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A Simplex Contained in a Sphere

Andrew Vince

Abstract. Let Δ be an n-dimensional simplex in Euclidean space E
n contained

in an n-dimensional closed ball B. The following question is considered. Given
any point x ∈ Δ, does there exist a reflection r : E

n → E
n in one of the facets

of Δ such that r(x) ∈ B?
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1. Euler’s inequality

Among the vast literature on Euclidean geometry can be found numerous elegant
inequalities concerning the centroid, circumcenter, incenter, and orthocenter of
a triangle. Some of these have natural extensions to a simplex in n-dimensional
Euclidean space, a classic example being Euler’s inequality

R ≥ n r ,

where R and r are the circumradius and the inradius of the simplex, respectively.
Each facet, i.e., maximal proper face, of an n-simplex Δ is an (n− 1)-dimensional
simplex. The inradius of an n-simplex Δ is the maximum of the radii of balls
contained within Δ. The center of this unique ball is called the incenter of Δ. The
boundary of the maximum ball is a sphere that meets each facet in a single point.
The circumradius of Δ is the minimum of the radii of balls containing Δ. The
center of this minimum ball is called the circumcenter of Δ. The boundary of this
unique minimum ball is not necessarily the sphere through the vertices of Δ. In
fact, it is only if the center of the minimum ball is inside Δ.

Extensions of and variations on Euler’s inequality have since appeared, for exam-
ple [3,6]. For completeness, we provide a simple proof of Euler’s theorem which, as
was pointed out by the referee, is essentially the proof for the triangle that appears
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in [4]. Fejes–Tóth credits the proof to I. Ádám. Klamkin and Tsintsifas [2] provide
another short proof.

The main contribution of this note is a related statement. Although a short proof of
this statement is given for a triangle in the plane in Section 4, it is vexing (vexing
for me and a challenge to the reader) that the natural generalization to an n-
dimensional simplex remains a conjecture. The statement appears in four alternate
forms in Section 2. In one form the statement resembles Euler’s inequality. Two
other forms, the ones that motivated the title of this note, concern an n-simplex Δ
contained in a closed ball B. Let F denote the set of facets of Δ and rf : E

n → E
n

the reflection in the hyperplane containing facet f ∈ F . The statements are as
follows.

• For any point x ∈ Δ there is an f ∈ F such that rf (x) ∈ B.
• There exists a point x ∈ Δ such that rf (x) ∈ B for all f ∈ F .

All four statements appear in Section 2. The equivalence of the four statements
is the content of Section 3. In the 2-dimensional case, the point x in the second
statement above is the orthocenter, the point of concurrency of the altitudes of
the triangle. The proof for the 2-dimensional case does not generalize due to the
interesting fact that the altitudes of an n-simplex, in general, are not concurrent
for n > 2.

In the following proof of Euler’s inequality, F = {f0, f1, . . . , fn} is the set of facets
of an n-simplex Δ, and R(Δ) is the circumradius of Δ. If x0, x1, . . . , xn are affinely
independent points in E

n then Δ(x0, x1, . . . , xn) denotes the n-simplex with these
points as vertices. The Euclidean distance between points x and y is denoted
d(x, y).

Proof of Euler’s inequality. Let Δ be an n-simplex with vertices v0, v1, . . . , vn. De-
note the centroid of facet fi by ai. Simplices Δ and Δ(a0, a1, . . . , an) are similar
with ratio n. This is easy to check since ak = 1

n (v0+v1+· · ·+vk−1+vk+1+· · ·+vn)
which implies that d(ai, aj) = 1

n d(vi, vj) for all i �= j. This similarity implies
R(Δ) = nR(Δ(a0, a1, . . . , an)). A ball of radius less than that of the inscribed
ball cannot meet every facet of Δ. Therefore R(Δ(a0, a1, . . . , an)) ≥ r and

R = nR
(
Δ(a0, a1, . . . , an)

)
≥ nr . �

2. Four conjectures

If O is the circumcenter of n-simplex Δ, let Δ denote the n-simplex whose vertices
are the feet of the perpendiculars from O to the facets of Δ.

