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A SIMPLICIAL ALGORITHM FOR STATIONARY POINT
PROBLEMS ON POLYTOPES't

A. J. J. TALMAN3 nxo Y. YAMAMOTOg

A simpticial variable dimcnsion restart algorithm for thc stationary point problcm or
variational inequality problem on a polytope is proposed. Given a polytopc C in R" and a
continuous function f: C~ R", find a point i in C such that J(z) . z~ J(x) ..r for any
point x in C. Starting from an arbitrary point u in C, the algorithm generates a piecewise
linear path of points in C. This pató is foflowed by altemaling linear programming pivot steps
to follow a linear piece of the path and replacement steps in a simplicial subdivision of C.
Within a finite number of function evaluations and linear programming pivot stcps the
algorithm finds an approzimate stationary point. The algorithm Icaves the starting point v
along a ray pointing to one of the vertices w of G The vertex w is obtaincd [rom thc optimum
solution o[ the lincar programming problem maximize J(u) . x subject to x e C.

1. Introduction. In order to compute zero points of continuous func[ions on the
Euclidean space R", many so-called simplicial variable dimension algorithms have
been introduced. Such an algorithm subdivides R" into n-dimensional simplices and
searches for a simplex that contains an approximate zero point or solution. Starting in
an arbitrarily chosen grid point of the triangulation the algorithm generates, through
alternating linear programming pivot steps in a system of typically n t 1 linear
equations and replacement steps in the triangulation, a sequence of adjacent simplices
of varying dimension. Given some ccercivity condition the algorithm then generates
within a finite number of steps an approximate solution. When the accuracy is not
satisfactory, the algorithm can be restarted at the approximate solution with a finer
triangulation in the hope that within a small number of iterations a better approximate
solution is found.
Simplicial variable dimension restart algorithms differ from each other in the

number of rays along which the algorithm may leave the starting point. Such an
algorithm with n t 1 rays, the (n f 1)-ray algorithm, was proposed in van der Laan
and Talman [12]. The 2n-ray algorithm was also introduced in [12], the 2"-ray
algorithm in [18], and the (3" - 1}ray algorithm in [10]. A unifying approach for these
algorithms was given in van der Laan and Talman [13], see also Yamamoto [19]. In [13]
the piecewise linear (abbreviated by pl) path traced by the algorithm when generating
the sequence of adjacent simplices of varying dimension is interpreted as a curve of
stationary points to the underlying problem with respect to an expanding set contain-
ing the starting point in its interior.
For the nonlinear complementarity problem on the n-dimensional unit simplex and

the cross product of several unit simplices, S, simplicial restart algorithms have also

'Received July 8, 1986; revised April 13, 1988.
.1MS J980 subject classificarion. Primary: 49D35. Secondary: 90C30, 90C33.
IAOR l97J subject c(rusificarion. Maín: Programming: Nonlincar.
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Krv words. Stationary point, variational inequality, simplicial algorithm, piecrwise lincar approximation,
triangulation.
f This research is part of the VF-program "EquiGbrium and Disequilibrium in Dcmand and Supplv' which
h;u bcen approved by the Netherlands Ministry o[ Education and Scicnccs.
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hccn ~1e~clupcd. C~tntran to the unbounded region OY", the set S is bounded for this
pn~hkm. In [)oup and Talman [3] a simplicial varíable dintension restart algorithm un
S i, intru~lur~d ~chirh follows from the starting point v in S a curve of stationary
point, ~~ith rr~pect tu the expending set (1 - r){e) f rS, 0 5 r~ 1. This algorithm
ha, :u manv rav~ a. there are vertices u( S.
f3a,cd un th~s~ idcas we prupuse a simplicial (variable dimension) restart algori[hm

in order tc~ .ul~e the nonlinear stationary point problem on a given polytope C in ffP"
anJ fc~r a;i.en funrtion j: C~ Q8", ix., find a point .i in C such that

( l.l ) J( .i ) ..i ~ J( x). x for any x in C.

~V~ a.,ume that the set C, being a convex, compact set, is represented by the
intcnectiun uf m half-spaces, u' ..i 5 b,, r- 1,..., m, where none of the constraints
i, re~fundant. Starting in an arbitrary point v of C, the algorithm generates a sequence
uf adjarent ,implices of a specitic simplicial subdivision o( C. This sequence contains a
pi~re~~i;c liner path of points leading from u to an approximate stationary point.
lsain. altrrnating linear pmgramminó pivut strps in a linear system anJ replacentcnt
,t~p. in thr triangulatiun are made. The triangulation is clusely rrlat~d to the
l-trian~ulation of S proposed in [3] and is completely detennined by projections o( v
un thc I'arr, of C. These projections are subseyuently determined during the perfor-
mancr c~l thz algurithm by making pivot steps in the dual system of linear eyuatiuns.
Th~ al,orithm leaves the starting point v in the direction of the vertex of C that solves
th~ lin~ar programming problem

max J( c) . x subject to x e C,

~u that th~ number of rays is equal to the number of vertices of C. Each point x along
th~ piece~~ise lineur path traced by the algorithm solves the stationary point problem
~~ith r~sp~ct to the piecewise linear approximation j to jon the set (1 - t)(u} f tC,
fc~r .cmte r, 0~ r~ 1. The point c is the uniyue stationary point if r- 0 and when r
r~ach~, l, a, we trace the path, a stationary point for J on C is obtained, and hence an
appruxim:u~ ,tatiunury puint for J.

f hc statiunan point problem or variational ineyuality problem ariscs e.g. from
~rc~numir cyuilihrium problems, noncooperative games, traflic assignment problems,
an~l nunlinear uptimization problems (see e.g. [8] and [16]). In a typical traFlic
;u,i;nnt~nt prublem, the variable vectur x represents the traflic load pattern on links
anJ Íl t 1 the link cust. Assuming that the link cost function j is uniform)y monutone
I)al~rnt~~, [IJ propused an algorithm fur this problem, which repeatedly solves the
,tati~rnan puint prublem with J replaced by an appropriate atiine function and
gen~rate, a ron~crg~nt sequence uf points to a stationary puint (see also [2J). It is
~~c~nh mrntiunin~ that the algorithm we will propose in this paper needs no assump-
ti~in. cin J' ~.c~'~pt continuily.
I( the lunctiun J is atïine, no simplicial subdivision of the underlying set is needed.

