
����������
�������

Citation: Cicuttin, A.; Morales, I.R.;

Crespo, M.L.; Carrato, S.; Garcia,

L.G.; Molina, R.S.; Valinoti, B.; Folla

Kamdem, J. A Simplified Correlation

Index for Fast Real-Time Pulse Shape

Recognition. Sensors 2022, 22, 7697.

https://doi.org/10.3390/s22207697

Academic Editor: Thomas P

Karnowski

Received: 31 August 2022

Accepted: 4 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Simplified Correlation Index for Fast Real-Time Pulse
Shape Recognition
Andres Cicuttin 1 , Iván René Morales 1,2,* , Maria Liz Crespo 1,* , Sergio Carrato 2 , Luis Guillermo García 1 ,
Romina Soledad Molina 1,2 , Bruno Valinoti 1,2 and Jerome Folla Kamdem 1,3

1 Multidisciplinary Laboratory, The Abdus Salam International Centre for Theoretical Physics (ICTP),
34151 Trieste, Italy

2 Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste (UNITS), 34127 Trieste, Italy
3 Department of Physics, University of Yaoundé I, P.O. Box 812, Yaoundé 222, Cameroon
* Correspondence: imorales@ictp.it (I.R.M.); mcrespo@ictp.it (M.L.C.)

Abstract: A simplified correlation index is proposed to be used in real-time pulse shape recognition
systems. This index is similar to the classic Pearson’s correlation coefficient, but it can be efficiently
implemented in FPGA devices with far fewer logic resources and excellent performance. Numerical
simulations with synthetic data and comparisons with the Pearson’s correlation show the suitability
of the proposed index in applications such as the discrimination and counting of pulses with a
predefined shape. Superior performance is evident in signal-to-noise ratio scenarios close to unity.
FPGA implementation of Person’s method and the proposed correlation index have been successfully
tested and the main results are summarized.

Keywords: pulse shape recognition; correlation; hardware algorithms; SoC; FPGA; digital signal
processing; pattern recognition; digital pulse processing; pulse counting; noise reduction

1. Introduction

In the context of real-time signal processing and pulse shape discrimination, amplitude
cross-level triggering is one of the most commonly used methods for event signaling. Such
a technique is widely exploited in fast event detection applications like time-to-digital
converters [1], multi-feature discriminators [2], and image processing [3,4].

Indeed, pulse shape recognition may be carried out with different methodologies and is
used in many contexts where a known signal is acquired for further feature extraction [5]. In
addition, these methodologies have been categorized according to the metrics or algorithms
used, such as pulse shape parameters, template comparison, amplification of pulse shape
variations, and statistical models [6]. Specifically, this study relies on cross-correlation
between a signal of interest and a known static pattern or template. This pattern represents,
to some extent, the intended pulse shape to be recognized.

We demonstrate how the traditional cross-level trigger method can be improved by
introducing a digital preprocessing correlation stage to the signal under study [7]. Subse-
quently, a simplified correlation algorithm that targets real-time applications is proposed.
An in-depth analysis is carried out to exemplify how the signal recognition capabilities are
preserved using the simplified correlation method. The main advantage of the proposed
algorithm is its reduced computational complexity, which leads to faster execution and
lower hardware resource utilization when implemented in real-time event-recognition
scenarios. A simulation framework was developed in Python 3.8 and Numpy to test the
recognition capabilities of a traditional cross-correlation preprocessing algorithm based
on Pearson’s correlation. Then, a detailed comparison is carried out to also quantify the
recognition capabilities of the proposed simplified correlation algorithm. Both correlation
methods undergo extensive tests under several peak signal-to-noise ratios (PSNR) and
detection threshold levels. Well-known recognition metrics, such as Precision-Recall (PR)

Sensors 2022, 22, 7697. https://doi.org/10.3390/s22207697 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22207697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3645-9791
https://orcid.org/0000-0002-0975-6117
https://orcid.org/0000-0002-5483-3388
https://orcid.org/0000-0003-2953-8886
https://orcid.org/0000-0003-0712-413X
https://orcid.org/0000-0001-7688-6248
https://orcid.org/0000-0002-3063-005X
https://orcid.org/0000-0001-7010-8349
https://doi.org/10.3390/s22207697
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22207697?type=check_update&version=2

Sensors 2022, 22, 7697 2 of 24

and Critical Success Index (CSI), are used to reliably estimate and summarize the accuracy
of the simulations under the testing scenarios.

