.6, b
µ
i − 1 ≤ ∇f

µ
i holds.

During the �nal label update, the value |b
µ
i | can only increase for

i ∈ S ∩V −, and ∇f
µ
i ≤ b

µ
i + 2 after it completes, by Lemma 4.2(v).

Hence |b
µ
i | can increase by at most 3. �

Lemmas 4.7 and 4.8 together imply a boundO (mn) on the number

of augmentations in a single execution of Produce-Plentiful-

Node, giving a bound of O (mn2) augmentations throughout the

algorithm.

4.4 A Re�ned Bound on the Number of
Augmentations

In this section, we prove the following more re�ned bound needed

for Theorem 2.1.
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Theorem 4.9. There are at mostO (mn log(n2/m)) augmentations

throughout the execution of Algorithm 1.

We �rst observe what we require in terms of the potential Ψ.

Lemma 4.10. If the total decrease of Ψ due to contractions over the

algorithm is ∆, then the number of augmentations is ∆ +O (mn).

Proof. Lemma 4.8 shows that Ψ = O (mn). Clearly Ψ(µ ) is al-

ways nonnegative, in particular at the start. Thus the total increase

in Ψ during iterations of Produce-Plentiful-Node is at most

∆ +O (mn). Lemma 4.7 shows that the number of augmentations

in the algorithm is bounded by the total increase Ψ plus 4n2
(since

there are at most n calls to Produce-Plentiful-Node). The lemma

follows. �

Our goal in this subsection is thus to show that the total decrease

in Ψ during the algorithm is O (mn log(n2/m)). At any stage of the

algorithm, a node i ∈ V has a preimage Γi ⊆ U , where U denotes

the node set at the start of the algorithm. De�ne

τi :=
∑
j ∈Γi

(3ndj + 3n + 3)

(here, since j is a node in U , dj is referring to the degree of j in

the original graph). Let M :=
∑
i ∈U \{t } τi ; then M = Θ(mn). Also

de�ne N := 3n2 + 3.

Let us assume that the graph does not contain any plentiful

nodes at the beginning. Should there be a plentiful node, the �rst

call of Produce-Plentiful-Node is void, and Reduce is called

immediately. Clearly after a call to Reduce, we have

|b
µ
i | ≤ 3n(di + 1) + 3 ≤ min(τi ,N ) for any i ∈ V \ {t }.

We use here that we maintain a simple graph by removing parallel

arcs created by contractions.

Let V , µ refer to their values before some call to Reduce. Let Π
be the partition ofV describing the contractions made; so each part

of Π is a vertex after Reduce completes. Consider any nontrivial

part P of Π; we wish to bound the change in potential associated

with P .

First, if t ∈ P , then the decrease in Ψ due to P is not more than∑
i ∈P∩V − τi . Now suppose t < P . Let us writeb

µ
P :=

∑
i ∈P b

µ
i , which

is the node demand of the image of P ; note that |b
µ
P | ≤ τP . The

decrease in Ψ due to P is

min{b
µ
P , 0} +

∑
i ∈P∩V −

|b
µ
i |

= min

{ ∑
i ∈P∩V +

b
µ
i ,

∑
i ∈P∩V −

|b
µ
i |

}
≤ min

{ ∑
i ∈P∩V +

min{τi ,N },
∑

i ∈P∩V −
min{τi ,N }

}
.

We may thus bound the total decrease in Ψ throughout the algo-

rithm by the total pro�t in the following game. We begin with the

multisetW = {τi : i ∈ U \ {t }}. The following moves are possible:

• An element z ∈W can be removed, yielding a pro�t of z.

(This corresponds to the situation above where t ∈ P ; all

elements of P are removed.)

• Two disjoint multisets R1,R2 ⊆W can be chosen. All ele-

ments in R1 ∪ R2 are removed, and replaced by the single

element equal to the sum of all the elements in R1 ∪ R2.

This move yields a pro�t of

min

{ ∑
z∈R1

min{z,N },
∑
z∈R2

min{z,N }
}
.

(This corresponds to the situation where t < P .)

The game ends whenW is empty.

Lemma 4.11. The maximum possible pro�t in this game is no more

thanM (log(2N |U |/M ) + 3), whereM =
∑
z∈W z and the initial size

ofW is |U | − 1.

