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ABSTRACT: A path following algorithm is proposed for finding a solution to

the nonlinear stationary point problem on an unbounded, convex and pointed

polyhedron. The algorithm can atazt at an azbitrary point of the polyhedron.

The path to be followed by the algorithm is described as the path of zeros of

some piecewise continuously differentiable function defined on an appropriate

subdivided manifold. Thie manifold is induced by a generalized primal-dual pair

of subdivided manifolds. The path of zeros can be approximatel,y followed by

dividing the polyhedron into aimplices and repla.cing the original function by its

piecewise linear approximation with respect to this subdiviaion. The piecewise

linear path of this function can be generated by alternating replacement steps

and lineaz programming pivot steps. We also state a condition under which the

path of zeros converges to a solution and we describe how the algorithm operates

when the problem is lineaz or when the polyhedron is the Caztesian product of

a polytope and an unbounded polyhedron.
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1. Introduction

Let K be a convex polyhedron in Rn . We assume that K is unbounded and
pointed, i.e., K has at least one vertex, and that K is represented by the set
{ x E R" ~ Atx C b} , where A is an n x m matrix and b an n-vector.
Further, let f be a continuoualy differentiable function from K to Rn . Then
the (nonlinear) stationazy point problem for j on K is to fmd a point x in K
such that

(z - x)tf(x) 1 0
for any point z in K. We call x a atationary point of f on K. If the function
f is affine on K we call the problem the linear atationazy point problem. The
stationary point problem on an unbounded convex polyhedron is frequently met
in mathematical programming, for example to find a Kazush-Kuhn-Tucker point
for an optimization problem with linear constraints.

To solve the nonlinear stationazy point problem on K we propose a path-
following algorithm. Such an algorithm traces the aet of zeros of a piecewise
continuously differentiable function g defined from an (nfl)-dimensional sub-
divided manifold to Rn . In case the zero vector is a regulaz value of the function
g there exists a path of zeroa initiating from an arbitrarily chosen point in K.
The (n fl)-dimensional subdivided manifold is induced by a generalized primal-
dual pair of subdivided manifolds, where the primal sets aze determined by the
faces of K and the dual sets are determined by the normal conea of these faces.
A primal-dual pair ofsubdivided manifolds is a basic framework in path-following
techniques for finding fixed points or solving stationary point problems, see for
example [DY), [K1J, [KY], [TY], [Yl], [Y2J, and [Y3].

The path S of zeros of the function can be approximately followed by a
simplicial algorithm. This algorithm subdivides first the set K into simplices
in some appropriate way and replacea the function f by ita piecewise lineaz

approximation f with reapect to this triangulation. For this function the path

of zeros of g becomea piecewise linear and can therefore be followed by making
alternating replacement steps and linear programming pivot steps for a sequence
of adjacent simplices of varying dimenaion.

Since the set K is unbounded, the path S may diverge to infinity. We
state a aimple condition on the function under which the path S is bounded

and therefore leads from the atazting point to a solution of the problem. We

also describe how the algorithm ahould be adapted in case K is the Caztesian
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product of a polytope and an unbounded, convex polyhedron and under which
conditions the path S is bounded for this case. We conclude the paper with
a short description of the algorithm when the function is affine on K. The

convergence condition for this problem is related to the well-known condition of

copositive plus in case of the linear complementazity problem.

This paper is a generalization of path-following techniques introduced earlier
for solving stationazy point problems. In [Y1] such a method has been proposed
for the lineaz stationary point problem on a polytope, i.e., on a bounded polyhe-
dron. In [TY] the nonlineaz stationary point problem on a polytope was treated.
Finally, in [DY] a path-following algorithm for the lineaz statíonary point prob-
lem on a polyhedral cone was introduced.

This paper is organized as follows. Section 2 briefly reviews a basic theorem
for path-following algorithms and extends the concept of a primal-dual pair of
subdivided manifolds. In section 3 we describe the generalized pair of primal-
dual subdivided manifolds which will underlie the algorithm. Section 4 defines
the path of zeros from an azbitrazy point and leading to either infinity or a so-
lution. We describe how this path approximately can be followed by a simplicial

algorithm. In section 5 we state a convergence condition guazanteeing that thc
path is bounded. Finally, section 6 and section 7 discuss the cases when K is
the product of a polytope and a convex polyhedron and when f is affine on K,
respectively.
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2. Generalization of the Primal-Dual Pair of Subdivided Manifolds

We shall review briefly a basic theorem for path following algorithms and ex-
tend the concept of the primal-dual pair of subdivided manifolds introduced by
Kojima and Yamamoto [KY].

We call an l-dimensional convex polyhedron a cell or an I-cell. When a cell
X is a face (see for example [SW]) of a cell Y, we write X~ Y. We denote
X~ Y when X is a proper face of Y. Pazticularly when an (1 - 1)-cell X is
a face of an!-cell Y, we call X a facet of Y and denote it by X a Y.