Fur su~h a linear stationary point problem, Eaves ([6, 7]) introduced a pivoting
algctrithm whi~h traces a piecewise linear path of stationary points with respect to a
,p~cific expanding set.
Thr ure;tnization of this paper is as follows. !n ~2 we review the unifying framework

fur r~,t;rrt tixed puint algurithms basrd on the primal-dual pair of subdivided mani-
lulci. prupct.,s1 in Kojima and Yamamoto [5]. In ~3 we specify the primal-dual pair of
,uhdi~idr.i nt~nifuWs which induce our algorithm and present the basic system. We
al,u pru~~ th~ con~er~~nce of the algorithm and derive the accuracy of an upproximate
,uluticm. In ~~ ~ce `~i~e a formal description of the algorithm under the assumption that
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the polytope C is simple, full-dimensional, and that the linear ineyualiti~s delining C
are nonredundant. ~5 is devoted to the description of a specific triangulation of C that
could underlie the algorithm. In ~6 we discuss the cuses when the polytope C is not
full-dimensional or no[ simple.

2. Preliminaries. In this section we give a brief description of a subdivided
mani(old, a primal-dual pair of subdivided manifolds, and the basic theorem for
simplicial algorithms.
We call a nonempty convex polyhedral set a cell. A cell of dimension nr is called an

nt-cell. 1( a cell B is a face of a cell C, we write B ~ C.
Let .,ll be a finite or countable collection of nr-cells. We denote { B~B is a face of

some m-cell of ..ll } by .,ff and lJ(C~C E.,r!) by ~.~ff~. We call .,A a subdivided
nr-manifold if and only if
( 2.1) for any B, C E..fl, B r1 C- Ps or B n C ~ B and C;
(2.2) (or each (m - ])-cell B of .,!! at most two m-cells o( ..H have B as a facet;
(2.3) .-lf is locally finite: each point x of ~.,ff~ has a neighborhood which intersects

unly a linite number o( nrcells of ..!!.
We rail the collection of (m - 1)-cells of .d! that iie in exactly one nr-cell of .ll the

noundary of ~6! and denote it by ó.,lf.
A cuntinuous function H(rom ~.,tf~ into some Euclidean space is said to hc a pl

(wiction on .,lf if the restriction o( H to each cell of ..lf is an atiine funrtion. For a
subdivided (n f l)-manifold .,f! and a pl function H on .~f into 98" we say that
c E Gt" is a regular value of H: ~.,fl~ y P2" if B e,,!! and H~(c) t-1 B~ m always
imply dim H(B) - n.
The follawing theorem is a basic theorem for simplicial algorithms (sce Eaves [Sj).

THEORIiM 2.1. Ler -!l be u suhdicicled ( n f 1)-mrrnijnld und H u pl jmrctiun un . l(
inro 68 ". St,ppvse thut r E i2" is u regtdur t~alue oj H. Tlten H t(c) is u di.~juint uniun uj
putlts unrl Inops, irhere u puth is u suhdirided 1-ntunijnlcl hn,neomurplric m unr u~ rhr
inlrrrcds (0, 1), (0, 1J und [0, 1], mtd tirhere u loup is u suhdirided ]-muniJolcl hu,ncomur-
phic to the i-rlimensionul sphere. Furthermore, H- t( c) sutisfres tlre Jullnn~inl; runcliliuns
(2.4) H~(c) rl B is eidrer empt~ or u]-ceN jor euch B E-~f,
( 2.5 ) u luop uJ H~( c) dnes not inlersect ~ r7. ff ~,
( 2.6) iJ u puth S oJH-~( c) is compuc7, the boundun~ bd S oJ S consists uJ nru di.crinct

pnints irr ~ r), !l ~.

Let :~ and ~ be two subdivided manifolds. If ~ and ~ satisfy the fullowing
conditions with some positive integer m and an operator d: 9 u 2-~ .9 u~ u{ m}.
we say that (.~, 2; d) is a primal-dual pair of subdivided manifoWs (ahbreviated hy
PDM) ~~~ith degree m,
(2.7) for every X e.~, X~ - ID or X`t E~,
(?.7)' for every }' E~, }'~ - 0 or Y~ E.~,
(2.R) if Z E~u ~ and Z~ ~ 0, then (Z't)`~ - Z and dim Z~ dim 7'r - m.
(2.9) i( X~, X, E.~, X~ ~ X,, Xi ~ s?1 and X~ ~ ~, then X;r ~ X~,
(2.9)' if )'~. }', E ~. }'~ ~ YZ. )'~ ~ ~ and )'-~ ~ ró. thcn }~-r ~ )"i~.

We call the operator d the dual operator.
For a PD~1 (.~, 2; d) Hith degree m let

(.9. ~: d ~ - { X X X`[~ X E :1~, X`r ~ ~ } .

or eyui~~ulrntl}~

~.~. L: [I~ - { }~~ X }'~)~ E ~!. }',r ~ 0 ~.
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Th~n ue have the following theorems. See Kojima and Yamamoto [9] for the proofs
~n~ fur more details.

Tut:onLnt 2? (Th~orems 3.2 and 3.3 in [9]). Let ( 9, 2; d) be a PDM K~idi degree
nr. Tlren I!'- (,~, ~; d) is u suhdiuided nt-nturtijold und

r~.~- { X x }' ~X x 1' is urr ( m- 1)-ced oj.~, X E 9, Y E~

curd either X't ur Y`r is emptv }.

Let s~ be a rcllnement of 9, i.e. 2 is a subdivided manifold of the same dimension
:u .~. earh rell of 2 is contained in some cell of 9, and 121 - I~I. For each cell X of
.v I~t

2~ X-{ a~a E 2, o C X, dima- dim X}.