Proof. LetW0 denote the initial multiset. At some later state of

the game, for any y ∈ S let Γy denote the multiset of elements of

W0 which have been merged together to form y. (So y =
∑
z∈Γy z.)

It is clear that the total pro�t due to removal moves is at most

M . It is exactly M if only a single removal is made right at the end

of the game, which we assume from now on.

It is also clear that we may assume that in all merges, |R1 | =

|R2 | = 1; if either set is larger, we can split the single merge into

multiple merges and the pro�t will only increase. We divide the

merges into three types:

(1) merges where both elements are less than N ;

(2) merges where one element is at least N , the other less than N ;

and

(3) merges where both elements are at least N .

We can assume that the merges of type 1 are all done before any

merges of type 2 or 3, by reordering moves if necessary. So letW1

denote the state of the game after all type 1 merges are complete.

Note that y < 2N for all y ∈W1.

Each y ∈W1 with y < N will be involved in exactly one type 2

merge, with a pro�t of y. So the total pro�t from type 2 merges is

certainly not more than

∑
y∈W1

y = M .

Let q = |{y ∈W1 : y ≥ N }|. Then there are q − 1 merges of type

3. Moreover q ≤
∑
y∈W1

y/N = M/N . So the total pro�t of type 3

merges is at most (q − 1)N ≤ M .

All that remains is to bound the pro�t of the type 1 merges.

We will use the following charging argument. If y, z are merged,

we charge the resulting pro�t min(y, z) to the elements of Γy if

|Γy | ≤ |Γz |, and to the elements of Γz otherwise. When an element

x ∈W0 is charged, it is charged no more than x . Moreover, for any

y ∈W1 and any x ∈ Γy , x cannot be charged to more than log |Γy |
times. This is because if x ∈ Γy is charged to upon merging y and

z, then |Γy+z | ≥ 2|Γy |. Thus the total pro�t of type 1 merges is at

most ∑
y∈W1

y log |Γy |.

Applying Jensen’s inequality,

1

M

∑
y∈W1

y log |Γy | ≤ log

(
1

M

∑
y∈W1

y |Γy |
)

≤ log

(
1

M

∑
y∈W1

2N |Γy |
)

= log(2N ( |U | − 1)/M ).
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(The second inequality exploits that y < 2N for all y ∈W1.) Sum-

ming the bounds on the pro�ts yields the claim. �

Theorem 4.9 immediately follows.

5 PHASE ONE: FINDING A FEASIBLE
SOLUTION

The algorithm described in Section 3 assumes (?) on the existence

of an initial �tting pair ( ¯f , µ̄ ), as well as (??) on the existence of

an arc from every node to the sink. As explained in Section 2, our

algorithm runs in two phases, similarly to the two-phase simplex

algorithm. In the �rst phase, our goal is to �nd a feasible �tting pair

( ¯f , µ̄ ) to the original problem, and the second phase will solve the

�ow maximization problem. We will also add the additional arcs to

satisfy (??) in the �rst phase.

For the feasibility problem, we construct a modi�ed problem

instance I ′ = (V ′,E ′, t ′,γ ′,b ′), where (?) and (??) hold; guaran-

teeing an initial solution will be straightforward. A pair of optimal

primal and dual solutions to the modi�ed problem instance corre-

spond to a �tting pair in the original instance I = (V ,E, t ,γ ,b).
The �rst phase may also terminate concluding that the original

instance is infeasible or unbounded.

The modi�ed instance is constructed in two steps. In the �rst

step, we remove some of the original nodes, and construct a feasible

solution µ to (D) on the remaining node set as follows.

Step 1: Flooded nodes and feasible labels. Let us call a node i ∈ V
�ooded, if there exists a �ow generating cycleC ⊆ E (that is, γ (C ) >
1), along with a path P ⊆ E connecting a node ofC to i . We can use

(C, P ) to generate arbitrary amounts of excess �ow at node i; hence

arbitrary demand bi can be met at a �ooded node i . Let Z ⊆ V
denote the set of �ooded nodes. If t ∈ Z , then the maximum �ow

amount is unbounded; however, this does not guarantee feasibility

by itself, since we also need to satisfy demands of nodes in V \ Z .