A collection L of cells of the same dimension, say l, is called an
!-dimensional subdivided manifold if it satiafies the following conditions:
(1) any two cells of C interaect in a common face unless the intersection is
empty,

(2) any facet of a cell of L lies in at most two cella of L,
(3) each point of cells of L has a neighborhood which intersects finitely many

cells of L .

The last condition is referred to as local finitenesa. We denote the collection of
all faces of cells of L by L~ , i.e.,

!i -{ X ~ X is a face of some cell of L},

and the union of all cells of L by ~L~ , i.e.,

~L~-U[X ~XisacellofL].

It is noteworthy that .~` consists of cells of various dimenaions. By the aecond
and most crucial condition each (1- 1)-cell of L~ lies in either one or two !-cells
of L. We refer to the collection of those (1-1)-cella lying in exactly one 1-cell of
L as the boundazy of L and denote it by 8L . A continuoua mapping g from
~L~ into R" is piecewise continuously differentiable (abbreviated by PC1 ) on
L if the restriction of g to each cell of L has a continuously differentiable
extension. We denote the Jacobian matrix of g at point x of any cell C of
L by Dg(x;C) . A point c E R" is a regular value of the PC1 mapping
9: ~ C ~~ R" lf

x E B~ C E L and g(x) - c imply dim{ Dg(x;C)y ~ y E B}- n.

We now state one of the basic theorems for a path following algorithm [K].
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THEOREM 2.1. Let C be an (nfl)-dimensional subdivided manifold in Rn
and g: ~C~ -~ Rn be a PC1 mapping. Suppose e E Rn is a regular value
of g and g-1(c) ~ 0. Then g-1(c) is a disjoint union of paths and loops,

where a path is a 1-dimensional subdivided manifold homeomorphic to one of

the intervals (0,1) ,(0,1] and [0, 1] and a loop is a 1-dimensional subdivided

manifold homeomorphic to the 1-dimensional sphere. Furthermore they satisfy
the following conditiona:

(1) g-1(c) n X is either empty or a 1-manifold for each X E L,
(2) a loop of g-1(e) does not interaect ~aL~ ,

(3) if a path S of g-1(c) is compact, aS consists of two distinct points in
~aC~ .

We first generalize the primal-dual pair of subdivided manifolds proposed

in [KY]. In [KY] the dual operator relating a pair of subdivided manifolds was

assumed to satisfy several conditions including one-to-one. We will here relax
these conditions. Let ~ and D be subdivided manifolds. A dual operator, say
d, is defined on ~ and assigns to each cell of ~ either the empty set or a cell

Y of 13 such that for some fixed positive integer 1, called the degree,

dimX f dimY - l

holds. We denote the image of X E~ under the operator d by Xd . When
a pair of subdivided manifolds )' and D ie linked by such an operator d, we
call the triplet (~, D,d) a generalized primal-dual pair of subdivided manifolds,

GPDM in short. We allow a dual operator to assign the same cell of 2~ to more

than one cell of 13 , that is, to be a non-injective dual operator. Letting

C-{ X X Xd I X E~, Xd ~ 0}, (2.1)

the conditions required for L to be a subdivided manifold aze given in the next

lemma.

LEMMA 2.2. Suppose (~, D, d) is a GPDM with degree l. Let L be defined
by (2.1). Then L is an l-dimensional subdivided manifold if and only if for any

(l-1)-cell X x Y of Ï,`:

(1) there aze at most two cells Z of ~ auch that

X a Z and Zd - Y, (2.2)
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(2) if Y a Xd then there is at most one cell Z of ~ satisfying (2.2).

Proof. Among the three conditions of a subdivided manifold the second one
is crucial and the others will be seen atraightforward. Note that an (I - 1)-cell
X x Y of C is a facet of an l-cell Z x Zd of C if and only íf either

X- Z and Y a Zd (2.3)

or
X a Z and Y - Zd (2.4)

holds. By the first condition there aze at most two cells Z x Zd of C satisfying
(2.4). Furthermore the second condition means that there is at most one such
cell if a cell Z x Z`~ - X x X`~ satisfying ( 2.3) exists. Therefore we have shown
that X x Y lies in at most two l-cells of ,C .
The ~only if" pazt is also readily seen by the same azgument. ~~

The following lemma chazacterizea the cells constituting the boundary 8L
of C .

LEMMA 2. 3. An (l - 1)-cell X x Y of ~ belongs to the boundazy if and only

if the following conditions hold:

(1) if Y a Xd , then there is no cell Z of ~ satisfying (2.2),

(2) if Y píX`~ then there is exactly one cell Z of ~ satisfying (2.2).