Conjecture 1. R(Δ) ≥ 2R(Δ).

It is interesting to compare the inequality in Conjecture 1 with Euler’s inequality.
Let b0, b1, . . . , bn be the feet of the perpendiculars from the circumcenter to the
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Figure 1. Conjecture 1 is best possible.

hyperplanes containing f0, f1, . . . , fn, respectively, and let a0, a1, . . . , an be the feet
of the perpendiculars from the incenter to the facets f0, f1, . . . , fn, respectively.
Euler’s inequality is

R(Δ(a0, a1, . . . , an))
R(Δ)

≤ 1
n

while Conjecture 1 claims only
R(Δ(b0, b1, . . . , bn))

R(Δ)
≤ 1

2
.

On the other hand, if Conjecture 1 is true, it is best possible in the sense that
R(Δ)/R(Δ) can be made arbitrarily close to 1/2. Let Δ′ be a regular (n − 1)-
simplex with edge length 1 embedded in the hyperplane xn = 0 in R

n so that its
centroid is at the origin. Let Δm be the n-simplex that is the convex hull in R

n of
Δ′ and the point pm = (0, 0, . . . , 0,m). See Figure 1. Then clearly

lim
m→∞

R(Δm)
R(Δm)

=
1
2

.

Conjecture 2. If n-simplex Δ is contained in a closed n-ball B, then for any point
x ∈ Δ there is an f ∈ F such that rf (x) ∈ B.

Conjecture 3. If n-simplex Δ is contained in a closed n-ball B, then there exists
a point x ∈ Δ such that rf (x) ∈ B for all f ∈ F .

The fourth conjecture, the one that motivated this paper, arose in the analysis
of an algorithm for discrete line generation in computer graphics [5]. Concerning
notation, let V be the set of vertices of the n-simplex Δ. If v ∈ V and x ∈ Δ, let Δx

v

denote the simplex with vertex set V ∪{x}\{v}. The sphere circumscribed about Δ
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will be defined to be the sphere containing the vertices of Δ. Let R′(Δ) denote the
radius of the circumscribed sphere. As previously noted, the circumscribed sphere
is not necessarily the boundary of the smallest ball containing Δ, hence R(Δ) and
R′(Δ) are not necessarily equal.

Conjecture 4. If x ∈ Δ, then R′(Δ) ≤ maxv∈V R′(Δx
v).

3. Equivalence

This section contains the proof of the equivalence of the four conjectures stated in
Section 2.

Lemma 5. Let V be the set of vertices of an n-simplex Δ and Cv, v ∈ V, a closed
set containing the facet of Δ opposite v. If

⋃
v∈V Cv = Δ then

⋂
v∈V Cv �= ∅.

Proof. For convenience, let V = {0, 1, . . . , n}. Fix a positive number ε and tri-
angulate Δ such that diam(δ) ≤ ε for each simplex δ in the triangulation. The
vertex set Vδ of the triangulation is required to contain V . For a subset J ⊆ V , let
J + 1 = {j + 1 (mod n + 1) | j ∈ J}, and let fJ denote the face of Δ that is the
convex hull of J . Because Ck contains the facet opposite vertex k, we have

fJ ⊆ Ck for all k /∈ J . (1)

Let g : Vδ → V be a labeling of the vertices of the triangulation defined as follows.
If x is an interior point of Δ, let g(x) = k for any k ∈ V for which x ∈ Ck. This
is possible because

⋃
v∈V Cv = Δ. If x lies on the boundary of Δ, then there is a

unique J such that x ∈ fJ but x /∈ fK for any K � J . In this case let g(x) equal
any element in the set (J + 1) \ J . This labeling has the following properties, the
first following from (1) and the definition of g, the second from the definition of g
on boundary points.

(a) x ∈ Cg(x)

(b) If x ∈ fJ , then g(x) ∈ g(J).