TttroKtat 2.3 (Theorem 4.1 in [9]). Let ( 9, ~; d) be u PDM wirh degree nt und .2
hc~ u rrJinrnreru oJ .~. Then -

.lFl- {ax Y~}'E~,Y~~ g,ae1~Y`t}

ic u suhdit~ided nr-rncurijuld und u refinernent oj.cP- (~, 2; d).

Nute that c7-6! is also a re(inement of ó~ and that Ia~l - la-`PI.
Nos. ronsider a PDM (9, ~; d) with degree n f 1, a refinement 2 of 9, and a pl

functiun F on ~ intu 08". Let

('.10) H(x, y) - y- F(x) for each (x, y) E I~I.

where - !! is the refinement of .cP- (9, ~; d) as in Theorem 2.3. Then H is a pl
functiun on .!!. lf we assume that 0 E R" is a regular value of H, then we can apply
Th~orem ?.1 to the system of pl equations

(?.11) HÍx, Y) - 0. (x. y) E ~.,!!~.

This s~stem is a basic model of the class of variable dimension algorithms and also
~í~es th~ foundation of the algorithm to be presented.

3. The path ot the algorithm. Before giving the PDM for our algorithm we rewrite
the statiunary point prublem (}.1). Let .,̀~ be the collection of all faces of the polytope
C. For each face F E s let F' be the set of all n-dimensional coeH'icient vectors y
wch that any point o( F is an optimum solution of the linear programming problem

m:tximize r-.r subject to x E C- {x E p~"~u' . x~ b,, i- 1,..., nr~.

Th~n th~ ,tationary point problem on C is the problem of finding a point .i. in C such
that j(.i ) E F' fur sume facc Fcontaining z. By the inclusion reversing property of F
and F' thi, i. equivalent to j(x) E F' for a minimum face F of C containing the
point .i. Nate that if for a given F we define I-{i~u' . x- b, for all x E F}, then
dualitv theorv allows us to write F' - { V~)~ - E, E tW,u'. p, ~ 0 for i E I}, and also
C' - { (1 } .
1u~~ I~t c bz the ,tarting point in C of the algorithm. Take an initial guess of a

aatiunar~ puint as r. Since an initial guess usually lies on the buundary of C, we allow
th~ aartin~- puint r to lie on the boundary of C. For a face F of C which does not
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contain the starting point c Itt uF be the convex hull of v and F, i.e.,

rF -{ x~.~. - nc f (1 - a).: for some - E F and some a E[0, 1]}.

Nute that Jim rF - dim F f 1. To make a PDM He define

(3.1) ~-{vF~v~FE.y,dimF-cc-1}.

Thcn 9 is a subdivided n-manifold and

(3.2) ~- {vFw ~ Fe.~ } u {F~v ~ FE.t ) u {{v)}.

It should be noted that

(3.3) ~.~~ - C.

Figure 3.1 shows two examples of 9 fof two distinct starting points, where the convex
polytope C is a pentagon defined by the five linear ineyualities u' . x~ h,, i- 1.. .. , S,
and F( I)-{ x E C~u' . x- 6; for r e l). Let

(3.4) ~- { F`~F E 3, dim F- 0}

-{{ u}'~u is a vertex of C).

Then ~ is also a subdivided n-manifold and

(3.S) 2- {F`~FE.t },

(3-6) ~~~ - ~~~.

Now let the dual operalor d be delined by

(uF)J-F' ifv~FE.s,

F~ - 0 if v~ F E.i,

{v)`'- m.

( F`)`c - cF if c~ ~ F E.t ,

- 0 tf t' E FE.f~.

F~ISiI FI{Sj)

1-tGt'kt i.l. A .ubdi~idrJ m:mif.,IJ :o.

Ft{4}) vF({4})

vFl{3{I
vFl{2}I

v
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It is readily seen that (~, ~; d) is a PDM with degree n f 1. By Theorem 2.2 we have
the following lemma.

LP.MMA 3.1. Let .cP- (9, .~; d). Then ~ is u subdiuided (n.f 1)-munifold und

(3.7) ó~- {{c} x {u}'~uisuverrexojC, u ~ u}

U{Fx F'~o~ FE,t }

u( nE x F'~u E F E.t , dim F~ 0, E is u fucet oJ F,

undu ~ E}.

PKOOt. We only prove (3.7). Suppose that an n-cell X x Y lies in the boundary

r3~L' of ~. Then by Theorem 2.2 dim X f dim Y- n and either X~ - fd or Y~ - 0.

Suppose first X~ - m. Then the unique ( n t 1)-cell of .~ containing X x Y is

Y`' x 3'. When X- ( u}, Y~ is a 1-cell of 9 having { u} as a facet, i.e., Y'' - v{ u) for

some vertex u of C with u~ v, and hence Y-( u{ u))~ - ( u}'. When X- F for

some face F e.y with u~ F, Y~ - uF. Therefore Y- F"`. Next suppose Yu - ID, i.e.,

Y" - F' for some face F of C containing u. Then X x Y lies in X x X~ and X`' - E'

fur sume face E of C such that u~ E and E' has F' as a(acet. Therefore

X-( E')`' - t~E. By the inclusion reversing property of F and F' we see that E is a

(acet of F and dim F ~ 0.
Since it is readily seen that these cells above are members of 8P, we have proved

(3.7). ~

COHOLLAKI' 3.2.

(3.R) ~r7.ío~- (U({u} x {u}'~uisuvertexoJC, u ~ v))

U(U(Fx F'~u ~ FE.~ ))

u(U( F x F'(u e F E.i~ , dim F~ 0)).

If thr starting point c is not a vertex of C, then

(3.9) ~a.~~ -({u} x ~8") u(U(F x F'~F e.; )).

N~~tirc that F is eyual to U(uE~E is a facet of F and c r;` E) if Fcontains Ihe starting

puint r, so that the third class of cells in (3.7) gives the third subset of ~ó.P~ in (3.8).