6
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3. Conetruction of a GPDM

As an underlying set we consider a pointed convex polyhedron in R" , i.e., a
convex polyhedron with vertices, defined by K-{ x E R" ~ Atx G 6} with A
an n x m matrix and 6 an m-vector. In what followa we ahall present a sub-
division of the polyhedron K and construct a GPDM having this subdivision
as the primal subdivided manifold.

It is well-known that K can be decomposed into a polytope and a polyhe-
dral cone C containing the d'uections of all rays in K, and that C is given by
C-{ x ~ Atx G 0}(see for example [SW]). Since K is pointed, the cone C of
rays is also pointed, namely Cn(-C) - {0} . Indeed, auppose that r E Cn(-C)
and consider two pointa v f r and v - r for an azbitrarily choaen vertex v of
K. Since r and -r E C, both of these two points lie in K. If r ~ 0, then
the point v would be a middle point of these pointa, which contradicts the fact
that v is a vettex.

Let w be an arbitrazy point of K. In the algorithm proposed below for
solving the stationazy point problem on K the point w will be the starting
point. For some strictly positive nrvector ry let h -- Ary and let Ho -
{ z ~ htx - ho } be a hyperplane for some positive ho . We can see that if h.o
is suílïciently lazge this hyperplane interaects every unbounded face of K while
the negative halfapace H- -{ z ~ hix C ho } contains all vertices of K as well
as w and hence also all bounded facea of K in ita interior. To aee this, let r be
a nonzero vector of C. Since C is pointed, Atr ~ 0. More preciaely, Atr C 0
and (a;)tr c 0 for at least one column a; of A. Then by the definition of h,

htr - -rytA~r ~ 0. (3.1)

Therefore, when ho is large enough for the ínterior of H- to contaia all verticea
of K and w, the hyperplane Ho interaects every unbounded face of K.

Now we introduce several notations. Let Hf -{ x ~ htx 1 ho } be the
positive halfapace of Hv . For any face F of K, let -

F--{x~xEFnH-}

Fo-{x~xEFnHo}
and

Ft -{ x ~ x E Fn Ht }.
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Figute. 3.1

Note that if some face F is entirely included in H- then F- - F. For an
arbitrary subset G of K , we denote the coavex hnll of G and w by wG . bet

P-{wF- (w ~ FaK.}U{wFfo}U{Kt}. (3.2)

It caa be easily proved that P is a subdivided manifold with the same dimension
as K. Moreover the collection ~ is equal to

~-{wF-~w~F~K}

U{ wF'o ~ F is an unbounded face of K}
U{ Ft ~ F is an unbounded face ofK}

U{ F'o ( F is an unbounded face of K} (3.3)
U{F- (w~F-CK}

U {w}

and
~P~-K.

An example is illustrated in Figure 3.1.

To make the dual subdivided manifold D, we subdivide Rn in almost the
same way as in (DY~. The normal cone at x E K to K is defined to be

N(x, K) - { y ~ y`(z - x) G 0 for any z E K}. (3.5)
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It is the cone of all outward normal vectors at x to K . It is readily seen
that normal cones aze identical at any relative interior point of a face F of K.
Therefore we denote it by F' . Letting

I(F) -{ i ~(a;)tx - b; for any x E F},

then F' ia equal to

F' -{ y ~ y - ~ Ea;a;, ~; ~ 0 for each i E I(F) }.
iEl (F)

The dual subdivided manifold D is defined to be

D-{{v}' ~ v E U(K) }

U{ F' f G h~ ~ F is an extreme ray of K }, (3.6)

where U(K) is the set of vertices of X and

Gh1-{y~y-ah forsome a~0}, (3.7)

being the ray in the direction h. Then D is obviously an n-dimensional subdi-
vided manifold,

23-{F`~FjK}

U{ F'f G h 1 ~ F is an unbounded face of K} (3.8)

and

~D~ - R". (3.9)

For constructing a GPDM it remains to define an operator d linking the
subdivided manifolds ~ and D. Let
(wF-)d-F' if w ~ F~K
(wFo)d - F'-F G h~ if F is an unbounded face of K
(Ft )d - F't G h 1 if F ia an unbounded face of K
(F- )d - 0 if w ~ F t K (3.10)
(Fo )~ - 0 if F is an unbounded face of K
({w})`~ - ~ .

Then the dimenaions of a cell X in ~ and its dual cell X`~ in D sum up to nf 1
if Xd is nonempty, that is the GPDM(~, D, d) constructed above has degree
n t 1. Let !~4 be the collection of (nf-1)-dimensional subdivided manifolds
defined by (2.1) for this GPDM(~,D,d) . We shall ahow that M is an(ntl)-
dimensional subdivided manifold by demonstrating that the GPDM(~, D, d)

satiafies the conditions of Lemma 2.2.
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LEMMA 3.1. For any n-cell X x Y of .M derived from (3.3), (3.8) and (3.10)
we have

(1) there aze at most two cells Z of ~ satisfying (2.2),

(2) if Y a Xd , then there is at most one cell Z of ~ satisfying (2.2).