Property (b) is the hypothesis of Sperner’s lemma, the conclusion being that there
is a simplex δ in the triangulation whose set of vertex labels is exactly V . Using
property (a), the fact that the Cv are closed sets, and the usual limiting argument
as ε tends to 0, we conclude that there exists a point in Δ that lies in Cv for all
v ∈ V . �

Let B(Δ) denote the closed ball with minimum radius containing simplex Δ and
B′(Δ) the closed ball determined by the sphere circumscribed about Δ.

Lemma 6. If Conjecture 2 is true for either B(Δ) or B′(Δ), then it is true for
any closed ball containing Δ.
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Figure 2. Figure accompanying the proof of Lemma 6.

Proof. Assume that Conjecture 2 holds for either B(Δ) or B′(Δ). Let B be any
ball containing Δ and denote its center by Q. Let x be an arbitrary point in Δ.
If Q /∈ Δ, then clearly rf (x) ∈ B for some facet f . So assume that this is not
the case. Define V ′ to be the set of points obtained by radially projecting the
set V of vertices of Δ from Q to the boundary of B. Let Δ′ be the n-simplex with
vertex set V ′. Then Δ ⊆ Δ′ and, since Q ∈ Δ′, we have B = B(Δ′) = B′(Δ′). By
assumption there is a facet f ′ of Δ′ such that rf ′(x) ∈ B. It suffices to show that
rf (x) ∈ B for the corresponding facet f of Δ.

Let S and S′ be the intersections of B with the hyperplanes H and H ′ containing
f and f ′, respectively. Take point Q as the origin of R

d. If d > 2, let u and u′ be the
vectors (from Q) orthogonal to the hyperplanes H and H ′, respectively. Let W =
span{u, u′} and Wx = x + W , a 2-dimensional affine subspace of R

d containing x.
(If u = u′ then let W be the span of u and any other vector.) If projWx

denotes
orthogonal projection onto Wx, then L = projWx

(H) and L′ = projWx
(H ′) are

lines and O = projWx
(Q) is the center of the disk D = B ∩Wx. Note that both O

and x lie in the same halfspace of Wx determined by L (or L′). See the first diagram
in Figure 2. If rL and rL′ denote the reflections in L and L′ respectively then the
proof is now reduced to the 2-dimensional case, to showing that if rL′(x) ∈ D then
rL(x) ∈ D.

In Figure 2 we denote x′ = rL(x) and x′′ = rL′(x). Line L′′ is the perpendicular
bisector of the line segment x′x′′. The three perpendicular bisectors of �xx′x′′ are
concurrent at point y. Any point above line L′′ is closer to x′ than to x′′. Since the
center O of D is above L and L′, hence above L′′, we have d(O, x′) < d(O, x′′). In
other words, if rL′(x) ∈ D then rL(x) ∈ D. �

The following is a technical lemma required only for the proof of Theorem 8.

Lemma 7. Consider a 3-ball B with center O and boundary sphere S, a plane σ,
a line L through O and perpendicular to σ, a point u ∈ S ∩ σ, and a point x ∈ B.
Further let Ox be the unique point on L such that d(Ox, x) = d(Ox, u). If r denotes
reflection in σ, then d(Ox, u) ≥ d(O, u) if and only if r(x) ∈ B.
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Proof. Let L′ be the line joining x and r(x). Then L′ intersects σ in a point, say b
and intersects S in two points a, a′, where we take a to be in the same halfspace
determined by σ as x. If line L intersects S in points A,A′, then let A be the one
in the same halfspace as a and x. Further let c = r(a′) and O′ = r(O).

Let x vary from x = a to x = b. If x = a, then Ox = O because a, u ∈ S. As x
moves along L′ from a to b, a tedious analytic geometry/calculus calculation shows
that Ox moves monotonically from O toward A′. When (if) x = c, we have Ox = O′

because d(O′, c) = d(r(O′), r(c)) = d(O, a′) = d(O, u) = d(r(O), r(u)) = d(O′, u).
Now r(x) ∈ B if and only if x lies on the segment bc if and only if Ox does not lie
on the segment OO′ if and only if d(Ox, u) ≥ d(O, u). �

Theorem 8. The four conjectures are equivalent in the sense that, for a given
dimension n ≥ 2, they are either all true or all false.