Relying on a digital processing algorithm enables repeatability of the results while
maintaining the advantage of portability among different platforms. Hence, to prove the
real-time potential of our proposal and test the reproducibility of both methods, we ported
the correlation algorithms to a platform based on a System-on-a-chip/Field-programmable
Gate Array (SoC/FPGA) ZedBoard development board [8]. High-level synthesis (HLS)
based on C++ was chosen as the development tool [9], allowing us to deploy complex alge-
braic operations in the FPGA hardware design. Making use of the math library included in
HLS not only permitted the implementation of the nonlinear operations required by corre-
lation algorithms, but also enabled an unbiased comparison between both methods. Tests
were executed with synthetic input signals (generated by our simulator), and the outcomes
were compared with the expected results. The resource utilization of the SoC/FPGA, la-
tency, and estimated power consumption are summarized, providing valuable information
about the two kinds of optimizations that were evaluated for each method.

This paper is organized as follows. Section 2 shortly describes several related works.
Section 3 briefly demonstrates how preprocessing a signal with a correlation pattern can
improve the event recognition chances in a continuous stream. In Section 4, a simplified
correlation index is proposed, based on Pearson’s correlation, targeting higher performance
for real-time applications. The simulation framework used to compare our proposed
index with Pearson’s correlation is detailed in Section 4.3. In Section 4.3.1, the validation
methods for the simulation are described. The experimental setup to test the algorithms
on the SoC/FPGA platform is described in Section 4.4. Further, in Section 5, the results of
running the simulation over multiple noise and threshold scenarios are given, including
the recognition performance comparison between the original correlation index and the
simplified one. A demonstration of how the correlation preprocessing provides noise
immunity at some extent is also shown using the simulation data. Quantitative evaluations
and comparison with the Pearson correlation index regarding resource utilization and
execution performance on the hardware implementation are summarized in Section 5.2. In
Section 6, the conclusions of the results are discussed.

2. Related Works

Huang et al. [10] introduced a method for comparing the likeliness of a processed
nonstationary signal to the expected output from a simulation. The discrete signal under
test is synthesized by summing a known noiseless trace and random noise. This signal is
then compared—after being pre-processed—with the expected trace using the Pearson’s
correlation coefficient, which sets the threshold for the detection capability of the system.
Pani et al. [11] developed a real-time neural signal decoding system based on a digital
signal processor (DSP). Their algorithm also uses the Pearson’s correlation to match a
triggered signal against a known template to recognize the type of signal they capture. The
fixed templates are normalized using z-score to improve the processing throughput.

Garcia et al. [12] developed a pulse-shape discrimination (PSD) method for cosmic ray
detectors based on a finite impulse response (FIR) filter. They tuned the z-score-normalized
filter coefficients such that the signal is correlated with the pulse shape of the expected
pulses. The method was implemented on a SoC/FPGA platform for real-time classification.

Blair et al. [13] used a normalized cross-correlation method to distinguish between
two types of pulse shapes. Their algorithm is also based on the Pearson’s correlation.
Additionally, the pattern pulse was synthesized using a physical model from [1].

Sensors 2022, 22, 7697 3 of 24

Iniguez-Lomeli et al. [14] implemented a FPGA-based real-time detection and sorting
system, specifically designed for bio-signals classification. Their classifier relies on a pulse-
shape recognition algorithm based on correlation. A voting stage assigns the type of
signal that was detected, by choosing the highest correlation value between the signal and
multiple pre-recorded patterns.