Proof. From the definition of the dual operator d it follows that if at least two

cells of ~ aze mapped to an identical cell they must be equal to wFo and Ft

for some unbounded face F of K. This means that condition (1) of Lemma 2.2

is satisfied. Next suppose that there are two different cells Zl and Za in ~
satisfying (2.2). Then Zl - wFo and Za - Ft for some unbounded face F of
K. Since X is a facet of both Zl and Z~ , X must be Fo and hence Xd - 0.
This proves that the second condition of Lemma 2.2 is also satisfied. ~~

Thus we have seen that M is an(n-fl)-dimensional subdivided manifold

as an immediate consequence of Lemma 2.2. By applying Lemma 2.3 to the

GPDM( ~, D, d) considered here we obtain the following.

LEMMA 3.2. The boundary of M is equal to

and

8M-{{w}xF' ~w~F~K, dimF-O}

U{{w} x(F' f ~ h 1) ~ F is an extreme ray of K}

u{ Ft x F' ] F is an unbounded face of K}

U{F-xF'~w~F~K}

U{ wFo x F' ~ w E F, F is an unbounded face of K}

U{wF-xG`~wEG,w~FaG,G~K} (3.11)

~BM~ -~U[{w} x{v}' ~ v is a vertex of K, v~ w]~

U~U[{w} x(F't c h~) ~ F is an extreme ray of K]~

U~U[FxF' ~{w}~F~K]~. (3.12)

Note that

~BM~ ~ ~ {w} x (R" `{w}')~ U ~U [ F x F' ~ {w} ~ F ~ K ]~.
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4. Path Following Technique

Let M be the (nfl)-dimenaion subdivided manifold obtained from the
GPDM(~,D,d) as described in the previoua section and let f be a contin-
uously differentiable function from K to Rn . To find a atationazy point of j
on K, we consider the system

9(x,y) - Í(x) f y- ~, (x,y) E ~M~. (4.1)

If 0 E Rn is a regular value of the mapping g, then from applying Theorem 2.1
to syatem (4.1) we obtain that g-1(0) consists of disjoint paths and loops.
Suppose the atazting point w ia not a stationazy point of f on K then we see
from Lemma 3.2 that (w, -f(w)) E g-1(0) fl ~8M ~. Conaequently, the connected
component of g-1(0) containing (w,-j(w)) is a path. In the following we
denote this path by S. Also according to Theorem 2.1, if the path S is bounded,
then it will provide a diatinct end point (x, y) in ~8M~. Since (x,y) satiafies
the system of equations (4.1), y -- f(x) . If x - w, (x, y) would coincide with
(w, -f(w)) . Therefore, according to (3.12), (x, y) -(x, - f(x)) lies in F x F'
for some face F of K and x ia a atationazy point of f on K.

To follow the path S in ~M~, we aubdivide K into simplicea such that
each cell F in ~ is triangulated. An appropriate aimplicial aubdiviaion of K is
obtained by first triangulating the aet K- as described in [TY]. Notice that the
stazting point w is a vertex of this triangulation. In order to triangulate Kt ,
note that Kt ia the union of Ko-}- C h~ and Ftf c h~ over all unbounded
facets F of K. The aubaet Ko i- G h 1 can be triangulated in exactly the
same way as wKo and each aubaet Ft f c h~ in a aimilar way as wF- by
using projectiona of w{- h on the faces of Ft instead of projectiona of w on
the faces of F- , as illustrated in Figure 4.1.

Let f be the piecewiae linear approximation of f with repect to the tri-
angulation. Taking j inatead of f in (4.1), the path T of aolutions to (4.1)
originating at (w, -j(w)) is piecewise lineaz and can therefore be followed by
making pivoting steps in subsequent systems of linear equations. For ease of
deacription we reatrict ouraelvea to a polyhedron K for which none of the in-
equalities (a;)tx C b; is redundant and each vertex ia an end point of exactly n
1-faces of K. Now let (x, y) be a point on the path T . Then in some t-cell
X of ~ there is a simplex o with vertices wl,...,wtti such that x lies in o
and f (x) in X`~ . Hence, there exiat nonnegative numbers a; , i- 1, ..., t t 1,
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Figure. 4.1