Proof. Let V be the vertex set of Δ. For this proof it will be convenient to denote
by rv : E

n → E
n the reflection in the hyperplane containing the facet of Δ opposite

vertex v ∈ V .

(3 ⇒ 2): Assume that Conjecture 3 is true and that x is the point whose existence
is guaranteed by Conjecture 3. Since the ball B is convex, rv(Δx

v) ⊂ B. Let y be an
arbitrary point in Δ. Because Δ =

⋃
v∈V Δx

v , there is a v ∈ V such that y ∈ Δx
v .

For this v we have rv(y) ∈ B.

(2 ⇒ 3): Assume that Conjecture 2 is true. If Cv = {y ∈ Δ | rv(y) ∈ B}, then⋃
v∈V Cv = Δ. By Lemma 5 there exists a point x ∈

⋂
v∈V Cv. Then rv(x) ∈ B

for all v ∈ V .

We next show the equivalence of statements (3) and (1).

(3 ⇒ 1): Assume that Conjecture 3 is true, and let B be the unique ball of
smallest radius containing Δ, with radius R and center O. Let x be the point
whose existence is guaranteed by Conjecture 3. Let bv denote the foot of the
perpendicular projection of O on the hyperplane containing the facet fv opposite
vertex v, and define cv on the line Obv such that d(O, cv) = 2 d(O, bv) and such
that bv lies between O and cv. Hence cv = rv(O). Now

d(x, cv) = d
(
x, rv(O)

)
= d

(
rv(x), O

)
≤ R ,

the inequality following from the statement of Conjecture 3. Let Δ be the convex
hull of the bv, v ∈ V , and Δ̂ the convex hull of the cv, v ∈ V . By the inequality
above, the simplex Δ̂ is contained in a ball of radius R centered at x, i.e., R(Δ̂) ≤
R. Since Δ̂ and Δ are similar with ratio 1/2, we have

R(Δ) =
1
2

R(Δ̂) ≤ 1
2

R .

(1 ⇒ 3): Assume that Conjecture 1 is true, and let B be the unique ball of smallest
radius containing Δ, with radius, say R. With the notation O, Δ̂ and Δ the same
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as in (3 ⇒ 1), let x be the circumcenter of Δ̂. Then for all v ∈ V we have

d
(
O, rv(x)

)
= d

(
rv(O), x

)
≤ R(Δ̂) = 2R(Δ) ≤ R .

So rv(x) ∈ B for all v ∈ V . Lemma 6 implies Conjecture 2, hence also Conjecture 3,
for any ball containing Δ.

Finally the equivalence of Conjectures 2 and 4 is proved.

(2 ⇒ 4): Assume that Conjecture 2 is true, and let x be any point in Δ. Let B be
the ball containing all vertices of Δ and O the center of Δ. (Note that O is not
necessarily the circumcenter of Δ.) By the statement of Conjecture 2 there is a
v ∈ V such that rv(x) ∈ B. Let L denote the line that is the intersection of the
perpendicular bisecting hyperplanes of all line segments uu′, u, u′ ∈ V, u, u′ �= v.
Then L passes through O and through the center Ox of the sphere circumscribed
about Δx

v . Let L′ be the line through x and rv(x). Since both L and L′ are
perpendicular to the facet of Δ opposite v, the lines L and L′ are parallel. Let u
be any vertex in V \ {v}, and, to simplify matters, consider only the (at most)
3-dimensional affine subspace X of E

n containing the lines L and L′ and point u.
Then B′ = B∪X is a 3-ball with center O. It now suffices to show that d(Ox, u) =
R′(Δx

v) ≥ R′(Δ) = d(O, u). Note the following:

(a) Ox is the point on L equidistant from x and u.
(b) If σ is the plane that is the perpendicular bisector of segment xrv(x) and S

is the boundary sphere of B′, then u ∈ S ∩ σ.
(c) rv(x) ∈ B′.