Another use of z-score normalization is described by Pollastrone et al. [15], where
a matching pattern or template is compared against a triggered signal event. However,
owing to the method of measuring the similarity between the template and the triggered
pulse (mean-squared error), precise triggering timing is required to align the incoming
pulse with the pattern.

Glenn et al. [16] used the precision–recall metric to assess the discrimination capa-
bilities of their single-event counting system, complying with their imbalanced event
distribution. They also used z-score normalization as the preprocessing stage in their
algorithm.

Simms et al. [17] developed a supervised machine learning algorithm for PSD that
relies on square-root computations performed in real time. Their work took advantage
of the existing fixed-point libraries available in the Xilinx Vivado High-Level Synthesis
(HLS) tool to implement their design in a Xilinx Zynq-7000 SoC/FPGA. They performed a
simple compression technique based on quantization of data to shrink their system to fit
into the FPGA. However, they did not report detailed classification results, ignoring missed
or misclassified events.

Alharbi [18] compared a city-block algorithm (based on the absolute difference be-
tween two terms) with the Euclidean distance method, which is based on the square root
of the difference between two squared terms. The research found that by separating two
types of pulses using both algorithms, the classification accuracy was very similar, whereas
the city-block algorithm resulted as more efficient in terms of computational complexity.

Moore C. and Lin W. [19] recently exposed the growing demand of optimized methods
to compute correlation algorithms in embedded devices. Their goal was to develop a fast
and accurate solution to correlate two signals in real-time. Their approach used a low-level
hardware design to carefully take advantage of the available resources in FPGA devices.
We are focusing on the same challenge, but by proposing a simplified correlation index
based on mean average deviation.

Wang et al. [20] developed a discrimination algorithm based on Pearson’s correlation,
aiming at discerning the signal likelihood among multiple triggered events in a multi-
channel neural processing system. Their method drops the events that do not match
the pulse shape of their neighbors, avoiding spurious events being recorded and further
improving the signal-to-noise ratio. Their tests were carried out using a SoC/FPGA-
based device, capable of replicating their correlation algorithm in multiple channels. Our
proposed algorithm may be used as a drop-in replacement of the Pearson’s correlation
block currently being used by these authors. Such alternative approach may drastically
reduce the logic resources utilized in their FPGA implementation, without significantly
degrading the discrimination capabilities.

Lee et al. [21] developed a FPGA-based accelerator aiming at parallelizing the diagno-
sis of electrocardiogram (ECG) signals from multiple persons (patients). Their achievement
is the flexibility of an adaptive system, where Pearson’s correlation is used to compare an
incoming ECG signal with a dynamic pattern. The pattern is continuously tuned for each
patient, which improves the anomaly detection capabilities compared to other implementa-
tions. Replacing their correlation processing block with our proposed method may reduce
the FPGA occupancy, potentially increasing the number of processing channels without
replacing the existing hardware setup.

Sensors 2022, 22, 7697 4 of 24

3. Pulse Shape Recognition through Pattern Correlation

The comparison between a traditional cross-level triggering system and a two-stage
correlation-based preprocessing algorithm is presented in this section. Similar to what was
carried out in [22], pulse shape recognition is performed first, and then a trigger over the
detected signal is executed.

Let x be a discrete-time signal equal to the summation of a noiseless sequence w and
noise n. From now on, x will be called as stimulus or input signal, where its samples xi are
defined by

xi = wi + ni (1)

The sequence w is composed by individual pattern signals of fixed length. Moreover,
if the pattern signal is represented by an analytical model, it can be evaluated at regular
intervals to obtain a set of samples, as shown in Figure 1 for the case of a double exponential
pulse [1].