such that x- ~; a;w' and ~; a; - 1. Moreover, if X- wF- there ex-

ist nonnegative numbers ~.k, k E I(F) , such that y-~kel(F) ~kak , and if

X- wF'o or X- Ft , there exist nonnegative numbers ~ak, k E I(F) , and

a' such that y-~kEl(F) ~kak ~- a'h . Notice that I(F) consists of n-~ 1- t

indices because F is determined by this number of equalities. In case not all

vertices of K are determined by n 1-faces of K we refer to [TY]. Since (x,y)

is a solution of (9.1) with j instead of f and ~(xj -~ti J~; f(w'] , it follows

that a~ , i- 1, ... , t-F 1,{~k , k E I(F) , is a nonnegative solution to the system

of linear equations

eti f(w;~ ak 0
~ ~' [ 1 ] } kE~ ) ~k [ ~, - [1,

if X- wF- , and that a; , i- 1, ..., t-F1, uk , k E I(F) , cti' is a nonnegative

solution to the system of lineaz equations

eti f(w;) ak h 0
L~~'[ 1 J}kE~,~k[~,}~[U]- 1]
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if X- wFo or X- Ft . The system (4.2) or (4.3) has a line segment of
solutions corresponding to a line aegment of points x- ~; a;w' in a , assuming

nondegeneracy. At an end point of aolutions one of the vaziables is equal to zero.

When a; - 0 for some i E{1,...,t f 1} , x lies in the facet r opposite the

vertex w' of a. Thia facet lies either in the boundary bdX of X or is a facet

of just one other f-simplex ó in the cell X with vertices wh , h~ i, and

iu` ~ w' . Then in the latter case to continue the path T in á, a pivoting step

is made with (f (w')t, l)t . Suppose r lies in bdX and X - wF- . Then x

is a stationazy point of f on K if r liea in F- . Otherwise, either r lies in

wG- with G a facet of F or r lies in wF'o . In the first case the path T can
be continued in wG- by pivoting ((ak)~, 0)t into (4.2), where k is the unique
index in I(G) not in I(F) . In the latter case the path T can be continued in
wFo by pivoting (ht, 0)L into (4.2). Now, suppose r lies in bdX and X- wFo

or X- Ft . Then when X- wFo , r lies either in wGo for some facet G of

F or in Fo , and when X - Ft , r lies either in Gt for some facet G of F

or in F'o . When r is in wGo or Gt , the path T can be continued by pivoting

((ak)s,0)t into (4.3), where k is the unique index in I(G) not in I(F) . When

r lies in Fo , r is the facet of a unique t-simplex ó in Ft if X- wFo and in

wF'o if X- Ft , and the path T can be continued in á by making a pivoting

step with ( f(iu)t, 1)t in (4.3), where w is the vertex of ó opposite r.

We now consider the case that at an end point of solutions of (4.2) or
(4.3) we have that ~ak - 0 for some k E I(F) . Let G be the unique face

of K such that I(G) - I(F) ` {k}. Then with x-~tia;w' we have that

j(x) - ~i ~tif (w`) - - ~kEl(G) ~kak E G` . First, auppose that X - wF- .

If w E G then also x E G since F is a facet of G. Therefore, w E G implies

(x, - f(x)) E G x G` , and hence x ia a atationary point of j on K. In case

w~ G or if X - wFo or Ft , then a is a facet of a unique ( t f 1)-dimensional

simplex á in wG- , respectively wGo or Gt , and the path can be continued

in á by making a pivoting step with (j(w)t,l)t in (4.2) or (4.3), where ru is

the vertex of ó opposite' a.

Finally, we conaider the case that in (4.3) at an end point a- 0. If

X- wFo and w~ F, then o is a facet of a unique ( t-~1)-simplex ó in

wF- and the path can be continued in wF- by making a pivoting step with

( j(w)t, l)t in (4.3), where tu is the vertex of ó opposite a. If X- wFo and

w E F or if X - Ft , then x - ~; a;w' E F and j~(x) -~; a; j(w') -
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-~kEl(F) ~kak E F` , so that x is a stationary point of f on K.

This completes the description of how to follow approximately the path S
by making alternating pivoting and replacement stepa for a sequence of adjacent
simplices of vazying dimension. This sequenee atarta at w and terminates with
a simplex containing a stationary point i of f on K. This point i is an
approximate stationary point of f on K. To improve the accuracy of the
approximation if necessazy we can take a new trangulation of K with the point
i as the new stazting point w and having a finer mesh size and apply the same
procedure.

b. Convergence Condition

In this section we state a condition under which the path S is bounded and
therefore leada from w to a stationasy point of f on K.

LEMMA 5. 1 . Let (x, y) be a solution of the system

9(x,y) - ~, (x,y) E Ft x(F`f G h~). (5.1)

If x is not a stationary point, then

r`y ~ 0,

for any nonzero vector r in the cone C satisfying (a;)tr - 0 for all i E I(F).