(3.9) is readily obtained from ( 3.6) and (3.8).
No.v let T be a triangulation of C such that the restriction T~X also triangulates X

for each cell X of ~. A specific triangulation is described in ~5. Then T is a refinement
c~f .~. We denote by --l! the subdivided (n f 1)-manifold defined by the refinement T
uf :~. 1. and the dual operator d(see Theorem 2.3). Let j be the pl approximation of
th~ funrtiun j with respect to the triangulation T and let

(3.10) H(x, r) -}~ - j(x) for each (x. p) E ~.ll~. ~

Th~n the funrtiun fl: ~.!!( - ~ G2" is a pl function on . ,k. We consider the system of pl

equ~liuns

(3.11) FI(.Y.~)-0. (x.:t~)E~~~
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as the basic model of our algorithm. By applying Theorem 2.1 to (3.11) we have the
following main theorem.

TIiEOReM 3.3. Suppose lhuc dre smrcing point v in C is not u stutionur.r poinc. Then
(c, f(u)) lies in H-'(0) rl 18.,K1. Suppose further rhut 0 e R" is u regulur rrdur of dre
junction H: I. ff I-~ R". Then !he connecred cornponent S oJH-'(0) contuDring ( o, f( u))
i.c u puth und ic leads to a poim (.Y, j( x)) irr I ó, ff I such that .i is u scutionan~ poiru oj che
pf upprn-~inuninn f of f. -
~tforcouer, jor urir poirN (x, y) in S, !et r, 0 5 t~], be such thut x-(1 - t)c f r

~or che uniyue point : in che fuce Fjor which x lies in uF, chen x is a.rtntiorrurt~point of j
on the ser (1 -!)( c} t tC.

PROOF. Since the starting point u is not a stationary point, f(u) does not lie in F'
for any (ace Fof C containing the point v. Therefore whether u is a vertex of C or not,
we obtain from (3.8) that (u, f(u)) is in {v) x U({u}'lu is a vertex of C, u~ o) e
Ic3.!!I. Since the point v is a vertex of the triangulation T, j(v) - f(r) and conse-
quently (c. f(u)) e H-'(0).
By (2.5) in Theorem 2.1 the connected component S of H '(0) containino (u, j(r~)1

is a path. Since f is continuous and C is compact, f(C) is also compact. Henre H'(0)
is bounded and so is S. It is easily seen that the intersection of S and each cell of -~lf is
a hounded 1-cell if it is not empty. By thc local finiteness propcrty (2.3) uf .lf, S
intcrsects finitely many cells of .,K. Therefore S is compact and, by (2.6) of Theorem
2.1, bd S consists of two points in Ir3.,lfl, one of which is (v, j(u)). Let (.i~, i') be the
other point of bd S and suppose (á, y) e { v) x U( { u}`l u is a vertex of C. u~ v).
Since (.i, C~) E S e H-'(0), y- f(x) - j(u). This contradicts that (s, F) ~(u, j(u)).
Then by Corollary 3.2 we have (x, y) -(x, j(x )) lies in U( F x F`I F E.t , F~{ u}).
This implies that x is a stationary point for f.
The second part of the theorem follows from the fact that if (x, y~) E S and x~ u,

then i. - f(x) and (x, y~) e uF x F' for some F E.y. Notice that F` - F(r)', where
F(r)-(1 - r){ c} f cF, 0~ t~ 1. ~
Theorem 3.3 shows that the path S when projected on C is the pl path of stationary

points of f on (1 - c){v} t rC, 0~ t~ 1, that originates for r- 0 at the point o and
terminates with an approximate stationary point x. If f(x) happens to lie in F` for
some face F of C containing the poinl x, then x is a stutionary point for j. Otherwise
it is only an approximate stationary point. If the distance between j(x) and F' is not
satisfactorily small, we take x as a new starting point, take a finer triangulation of C,
and re,tart the algorithm. In the following lemma we discuss the accuracy of an
approximate solution. As norm we use the Euclidean norm in R".

LFMMA 3.4. Ler y - sup(diam f(a)lo E T}, where jor u set B, diam B-
sup(II-~ --2II Iz',-z E B}. Let x be an upproximare scationury point ohcuined ht' che
ul,qorithrn, so thut x E F ar7d j(x ) E F` for sonre fuce F of C. Then j( x) lies in tfre
y-neighhorhood of F', i.e., there is u y~ e F' such d:ur II i' - f(x)II ~ Y.

PROOF. Let ~~',..., x~"' be the vertices of a t-simplex of T containing x, then
f( x)- E~~'~ ~~ j( n i), where ~~, ..., a„ 1 are the convex combination coeflicients such
that x-~`,s'~ ~~rr~ and E~:'i ar - 1. Therefore

Ilf(-r) -I(.Y)II -lli~t~,I(w') -Í(x) - r~t~,(I(w~) -I(-~))

~tt
s ~ a,llf(W') -f(x)II ~ r-
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Sinc~ a pulytope is compact and j is continuous on C, the error y goes to zero as the
mr.h .ire S - ,up{diam o~a E T} of the triangulation T goes to zero. Let x'' be an
appmsimatc stationan point and y'' be the error in Lemma 3.4 for a triangulation
uith me~h .izt S''. Suppose S'' converges to zero as h goes to infinity. Then the
,eyuenre {.r''~h - 1,2,... ) has a cluster point x in C. For simplicity of notation we
a,uum~ tha[ thi, seyuence itself converges to .r. Since the number of Faces of C is finite,
thcre is a face Fof C and a subsequence {zt'~h - ],2,... } such that z'' E F and j(z'')
i. in the y''-neiáhborhood of F` for all h. Therefore by the closedness of F and F` we
uhtain that -i E F and j(X) E F". We thus have the following corollary.

Coteot.t attY 3.~. Ler .rr' be rhe upproxinlure stuNotmrv poinl jound nf~ the ulgorirhm
Ji,r u trirui,~uhuiun ,rith ,nesh si:e S'', jur Ir -],2, ... . Suppose S'' conuer,qes ro zero us h
,~oac tu inJinin~. Then rhe sequence {.r''~h -],2,... ) hus u rlus7er point und utry clusler
pr~nt i., ~,fati„na,., painr oj j ~,t c.