The required result d(Ox, u) ≥ d(O, u) now follows from Lemma 7.

(4 ⇒ 2): Assume that Conjecture 4 is true. We will prove that Conjecture 2 is
true when B is the circumscribed ball, i.e., the ball whose boundary contains
all vertices of Δ. Conjecture 2 will then follow in general from Lemma 6. Let x
be an arbitrary point in Δ and let v ∈ V be such that R′(Δx

v) ≥ R′(Δ). Let
L,L′, σ,B′, Q be defined exactly as in the proof (2 ⇒ 4). Conjecture 4 gives us
d(Ox, u) = R′(Δx

v) ≥ R′(Δ) = d(Ox, u), from which rv(x) ∈ B follows from
Lemma 7. �

4. Dimension 2 case

Everything in this section takes place in the Euclidean plane, and is related to
classical material on orthocentric systems. In particular the existence part of The-
orem 10 is implied by classical results on the subject [1, pages 265–267].

Lemma 9. Let D1,D2,D3 be three distinct closed disks with equal radius, with
centers O1, O2, O3, and with boundary circles C1, C2, C3, respectively. If C1 ∩C2 ∩
C3 �= ∅ and �O1O2O3 is an acute triangle, then D1 ∩ D2 ∩ D3 = C1 ∩ C2 ∩ C3.
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Figure 3. Figure accompanying the proof of Lemma 9.

Proof. Figure 3 shows circles C1 and C2. Three distinct circles with equal radius ρ
can have at most one point in common. Assume that C1∩C2∩C3 = {a}. Let L,L′

be lines perpendicular to O1O2. Then

d(O1, a) = d(O2, a) = d(a, b) = d(a,O3) = ρ .

Let X be the closed region consisting of all points that lie above both lines O1b
and O2c, and Y the closed region consisting of all points that lie between the lines
L and L′. Then D1 ∩ D2 ∩ D3 = {a} if and only if O3 ∈ X ∩ Y if and only if
�O1O2O3 is acute. �

The following theorem is the 2-dimensional version of Conjecture 3. Let ri : E
2 →

E
2, i = 1, 2, 3, denote the reflections in each of the three lines containing a side of

triangle Δ.

Theorem 10. If Δ is a triangle in the plane and D is the circumscribed closed
disk, then there exists a point O such that ri(O) ∈ D for i = 1, 2, 3. Moreover, the
point O is unique and is the orthocenter of Δ if Δ is an acute triangle and is the
vertex of the obtuse angle if Δ is not acute.

Proof. The proof for the case of an obtuse triangle is easy and left to the reader.
So assume that Δ is acute. Referring to Figure 4, the orthocenter is denoted O,
the segments v1a and v2c are altitudes, and point b is the intersection of the
circumcircle with the extension of altitude v1a. The measure of the arc v1v2 is
denoted θ. Also α, β, γ, φ are the designated angles. Then

α =
π

2
− β =

π

2
−

(π

2
− γ

)
= γ =

1
2

θ = φ .
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Figure 4. Figure accompanying the proof of Theorem 10.

This implies d(a,O) = d(a, b) and hence r1(O) = b is contained in D, on the
boundary of D to be precise.

It only remains to show uniqueness. Let Di = ri(D), i = 1, 2, 3. Assume that x is
any point in D such that ri(x) ∈ D for all i. Then x ∈ D1 ∩D2 ∩D3. It is routine
to show that Δ ∼= Δ′, where Δ′ is the triangle formed by joining the centers of
D1,D2,D3. Hence Δ is an acute triangle if and only if Δ′ is an acute triangle. By
Lemma 9 we have x ∈ D1 ∩ D2 ∩ D3 = C1 ∩ C2 ∩ C3 = {O}. Hence x = O. �

Note that Lemma 6 implies that the first statement in Theorem 10 holds for any
closed disk D containing Δ.
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