Proof. The point y in F'f C h 1 is equal to Bp -~ ah for some vector u~ 0
and number a~ 0, where B denotes the submatrix of A consisting of the
column vectors a; for i E I(F) . Since x is not a stationary point, a~ 0.
Then

rty - rt (B~S -1- ah) - (Btr)t~ ~- ahtr - ahtr ~ 0

by the choice of h. ~~

CONDITION 5.2. There is a set U C R" such that U n K is bounded and for
each point x E K`U there is a nonzero vector ~ in C fl { r E R" ~(a;)tr -
0 whenever (a;)tx - b; } satisfying

rf(x) ~ 0.

LEMMA 5.3. Under Condition 5.2 the path S does not diverge.
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Proof. Suppose the contrazy. Then there ia a solution (i, y) of the system (4.1)
such that i E Ft `U for some face F, since the continuity of the function f
requires the x-component to diverge. Therefore by Lemma 5.1 and Condition 5.2
we see that r( f(i) f y) ~ 0 for some vector r, which contradicts that (i, y)
is a solution of (4.1). ~~

6. Stationary Point Problems on a Cartesian Product of a Polytope
and a Polyhedron

We conaider a stationary point problem defined on the Cartesian product of
a polytope and a polyhedron. The product is again a polyhedron and the theory
of section 3 could still be applied to this case. However, it will be quite useful
to consider it separately because a lot of problems are defined on such product
sets. Let

Kl-{xlER"' ~Aixl Cbl}

be a nonempty polytope and let

Ka -{ xa E R"' ~ A2xa G 6a }

be a nonempty, convex, unbounded and pointed polyhedron, with A; an n; x m,
matrix and b; an m;-vector for i- 1, 2. We consider the stationary point
problem for a continuous function f from Kl x Ka to Rrtl x R"' . We denote
f(x) bY !(x) -~Ïi(xl, xa), fa(xi, xa)~ and call (xl, xa) E Kl x Ka a stationazy
point of f on Kl x Ka if

(zi - xi)tÍi(xi,xa) f (za - xa)tfa(xi,xa) ? 0

for any point (zl, z,a) E Kl x Ka .

In the same way as in the preceding sections we will construct a GPDM
by introducing an artificial hyperplane and corresponding half spaces defined by

H" -{(xl,xa) E R"'trt' ~ háxa p hc },

where ~r is -, 0 and -F when p is C,- and ?, respectively, where ha -
-Aary for some fixed positive vector ry, and ho ~ 0 is chosen such that the
interior of the half apace H- contains all vertices of Kl x Ka as well as the
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stazting point w-(wl, wa) . Note that háry ~ 0 for any nonzero vector ra in
the set

C~-{raER"' ~AZraCO}

of directions of rays of Ka , which we have seen is a pointed cone. It is clear
that a face F of Kl x Ka is itself a Cartesian product of faces of Kl and K2 ,
which we will denote by Fl and F2 , respectively. Let

H2 -{xaER"' ~h2x2 pho },

where rr is -, 0 and f when p is c,- and 1, respectively. We define

Fá - Fa fl Há for a--, 0 and f.

Then

It is also cleaz that

F~-F1xF? for a--, Oand f.

F! - Fi x Fá ,

where Fi and F2 are defined with respect to Kl C Rn1 and Ka C Rn' ,
respectively. Thus with the dual operator d defined as follows we obtain a
GPDM :

~w(F1xFá)~d-FixFá if w ~ F1xFztK
~w(Fl x F2 )~d - Fi x(Fá i- C ha ~) if Fa is an unbounded face of Ka
(Fl x Fá)d - Fi x (Fá~- c ha 1) if Fz is an unbounded face of K2
(F1xFa )d- 0 if w ~ Fl xF2~K
(Fl x Fá )d - ~ if Fa is an unbounded face of Ka
({w})d - t3 .

The collection M of cells, each cell being the Caztesian product of a primal cell
and its dual, is clearly a subdivided (nl f na f 1)-manifold with boundary 8M
containing {(wl,w2)} x~Rn' x Rn' `{(wl,w2)}'~ and (Fl x F2) x(Fi x Fá)
for all faces Fl of Kl and Fa of Ka . Therefore in case that the start-
ing point w-(wl, w2) ie not a stationazy poínt, the point (xl, x2, yl, ya) -
~wl,wa,-Íi(wi,w2),-fa(wl,w,)~ liesintheboundary ~BM~ of ~M~ andunder
the regulaz value assumption there is a path leading from it to either a stationary



point or to infinity. Thus in exactly the same way as in the preceding sections
the problem is now reduced to tracing the path S of solutions to the syatem

~Íi(xi,xz),fa(xi,xa)~ f (yi,ya) - 0, (xi,xa,yi,ya) E ~1d~.