4. Deuriptiun of the algorithm. In this section we will give a formal description of
thc a~ps of the algorithm for following the path S, under the assumption that the
pulytope C is (ull-dimensional and simple and that the m linear ineyualities u' . x~ h,,
i- 1. ..., nc are not redundant.
Th~ .~~stcm (3.11) is eyuivalent to the system

la.] ) r- j(x) - o. (-x, y) E a x F'.

„here o is a simplex of T~uF and F is a face of C not containing the starting point u.
Let I-{ i ~l ~ i~ nr, u' . x- h, for any point x of F) and let wt, ..., w"' be the
,er[irc. of the ,implex a. Then (4.1) has a solution (x, y) if and only if the following
syuem of linear equations has a solution (~, ~) E 6t"""1,

14.2 )
,,, , .1
E ~;a' - E ~,j(K,,) - o,

f4~

~~~-1.
~at

p, ~ 0 for i- 1,..., m, p; - 0 for i~!,

~~~0 forj-l,...,rt1.

A line segment of solutions (}c, c1) to (4.2) corresponds to a linear piece of the path S
ancl can he fulluwed by making a linear programming pivot step in (4.2). At the start of
the algorithm we have to lind the simplex a and the cone F' such that (u, j(u)) E o x
f~'. Thc cone F' can be found by solving the linear programming problem

(4.3) minimize h . p subject to ~ p,a' -~~ j(o) - 0,
f-

p,~0 fori-l,...,m,

7[~-1.

,~hich is the dual problem of

maximize j( u).- subject to z e C.
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The optimal solution of (4.3) gives us the cell of .~P in which the end point (v, J(e)) of
the path S lies. Namely, let I be the set of indices such that p, ~ 0 at the optimal
solution and let F be the face of C defined by the system of equations u' . z- b, for
i E 1. Then ( v, j( v)) -( v, E, E r~, a') lies in { v} x F' c uF x F E~. Barring de-
generacy of the linear programming problem (4.3), the set 1 has exactly n elements, so
that F is a vertex, say { u}, of C and dim vF - 1. Define the simplex a to be the
1-dimensional simplex of T~t~F having the starting point v as a facet, i.e., o-{ v. ~r }
., ith ,t a vertex in T wF. Thus we leave the starting point e~ along the line segment
vF -[v, uJ in the direction of the vertex u of C by making a pivot step in (4.2) with
the variable a,, whose column entry is (-jr(W) ~)r
We now show that in general the set of solutions of (4.2) is bounded. Suppose, to the

contrary, that the set of solutions has an unbounded ray {(fac, ao) f a(J{r, S~)~a , 0}.
Since ~~-t~(~`~ t a~~~) - 1 and ~o f a0~i ~ 0 for any a~ 0, we have DA - 0.
Therefore E, E r~~,u' - 0 and Op, ~ 0 for i E l. Since a point of F satisfies u' . x- b,
for any i E 1, this implies dimC ~ n, a contradiction. Hence the set of solutions to
(4.2) is bounded and consequently has two distinct basic solutions. When some ~~
vanishes at a basic solution, the point (x,y) -(E;:',~,K~~,E,Er~,u') lies in a facet
r x F' of a x F', where r is a facet of a. Then either T is a facet of just one other
simplex á of the triangulation of vF or r lies in the boundary of vF. On the other
hand, when some fa, vanishes, we in general cannot conclude that (.i, }~) lies on a facet
of o x F'. This is due to the fact that the cone F` could contain more vectors u' than
it, dim~n.ion. When the polytope C is a simple polytope and the system of lin~ar
ineyualities de(ining C is nonredundant, the number of inequalities such that u' -.r - h,
for an~ point .v of F is eyual to n- dim F- dim F` so that F` has exactly dim 1-~'
roefiicient vectors u'. In this case we might conclude that (x, }~) is on a faccl a x E'
cifaxF`.
For a suhset I of the index set { 1, ..., m}, let

F( 1) - {.l' E CI U' ~.L" - b, fOr all Í E 1}.

Then F( 1) is a face of C unless it is empty. Let .~ be the class of indcx sets
1 c( l.. .., m) surh that F(1) is a nonempty face of C. Under the above asumption
that dimC- n. C is a simple polytope, and the linear ineyualities drfining C are
nonredundant, ue have the following propcrties
(i) for e~ch face F of C the set 1 E 3 such that F( I)- F is uniyue anJ identical

~~ith the set {i~u' ..r - h, for all x E F);
(ii) dim F( I)- n- ~1 ~;
(iii) G is a facet of F( I) i( and only if G- F(1 U( j}) for somc j~ I with

I U{ j} E 3:
(i. ) G h:u F'( I) :u a facet if and only if G- f~( I~ ( k)) for somc k E l.

Note that I~ { k} E.~ for all I E,F and any k E 1. Now starting at o the algorithm
generates the path S by making alternating Ip pivot steps in (4.2) and replac~mcnt
steps in the triangulation o( eF(1), for varying 1 E.~, as described in the Ilow chart
given in Figure 4.1.
The algorithm terminates as soon as one of the following cases occurs:
(1) T lies in F(1).
(2) }r, becomes 0 for some Í E I and F(1 `(i}) contains the starting point I~

(in~luding the case ~~here 1~{i} is empty).
In both cases let .r be eyual to F;-~ ~,~r'. In case (]), (x, j(.r)) -(.i..r) lies in

F( I) x F( I)'. In case (2) we have vF( I) c F(1 ~{ i)) because F( 1) is a facet of
F( 1`{ i}) and F(1 ~{ i)) contains the starting point r~. Since .r lies in a,implex a
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input the 5tarting point v in C;
evaluate f(v); lind an opfimum

basie solution(~ ,.1) e Rm~t of
proWem (4.3); T: .(ilt 5 i 5 m,
u{i0)

the staning po~nt v is
a staUOnary point

f

0

stop

yes
no

lind the 1-dimensional simplex o
ol TIvF (!) having fv) as a lacet;
w:- the vertex oi rr opposite to
V;T : -ll;
evaluate I(w) ;

pivot in (-f'(w) , t)T in system
(a.2)

1
pivoted out column is

1(a')T,o)T 1-fTlul.t)T

i
1 -1~{i)
(decreasing dual dimensbn)

yes

tind the simplex ir of TIvF(n having !r as a facet (see
Section 5); w:- the verteK of á opposite to the lacel u:
u: r u(increasing primal dimension);
evaluate I ( w) ;

pivot in (-fT (w) , t)T in system (a.2)

Ftcutu. 4.1. Flou Charl OÍ Ihl' ) ll'p~ Ut lhl' algUf1lI101~.