Our algorithm starts by identifying the set Z . A �ow gener-

ating cycle is a negative cycle with respect to the cost function

ce = − logγe . Hence we can adapt any negative cycle detection

subroutine (e.g. [1, Chapter 5.5]) to �nd a negative cycle, or con-

clude the none exists in O (nm) time. We can use a multiplicative

adaptation of the cycle detection algorithms to avoid computations

with logarithms. If a �ow generating cycle C is found, then we

include all nodes incident toC into Z , as well as all other nodes that

can be reached on a directed path from C . We remove every vertex

added to Z fromV , and repeat the same process. In O (n) iterations,

we correctly identify Z ; thus V \ Z contains no �ow generating

cycles. The output of the �nal cycle detection algorithm on V \ Z

provides labels µ ∈ RV \Z++ , such that µ is feasible to (D) restricted

to V \ Z . In particular, one can de�ne

µi := min{1/γ (P ) : P is a directed walk starting from i}, (7)

where for the empty walk P = ∅ we de�ne γ (P ) = 1. Due to this

de�nition, µi ≤ 1 for all i ∈ V \ Z . Note that Z may or may not

contain the sink node t ; at this point, we ignore the objective in

(D).

Step 2: adding a new sink. Let us now construct the new instance

I ′ = (V ′,E ′, t ′,γ ′,b ′) as follows.

V ′ := (V \ Z ) ∪ {t ′} for a new sink node t ′,

E ′ := E[V \ Z ] ∪ {t ′j : j ∈ V + \ Z } ∪ {jt ′ : j ∈ V \ Z }.

We de�ne b ′i := bi for all i ∈ V \ (Z ∪ {t }), and bt := −M for a very

large M > 0 if t ∈ V \ Z . We set γ ′e := γe for all e ∈ E[V \ Z ]. For

the new arcs t ′j, we let γ ′t ′j := µ j ≤ 1, for the labels µ obtained in

Step 1.

The new arcs jt ′ are added in order to satisfy (??). We set capac-

ity γ ′jt ′ := γ ∗ for all jt ′ ∈ E ′, where γ ∗ is de�ned by

Γ := max

{
γe ,

1

γe
: e ∈ E[V \ Z ]

}
, γ ∗ :=

1

Γn−1 + 1

. (8)

Let us now de�ne the initial �tting pair ( ¯f ′, µ̄ ′) required by (?). We

set µ̄ ′t := 1, and µ̄ ′j := µ j for all j ∈ V \ Z . We let
¯f ′e := 0 for all arcs

e ∈ E[V \Z ] ∪ δ− (t ′), and
¯f ′t ′j := bj/µ j for the arcs in δ+ (t ′). Note

that this �ow is feasible, since ∇ ¯f ′j = max{bj , 0} for every j ∈ V \Z .

Also,
¯f ′ �ts µ̄ ′, since all arcs in δ+ (t ′) are tight.

We now apply Algorithm 1 to the instance I ′ with the initial

�tting pair ( ¯f ′, µ̄ ′). Let ( f ′, µ ′) denote the solution returned.

Lemma 5.1. The original instance I is feasible if and only if

f ′(δ+ (t ′)) = 0. Furthermore, if the instance is feasible and t ∈ Z ,
then (P) is unbounded. If t < Z , then the objective is bounded.

Proof. Let us �rst assume f ′(δ+ (t ′)) = 0. Then f ′ restricted

to V \ Z is feasible. The �ow generating cycles in Z can provide

arbitrary large ∇fi values for every i ∈ Z . Hence we can extend f ′

to be feasible in all such nodes. Further, we can achieve an arbitrary

large objective value if t ∈ Z . If t < Z , then the objective value

in (D) for µ ′ in V ′ gives a �nite upper bound on ∇ft , hence the

problem is bounded.

Assume now f ′(δ+ (t ′)) > 0; we show that I is infeasible. If

there is a feasible
˜f on V \ Z , then adding 0 on all arcs incident to

t ′ yields a feasible solution in I ′ with ∇ ˜ft ′ = 0; consequently, the

optimum value of (P) for I ′ is nonnegative. We let

Q := {j ∈ V \ Z : f ′t j > 0}, W := {j ∈ V \ Z : f ′jt > 0}.