The remazkable feature of this path is shown in the following lemma, where

S: -{(xi,xa) ~(xi,xa,yi,ya) E S for some (yi,ya) E Rnitn~ }.

LEMMA 6.1. If ( ïl,ia) E Ss n Ht , then ïl is a solution of the stationazy
point problem ~fl(xl,ïa), Kl~, i.e., ïifl(xl,ïa) G xifi(xl,xa) for all xl E
K1. -

Proof. Since (ïl, ïa) E Ht , it is in Fl x F2 for some face Fl of Kl and
some unbounded face Fa of Ka . By the construction of the GPDM

(-Ïi(xi,ïa),-Ía(xi,ïa)~ E Fi x(Fá f C ha ~).

This means that ïl is a sotution of the problem ~fl(zl,ia), Kl) . ~~

LEMMA 6.2. Let (ïl ,xa,yl,ya) be a point of S. Suppoae that ( ïl,xa) is
not a stationazy point and ïa lies in Ká . Then

rába ~ 0

for any nonzero vector ra in the cone Ca such that (a~;)ira - 0 whenever
(aai)iïa - ba; , where a.z; is the tYh column of Aa and ba; is the sYh component
of ba .

Proof. Let Ba be the submatrix of Aa consiating of the columns aa; such
that (a2i)tïa - ba; . Then ya - Ba{~ i- aha for some vector }c ~ 0 and number
a~ 0. Since ( il, ia) is in Ht and is not a stationazy point, we have a~ 0
by Lemma 6.1. Therefore

ráya - rá(BaF~ t aha) -~hára ~ 0. ~~

CONDITION 6.3. There is a set Ua C Rn' such that Ua fl Ka is bounded and
for each point ïa E Ka ` Ua one of the following conditions holds:

(a) ~fl(xl,ïa), Kl~ has no stationazy points,

(b) for each point xl E Kl there is a nonzero vector i-a in Ca fl { ra E
Rn' ~(aa,)`ra - 0 if (aa.)t2a - bas } such that r2 fa(xl, ïa) ? 0. ~~
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THEOREM 6.4. Under Condition 6.3 the path S will not diverge.

Proof. Suppose the contrary. Then there is a point (sl,ia) E Ss n Ht such
that i2 ~ U2 . By Lemma 6.1, il is a solution of ~fl(xl,ia), Kl~ . Therefore

condition (b) must be satisfied at this point, so that for some nonzero vector r2
in Ca n{ r2 E R"' ~(aa;)tra - 0 if (aa;)tïa - ba; } we must have

-e
rzfa(xi,x2) ? 0.

On the other hand we have seen in Lemma 6.2 that

rzfa(xl,is) - r2(-ba) C 0.

This is a contradiction. ~~

7. Linear Stationary Point Problems

In this section we consider a special but important case where the function f
from K to Rn is an affine function, i.e., f(x) - Qx -~ q, where Q is an
n x n matrix and q is an n-vector. For simplicity of notations we confine
ourselves to the lineaz stationazy point problem defined on a polyhedron instead

of the product of a polytope and a polyhedron. Like for comlementazy pivoting

algorithms for solving a linear complementarity problem we show that if the
matrix Q is copositive plus on the polyhedral cone C and the problem has a
stationary point, the path does not go to infinity and consequently leada to one

of the solutions.

DEFINITION 7.1. The matrix Q is copositive plus on C if

(a) riQr 1 0 for any r E C,

(b) (Q f Q)tr - 0 if r E C and rtQr - 0.

LEMMA 7.2. There exists no point z E K such that Qx ~- q--Ap. for some

vector W~ 0 if and only if there is a(v, u) E Rn x Rm such that v E C,
QLV - Au, biu f qiv G 0 and u~ 0.

Proof. There exists no point x in K satisfying Qx f q--Ap for p 1 0 if

and only if the system

At(xl - xa) G 6

Q(xi - xa) f 9 - -Ap (7.1)

xi,xa,l~ ? 0
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is not solvable. By Farkas' Alternative Theorem, we have an equivalent state-
ment to (7.1): the following system

Qtv-Au-O

Atv G 0

u 1 U
btu~- qt v G 0

is solvable. This means the existence of a point v in C such that Qtv - Au
and btu f qiv G 0 for some u~ 0. ~~

LEMMA 7. 3. Let Q be copositive plus on C. If the path S is unbounded and
does not contain a point which provides a stationazy point, then the statíonazy
point problem has no solutions.

Proof. Suppose S is unbounded, then there are (x, y) E S and (i, y) ~ 0
such that (x, y) -1- (i(i, y) E S for any ~i ~ 0. Then

yfQi-O. (7.3)

Moreover as Q increases, (x, y) f(i( i, y) will be entirely contained in a cell
Ft x(F' f G h~) for some face F~ K. Here note that i~ 0 because the

contrazy would yield (i, y) - 0. Then we have

x E Ft

y - y~ f ah for some y~ E F' and some a~ 0,

and

i E C fl { r E R ~(a;)tr - 0 whenever (a;)tz - b; }

y" - y~ ~- {~h for some y~ E F~ and some ~C 1 0.