T
0

0

in e~f'(1), we have (z, j(.c)) -(z, ~~) lies in F(I ~{i }) x F(I ~{i })`. Thus in either
case we have that z is a stationary point for the pl approximation J of f.
~~'e shuw two examples of the trajectory of the algorithm in Figure 4.2. In the first

cxampl~ J(r~) lics in F({1,2))'. Then the algorithm leaves the starting point v along
the linr segment rF({1,2}). When the column (-jT(wz),1)T has been pivoted in, the
culumn (( o' )T, 0)T is pivoted out, i.e., 1 becomes (2} and the dual dimension
derr~a~c,. To increase the primal dimension the vertex w3 is found and (-JT(w~), 1)r
iti pivutzd in. After several pivot operations and replacements in vF({2}) we obtain the
1-simplex p-{ H', ,t~" } in uF({2, 3}), and the primal dimension decreases. To increase
thc dual dimension we pivot in the column ((a3)T,0)T. Then the column ((a'-)T,0)T is
pi~uted out and the dual dimension does not change. To move in vF({3}) we find the
~~rtez „". After several iterations we have the simplex T-{w''-, w"} which lies in
F( ( 3}). Case (1) occurs and the algorithm terminates with an approximate stationary
puint in F({3)).
In th~ serond example J(v) lies in F({3,4})`, and we go along uF({3,4}). After

se~eral iterations we obtain T-{u~, u"} in vF({4,5}), and the primal dimension
decnnasts. Tu increase the dual dimension ((us)T,0)T is pivoted in, (-1T(u'),l)r is
pi~uteJ out, and we continue in uF({4,5}}. When (-JT(u"),1)T is pivoted in,

1
Ir (i~tsi5m,a'.v~bi}
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~

n0
r r bd vF(n

I~nd the simplex á of T~vF(I)
wnw;h shares r wilh o(see TaWe
t and case 2 of Lemma 5.2):
w- tne vertex ol ó opposite to r;
o ~ : a(replacement step):
évaluate f(w):

pivot in (-fT(w) , t)' in system
(a.z)

0

yes

find the ~ndex k r I such thal
r r TwF 1~{k)) (see càse 3 of
Lemma 5.2);
l:sl~(k)
(increasing dual dimensan);
a .r
(decreasing primal dimerKion);

pvot in (( ak)' ,0)T in system
(a.2)

i0

x :. ~{~t.1)wi(,t
(wt,...,wt~t are tt~e vertices of rrand.ti is the

basic solution of system (4.2) corresponding to

the wlumn ( fT (wfl . tl' ) ;
x is an approximate stationary point

stop

FiGUKt. 4.1. Conriurrrd

393

((u')T,0)T is pivoted out, and I becomes {5}. The face F({5}) of C contains the
starting point v. Case (2) occurs so that the algorithm terminates with an approximate
stationary point in the simplex {ua, uy} in F({5}).

5. Triangulation of the polytope. The simplicial subdivision of the set C which
underlies the algorithm presented in this paper must be such that it subdivides each set
uF( I), I E.~, for which v~ F( I), into t-dimensional simplices with t- n- ~ 1 ~ f l.
In this section we briefly describe such a triangulation. The triangulation is closely
related to the V-triangulation of the product space of unit simplices introduced in [3J.
We again assume that the set C is full-dimensional in R", that no constraint
u' . x- b,, i- l, ..., m, is redundant, and that C is simple so that at each vertex of
C, u' -.r - b, holds for exactly n indices i, 1 5 i~ m. The triangulation of each set
vF( I), u 6~ F( I), is completely determined by projections of u on the faces of F( I)
and on F( I) itself. The projection of the starting point u on a face F( I) of C can be
any relative interior point of F(1) and is denoted by v(!). These points are automati-
cally generated during the algorithm, but once a projection u( I) has been chosen it is
fixed during the rest of the algorithm. Clearly, if 1 consists of n elements, then
F(!) -(v(I)} is a vertex of C. For general 1, for which v~ F(!), let u(1(n)) be a
vertex of F(I ) i.e., ~I(n)~ - n and 1 e !(n) E.~, and let (Yt,-.-. Y,-t) - Y(1(n) ` 1)
be a permutation of the t- 1- n- ~1~ elements of the set !(n) ~ l. Then the subset
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F~(2.3})

Fi~34}I

F({1.2})

Fildt~

FII45}) ~9 ~8 u7 ~ FliSB F(I~,SH

FtcnHr. 4?. Two po"iblt Ira.~cctoric. o( tha algorilhm.

rF( l, y( 1( n)~ I)) of uF( I) is defined to be the convex hull of u and the projections
r'(I(n)). r(I(n) `( Yt)).....u(I(tt) ` {yt....,Y,-,}). and u(I), i.e.,

r-t
rF(l.y(!(n)~l))-'xEC~x-uf ~a,y(Í),

,-o

p `a t ` ... `at `au` 11

~~h~re y(0) - r(I(n)) - r. and for j- 1,.... t- 1, I

y(J) - c(I U {y~t,.....Y~-t)) - u(1 U {y~....,y,-t}).