We have Q , ∅ by the assumption, which in turn impliesW , ∅,
because the optimum value is nonnegative. De�ne W̄ ⊆ V \ Z as

the set of nodes that can be reached fromW on a directed path in

Ef [V \Z ] (including also non-tight arcs.) We claim that W̄ ∩Q = ∅.
To show this, assume for a contradiction that there is a path P from

a node j ∈W to a node i ∈ Q . We claim that the cycle concatenating

jt ′, P , and it ′ would be a �ow generating cycle, a contradiction to

the feasibility of µ ′. Indeed, γ ′jt ′ = 1/γ ∗ > 1/γ ′(P ) by the choice of

γ ∗ in (8), and γ ′it ′ = 1/γ ′t ′i ≥ 1 by construction.

Let S := V \ (Z ∪ W̄ ). Due to assumption (??) ensured by the

arcs fjt , all nodes in S have ∇f ′
µ
i = b

µ
i . Due to the nodes in Q , it

follows that

∑
i ∈S b

µ
i > 0. We can thus increase the objective in (D)

arbitrarily by setting µ̃i := ∞ if i ∈ Z ∪ W̄ , and µ̃i = αµi for i ∈ S ,

for any arbitrary large α . �

Hence if t ∈ Z , we terminate by concluding that the objective is

unbounded. Otherwise, if the returned µ ′ is �nite, then removing

t ′ and the incident arcs provides a �tting pair on V \ Z .
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In the second phase, we run Algorithm 1 on the following in-

stance I ′′. Let

V ′′ := V \ Z , E ′′ := E[V \ Z ] ∪ {jt : jt < E}.

We let b ′′i := bi for all i ∈ V ′′, γ ′′e := γe for all e ∈ E[V \ Z ], and

γ ′′jt := γ ∗ for the new arcs, with γ ∗ as in (8). Let us call the new arcs

jt auxiliary arcs. The initial �tting pair will be the output of phase

one, restricted to V \ Z .

Consider now the optimal solutions ( f , µ ) returned in the second

phase for I ′′. We need to map them back to optimal solutions

( f ∗, µ∗) forI. For the primal optimal solution, let us return f ∗e := fe
for all e ∈ E[V \ Z ]. Inside E[Z ], we use the �ow generating cycles

to satisfy all demands in Z . For the dual optimal solution, if fjt = 0

for all auxiliary arcs, we simply return µ∗i := µi for all i ∈ V \ Z ,

and µ∗i := ∞ for i ∈ Z .

Finally, assume fjt > 0 on some auxiliary arcs. As in the proof

of Lemma 5.1, let W := {j ∈ V \ Z : f ′jt > 0}, and let W̄ be the

set of all nodes reachable fromW on a directed path in Ef [V \ Z ].

The same argument shows that t <W ; also, there are no arcs in E
leavingW . We get an optimal dual solution by setting µ∗i := µi for

all i ∈ V \ (Z ∪ W̄ ), and µ∗i := ∞ for all i ∈ Z ∪ W̄ .

Remark. The algorithm in [32] used Radzik’s [22] strongly poly-

nomial cycle-cancelling subroutine to obtain an initial �tting pair.

The argument presented here is also applicable to the algorithm

in [32], and thus cycle-cancelling can be avoided. In fact, many

arguments in this section have already been used in [32, Section 8].

6 BOUNDING ENCODING LENGTHS
A �nal step to showing that our algorithm is strongly polynomial

is to demonstrate that all numbers appearing during the algorithm

have size polynomially bounded in the input size. This was a major

challenge in the previous strongly polynomial algorithm [32]. For

our algorithm, we will see that this is relatively straightforward.

Consider an instance I = (V ,E, t ,γ ,b), such that γ ∈ QE++ and

b ∈ ZV \ {t }. Let B be an integer that strictly exceeds both |bi | and

the largest numerator or denominator appearing in any gain factor

γe . We show that every step of the algorithm can be implemented

such that the numbers during the computations remain rational

numbers, with numerator and denominator at most 4n2B2n
.

In order to satisfy (??), we add auxiliary arcs jt with γjt = γ
∗

as de�ned in (8) (see Section 5). Clearly, γ ∗ ∈ Q, with numerator 1

and denominator at most Bn .

We do not need to work with the �ow f directly, but maintain

the relabelled �ow f µ instead. This remains integral throughout,

except at the very beginning and in the �nal computation of a

primal solution. Moreover, the values f
µ
e are strongly polynomially

bounded. If f
µ
e were ever as large as 3n2

, its endpoints would be

plentiful nodes until such time as it was contracted.