Therefore we have

itQi - it(-y) - it(-yl - ~h) - -~eith.

Suppose ~a ~ 0. By the choice of h and since i E C, we have ~ith ~ 0, which

contradicts that Q is copositive plus on C. Therefore p- 0 and iiQi - 0.

If a- 0, then y- yl E F' . This means that the point x is a stationazy
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point. Since we have assumed that S does not contain such a point, we see that
a~ 0. Since itQi - 0 implies (Q f Qt)i - 0, we have

Qix--Qz-y-y~-~{ch-y~EF`.

In other words there is some vector u satisfying

Qti - Au

u; ~ 0 for i E I(F)

u;-0 fori~I(F).

We also have

zt xt x - x~ t i ti - x~ i t x - xt - ti.(-y) - - (Q -F 9) - Q -F 4 (-Q ) f 9 - - y ~- 9 (7.5)

On the other hand, since i E C and y~ E F` ,

xt(-y) - it(-y~ - ah) - -ity~ - aith - -aith G 0. (7.6)

From (7.5) and (7.6) we have xiy f q~i c 0. Since x E Ft , we also have that
Atx i s- 6 for some slack variable vector s satisfying

s; ~ 0 for i~ I(F)

s; - 0 for i E I(F).

Then

btu t qti G btu - xty -( Atx -F s)tu - xt(-Qi)

- xtAu f stu - xt(Qti) - xt(Au - Qti) f stu - 0. (7.7)

From (?.4) and (7.7) and Lemma 7.2, we conclude that there are no stationazy
points. ~~

The algorithm for tracing the piecewiae linear path S, being lineaz on any
cell of M, is quite similaz to that proposed in Yamamoto [Yl~ for solving lineaz
stationary point problems on polytopes. We will only give a.n outline here.
Suppose we are at a point (x, y) on the path, i.e.,

Qx f a f y- o, (x, y) E x x xd, (7.s)
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for some cell X x X'i of M. By the decomposition theorem of a polyhedron each
point of a polyhedron is a sum of two points: a convex combination of vertices
of the polyhedron and a nonnegative combination of directions of extreme rays.
Let U and R be the sets of vertices and extreme rays of X , respectively. Then
a point x E X is written as

x-~a„uf~arr

uEU rER

L~.`u-1
uEU

.~,t 1 0, ~ r J o.

On the other hand Xd is the cone generated by coefficient vectors a; of binding
constraints of the face corresponding to X. Then a point y E Xd is written as

y - ~L~iai, l~i ~ 0.

Therefore (7.8) has a solution if and only if the system

L~~[Qu]}L~r[pr]}L~~[~]-[ 19]

a„ ~ o, u; ? o, r~: ? o (~.s)

has a solution (a, a, p) . It should be noted here that a vertex of X is either
the stazting point w or a vertex of some face of K- corresponding to X and
that a ray of X is also a ray of some face of K. More precisely,

U- {w} U { vertices of F- }, R- 0 when X- wF-
U-{w} U{ vertices of Fo }, R- 0 when X- wFo
U-{ vertices of Fo }, R-{ rays of F} when X- Ft .

In every case a vertex or a ray can be generated in need if we keep the index set
of binding constraints, including Ho - { x E Rn ~ htx - hp }, determining the
face F in storage.

Suppose we aze at an end point of the line segment or half line of the path
within X x Xd . Since the path is lineaz within X x X`~ an appropriate choice
of the objective function c~x f cyy makes the cunent end point the unique
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maximal solution of the lineaz program:

max. c~x f eyy,

S.t. 2-~ i`,~TL f~ a~r

y-~~:a

~~4 L~uJ }~a~ L OrJ }~~i LOJ - l 19J
au~0, a~10, u;~0.

In fact, thc outward normal vector at any point (x, y) to X x X`~ may serve

as (cs, cy) . Then the other end point, when the path within X x X`~ is a line

segment, or the diverging direction, when it is a half line, can be found by solving

the following linear minimization program:

min. c~x t cyy,

s.t. x-~ a,~u f~ a,r

y-~{k0.

L~~[~u]}Lra`'[ Or]}~~[OJ- [ 19]
a,~ ~ 0, a, 1 0, {~; ~ 0.

From this we see that this problem is a typical application of the Dantzig-Wolfe

decomposition principle for lazge structured lineaz programs. By solving a se-

quence of these problems we can trace the path and finally after a finite number

of iterations we meet with an end point of the path or find that the path goes

to infinity.
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