LI:~t~U 5.1. Tlre colleclton oj Ihe sers vF( l, y(1( rt )~ I)) ouer ull pernrurruions
Y( I( n)` I) uucl urrr ul! uerrices u(1( n)) of F( I) is u triungululion uJ rhe scr cF( I).
Furtlu~rrrturr, tltr rollection of lhe s'ets uF( { i}, y( I(n)`{ i))) over u!I pcrnrululions'
y( !( n)`{ i}) unrl cerrices u( I(,r )) oj F( { i}) und ocer ul! i, is u U'iungulutiar oj C.

For n- 2, the simplicial subdivision of C in the subsets uF( l, y( I(n)~!)) ís
illwtrattd in Figure 5.1. ln this figure the set vF({2}) consists of the two triangles
rF~l(2},13)) and uF({2},(1)), for u((2,3}) and u({2, 1}) are the two vertices of F'((2}).
A simplicial suhdivision with arhitrary small mesh size is obtained by triangulating

cach simplex cF( l, y( I(n) ` I)) into r-dimensional simplices in the same way as thc
~~ell-known Q-triangulation triangulates the n-dimensional unit simplex, for example
xe [ll}. Let d he an arbitrary positive integer.
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F({2,3}) - N112,3DI

F(11.2}1-1v(li zjl}

F114.5U - Iv(Ia.S}II vQ5})

F({5))

F({i,s}) - {~({i.slll

FtGUtt[ S.L Triangulation of C into rF{ l, y(I(n) ~ I))'..
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DeFI~:Ltloti 5.1. The set G~(l, y(!(n) ~ I)) is the collection of r-simplices a(tr', ~r)
in uF( l, y( I( n)~ 1)) with vertices wl, ..., w" I such that
(i) trt - v t E~-~, u(j)d-Iq(j) where u(0)....,u(t - 1) are integers such that

0 5 u(t - 1) ~ -.~ ~ u(0) ~ d- 1;
(ii) ~r -(nt,... , ~r,) is a permutation of the t elements of the set {0,..., t- 1} such

that s ~ s' if for some j e{0,..., t- 2), n, - j, n,- - j f 1, and u( j) - u( j} 1);
(iii) w"' - w' t d-t9(~r,). i- 1... . r.
The set G`'(l,y(!(n) `I)) is a simplicial subdivision of oF(I,y(l(n) ` I)) with

grid size d-` or refinement factor d. Taking the union over all permutations y and
over all admissible index sets 1(n) and I, we obtain a triangulation of C with grid size
d- I having mesh size less than or equal to d- I diam C.
As described in ~4, the algorithm follows the pl path S defined in Theorem 3.3

leading from u to an approximate solution by making alternating linear programming
pivot steps in system (4.2) and replacement steps in the underlying triangulation. In
this way the algorithm generates a sequence of adjacent simplices in uF( I) for varying
I of varying dimension r- n- ~l~ t 1. When, with respect to some t-simplex a(w', ~r)
in uF( l, y( !( n)~ I)), the variable ~,, for some s, 1~ s~[ t l, becomes zero
through a linear programming pivot step in (4.2), then the replacement step determines
the t,niyue r-simplex ó in uF( I) sharing with a the facet r opposite the vertex w'
unless this facet lies in the boundary of uF(1). !f r does not lie in the boundary of the
set uF(!, y(I(n) ~ I)), then á- a(w', ~r) as given in Table 1, where u~, I- u(j),
j- 0.-.., t- 1, u, - Q i ~ t, and e( j- 1) ís the jth unit vector in Y2", j- 1,..., n.

TABLE 1 ,

purunterers oJ ó iJ J~e rene.r h~' nJ a(M~', a~ is replu~~ed

~~ l Mt t d-tq(nt) (n......n,.nt) u f clstl
I a~ ~ t~ 1 w~t (nt.....n,-,.n,.n,-t.....n,) u
c~~tl wt-d-tql~;l (n~.nt.....a,-tl u-r(~,)



396 A. J. J. TALMAN K Y. YA~tAS10T0

Th~ alaurilhm conlinues w'i[h á by making an Ip pivot step in (4.2) with (-j~( ~i~), I)r,
~~h~re ~i is the ~ertex of á opposite the facet r.

Lt.~t~t,~ í.Z. The jaret r npposirc ro rhe rerre.c ~~~' nj o(w~, n) in oF( l, y( I(n) ~!))
lie.c in rhr huunclurt nj rhis ser tf atd only ij one oj rhejUIION'Ntg CGSeS hulcLr:
(1) s- 1. --, -0, unclu(0)-d- 1;
(Z) 1 ~ s ~ r t 1, ~r, - h-~ l, ~r~- i- h, und u(It) - u(h ~- 1) jor same h E

(0. 1..... r - 3}:
(3) .c-r t l, ~r,-r- 1, andu(!- 1)-0.

In ca,e ( 1) the (acet r lies in the facet of vF(!, y( I(n) ` I)) opposite to o and the
algorithm tenninates with the approximate solution x- E;`z ~;w` in the face F( I) of
C'. In ca~e (2) and if h ~ 1, the facet T is a facet of the t-simplex á- a(wt, ~r) in
r!(!) ly-ing in the subset uF(I,y(!(n) `!)) with

Y(!(n) ~ !) - (Yi,....Yr~-t.Yntr.Yh,Yr,.z,....Y,-~).

If not determined before, a projection u(!U {y,,,y,,,,,...,y,-t}) of v on the face
!~( I V{ Y~,. Y~,. ~.. -.. Y,- t}) of C can be obtained as foÍlows. Make a pivot step in the
(primal) system