Let us now turn to the labels µ. We will maintain the following

property.

(A) µi ∈ Q++, µi ≤ 2nBn , and has denominator ≤ 4n2B2n

for every i ∈ V .

In order to achieve this, some minor changes in Produce-Plentiful-

Node are needed. Let us call a node i an anchor if µi is an integer

multiple of 1/(4n2). In the choice ofαi for i ∈ S∩(V −∪V +), we have

�exibility in steps 11 and 12 when choosing αi . Let us always select

αi such that i becomes an anchor. This is always possible, since, as

long as a node i is not plentiful, we have |b
µ
i | ≤ 3n(di +1)+1 ≤ 4n2

.

Furthermore, let us only change the �ow on augmenting paths

starting from anchors; and let us only terminate upon �nding a

plentiful node if it is an anchor (this happens automatically for

plentiful nodes in V +) which are anchors. For example, if a node

i ∈ V − enters S with ∇f
µ
i ≥ b

µ
i + 1, but it is not an anchor, we do

not immediately execute the path augmentation in Step 6. Instead,

we �rst move to the label update part, setting αi such that i becomes

an anchor.

We show that with this modi�cation, (A) is maintained through-

out the algorithm. We need to guarantee this property at initializa-

tion; let us postpone this, and �rst show that if the property already

holds, it is maintained in the next step of the algorithm.

The subroutine Reduce trivially maintains (A): it only changes

the µi ’s by removing some of them. Let us now turn to Produce-

Plentiful-Node, and assume (A) holds. We show that (A) will hold

before every path augmentation and at termination. While we do

not verify the property at every extension of S , the enhanced variant

described at the end of Section 4.2 (see also the full version [19])

only updates the labels at these events.
3

Since labels may only decrease, the upper bound is trivially

maintained. We stop a series of label updates either because a path

augmentation is in order, or because a plentiful node is found.

According to the above described modi�cation of the algorithm,

this means that the set S includes an anchor j. The labels of nodes

outside S did not change, hence (A) holds for them. Every i ∈ S has

a tight path Pi to the anchor j in

↔

Eµ [S]. We note that this is where

we leverage step 9, i.e., selecting S as an undirected connected

component of S̄ , instead of the more obvious choice S = S̄ . Then

1 = γ µ (P ) = γ (P )µi/µ j , and thus µi = µ j/γ (P ). Now µ j is an

integer multiple of 1/(4n2), and γe is rational with numerator at

most B for every original arc or reversed original arc. The path P
may contain one auxiliary arcs or reversed auxiliary arcs, or one

of each type. Recall that γe for auxiliary arcs has denominator at

most Bn . If there is an auxiliary and a reverse auxiliary arc, their

gain factors cancel out. Hence, property (A) for i follows.

It remains to show that we can obtain initial labels satisfying

(A). The initial labels are constructed di�erently in the two phases.

In phase one, we de�ne them as in (7); it is straightforward that

all µi ≤ 1, and the µi ’s have denominator at most Bn−1
. In line 1

of Algorithm 1, they get multiplied by ∆ = maxi ∈V \{t } ∇f
µ
i − b

µ
i .

The initial �ow f exactly satis�es the demands i ∈ V +, and has

∇f
µ
i = 0 if i ∈ V − ∪V 0

. It follows that ∆ ≤ Bn . Consequently, the

initial labels in the �rst phase satisfy (A), with the stronger property

that µi ≤ Bn for all i ∈ V . Since the labels are non-increasing, this

upper bound is maintained throughout the �rst phase.

The initial labels for the second phase are obtained from the �rst

phase, and thus satisfy (A) with µi ≤ Bn for all i ∈ V . The value of

∆ can be bounded by Ex( f , µ ) < 2n at this point; hence we have

µi ≤ 2nBn for all i ∈ V , and therefore (A) holds.

Acknowledgements. We are very grateful to José Correa and An-

dreas Schulz for many interesting discussions which led to this

3
For the interim updates, a bound of 4n2B3n

on the denominators easily follows,

assuming (A) holds before every path augmentation and at termination.
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work. Part of this work was done while the authors were partici-

pating in the Hausdor� Trimester on Discrete Mathematics in Fall

2015.
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