(5.1 ) As t ~ p;e(h) - b, p; ~ 0, i~ I(n),
~ ~ rt ,n

at .r - u(I(n)) by increasing pYh from zero, where A is the m x n matrix with (u')T
as the ith row, i- 1,..., m. Let pA. become zero for some (unique) index k~ I(n) U
{ y,,, ,). Then u( I U {Yn. Ytitz... -. Y,-1 }) can be chosen as the barycenter of (or any
other interior point in) the convex hull of the new vertex u(I(n) U {k} ~{y,,tt})
of C obtained from the pivot step in (5.1) and the projections v(I U
{ Y,,. . . - . Y, - ~ } ), . . . , u ( I U { Yl, . . . , Y,- t }). If, in case (2), h - 0, then T is a facet of the
r-simplex á- a(wt, ~r) in uF(!) lying in the subset uF(I, y(1(n) ` I)) with 1(n) and
y defined as follows. Make an lp pivot step in (5.1) at x- u(I(n)) by increasing pY
from zero and let pk become zero for some k~ 1(n) U {yl}. Then !(n) -!(n) V
(k} ~{y~} and y(!(n) ~ I) -(k,yz,...,y,-t). The vertex u(I(n)) of C is the new
solution for x in (5.1) after the pivot step. In bo[h subcases of case (2) the algorithm
continues with making an pivot step in (4.2) with (-jT(w),1)T, where iv is the vertex
of the new t-simplex á opposite the facet r. In case (3) of Lemma 5.2 the facet r lies in
the facet uF( ! U { y,- t}) of uF(1). More precisely, r is the (t- 1)-simplex a( w t, ~r )
in rF(l, y(!(n) ~ !)), where 1 - ! U {y,-i}, y(I(n) ~ !) - (Yt,..., yr-z), and ~r -
( ~r~. ..., a,- ~). The algorithm now continues with making a pivot step in (4.2) with
((Gh)T,0)T where h - y,-t.
Finally, if, through a linear programming pivot step in (4.2), }tr, becomes 0 for some

h e l, then the algorithm terminates with the approximate solution X- E~ ~~ W i if
I-{ h} or the starting point u lies in the face F(! `{ h}) of C. Otherwise, the
simplex a( w', a) is a facet of a unique (t t 1)-simplex á in vF( I~{ h)). More
preciscly, ó is the (t f 1)-simplez a(wr, ~r) in uF(I, y(!(n) ~ 1)), where 1-!`{ h},
Y(!(11) ~!) -(Yi...-. Y,-t. y). and á-(~r,..., ~r„ t). The algorithm continues by
making a pivot step in (4.2) with (-jT(iv),1)T, where w is the vertex of á opposite the
facet a. Let k be the (unique) index for which pk becomes 0 if a pivot step is made in
(5.1) at x- v(!(n)) when p,, is increased from zero, then the projection u(1 `{h})
can he chosen as the barycenter of the convex hull of the vertex u( I(n) U{ k}~{ h})
obtained from the pivot step in (5.1) and the projections u(I),..., u(! U
{Y~.....y,-i}).

.
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6. Concluding remarks. In the previous sections we assumed that the polytope C
in G2" is n-dimensional and simple and that none of the constraints a' . x~ b, is
redundant. If the set C is a lower-dimensional set in 62" we may assume under the
latter two conditions that C can be expressed as

C- {xE6Y"~ai.x56;,i-1,.. ,m,andc'.x-d;,i-1,.. ,m'}

while dim C- n- m~, for some ml, 0~ ml ~ n. Then for index sets I, I c.F, the
cone F(1)' is equal to

I ~~ l
F(I)`-SyEGF"~y- ~~,a`t ~v;c',fri~OforiEl l .

t iEI i~l

where again

F(I)- {xEC.~a'.x-ó;foriE!}.

The dimension of such an F(I) is equal to t- 1 - n- ml - ~I~. The algorithm is now
the same as described in ~4 except that the pivot steps are made in the system

~ Fr,a' f ~ v,c' - ~ ~~j(w~) - 0,
~Et i-t ~-i

~fi
~~~-1.
i-~

p,~0 foriel, a~~0 forj-l,...,rfl.

An initial starting point v for the algorithm can be obtained by applying the simplex
method for linear programming on C, bringing the columns c', i- 1,..., ni', in the
basis and yielding one of the vertices of C as starting point.
In case the polytope C is not simple there might be more than n- t f 1 constraints

a' - x- b,, i E l, where t - n- ~I~ t 1, which determine a(t - 1)-dimensional face
of C. Let for a particular (n- k )-dimensional (ace F of C the set 1 be the set of
indices such that

1- {i~a'.x-6, forallxeF}.

Assuming nonredundancy, for any subset !' of 1 consisting of k elements the cone
F( I`)' is k-dimensional and the cone F(1)` is then the union of F( I' )' over all
subsets !' of I having k elements. The algorithm now makes linear programming
pivot steps in (4.2) with I replaced by some I'. If, by a pivot step in (4.2), iah becomes
zero for some h e 1', then it is first checked whether the veclor y- E, E; ~,a' keeps
moving in the same direction when some Wo, p e I~ I', is increased in (4.2) from
zero. If so, then !' becomes 1' V{ p}~{ h} and a pivot step is made with the
variable Wo. Otherwise 1' becomes 1' ~{ h} and the algorithm continues in uF( I')
with 1' containing !' ~{ h } as before. Notice that the set I' is automatically deter-
mined when making a pivot step in (5.1).
Special cases of the set C are cubes or simplices. In case the set C is the

n-dimensional cube C-{x e Ft"~a 5 x ~ b} for two vectors a and b in 9Y" with
a, ~ b,, i- 1...., n, the stationary point problem reduces to finding an x` in C such
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.Y` - h, implies f,(.r') ~ ~,

u, ~ x' ~ h, implies f,(.Y') - 0, and

x' - u, implies f,(x`) ~ 0.

A simplicial al~orithm for this problem was introduced in [14]. However, that algo-
rithm ha, only 2n rays to leave the arbitrarily chosen starting point, one ray to each
facet of C. The algorithm deviced in this paper has 2" rays, one to each vertex of C.
The di(1'erence between both algorithms can be compared with the difTerence of
Lemkc's alaorithm and the algorithm proposed in [15] for solving the linear comple-
mentarity problem with upper and lower bounds. In the latter paper it has been argued
that the alóorithm with 2" rays is very natural.
In case C is an trdimensional simplex T(l,~t,..., w"'l) the algorithm proposed in

thi~ paper is similar to the algorithm proposed in [3]. The latter algorithm was
Jc~elc)ped for problems on the n-dimensional unit simplex in 6~"" with tr' the ith
unit ~rcttir in 08"' ~.
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