The individual patterns are randomly placed, in such a way that the time interval t
between successive pulses follows an exponential distribution with parameter λ, as shown
in Equation (2).

f (t, λ)dt = λe−λtdt, t > 0 (2)

The expected value of the exponential distribution is denoted by β, which is equivalent
to 1/λ. Using this probability distribution, we designed a simulator capable of emulating
events found in natural sources that follow a Poisson process [1]. As expected, the pile-up
phenomenon is present, which increases its rate at lower β values [23].

An example of a sequence w is shown in Figure 2, where a constant amplitude was set
for all the pattern signals that generate the noiseless trace.

0 10 20 30 40 50 60
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

 (a
rb

itr
ar

y
un

its
)

Pattern signal

Figure 1. Example of a pattern signal used as template, comprised by 64 successive samples.

Sensors 2022, 22, 7697 5 of 24

0 200 400 600 800 1000 1200 1400
Time (samples)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Am
pl

itu
de

 (a
. u

.)

Original noiseless trace (w)

Figure 2. Noiseless trace w composed of ten individual patterns. Although individual templates were
generated with the same amplitude, pile-up may occasionally cause higher peaks due to superposition
of pulses.

3.1. Simple Cross-Level Trigger

According to Equation (1), the stimulus sequence x is the addition of w and noise. If x
is shifted into a cross-level trigger (CLT) system, any pair of successive samples xi−1 and xi
may indicate the presence of an event of interest. A hypothetical case of this situation is
shown in Figure 3, where an arbitrary stimulus trace x (based on the same sequence w from
Figure 2) is evaluated over a fixed threshold level. It is known that the classification system
may trigger too many events if the threshold level is set too low; conversely, if the threshold
is gradually raised, the number of detected events will decrease accordingly until events
are no longer detected. Consequently, setting a constant threshold value to accurately
discriminate only the expected events over a signal may become tricky in noisy signals.

0 200 400 600 800 1000 1200 1400
Time (samples)

2

0

2

4

Am
pl

itu
de

 (a
. u

.)

Input trace (x)

Input trace
Threshold

Figure 3. Input signal x passed through a simple cross-level trigger system. A constant threshold
value is set.

3.2. Two-Stage Triggering

A more elaborate method for distinguishing patterns within a signal trace x involves
comparing the signal with a static template that reliably represents the target pulse shape to
be recognized [24]. If this computation is carried out in the time domain using a correlation

Sensors 2022, 22, 7697 6 of 24

index such as Pearson’s correlation index (PCI), a normalized measurement of likelihood
is obtained for each new discrete sample, independent of the input signal amplitude and
offset. The Equation (3) defines the PCI ρxy between two segments of N consecutive samples
x and y of two time-discrete signals, using their standard scores zx and zy, respectively.

ρxy = zx · zy =
1
N

N−1

∑
i=0

(
xi − x̄

σx

)(
yi − ȳ

σy

)
(3)

By setting a threshold that triggers over the computed PCI, it is more likely to find an
event related to an expected pattern within a signal, even in case of lower peak signal-to-
noise ratios (PSNR) [10]. Accurately detecting pulses based solely on CLT in noisy signals
is less efficient than preprocessing the data using pattern correlation, as demonstrated by
Faisal et al [25]. The dynamic detection range can also be improved using correlation, since
pulse recognition can be achieved regardless of the peak amplitude. An example of this
scenario is shown in Figure 4, where the static pattern sequence c in Figure 1 is substituted
into Equation (3) to replace the y signal. A more detailed explanation is provided in
Section 4.

0 200 400 600 800 1000 1200 1400
Time (samples)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
or

re
la

tio
n

in
de

x

Trigger over pre-processed (correlated) input signal

Correlated signal
Threshold

Figure 4. Threshold over pre-processed (correlated) signal trace (PCI).

As described in Section 3.1, the threshold level is set to one third of the expected peak
amplitude. The correlation index ranges from −1 to +1, resulting in ρ = 0 if no correlation
exists, and ρ = 1 if the maximum likeliness between the input signal and the pattern is
achieved [26]. The detected events in Figure 4 more accurately represent the expected
pulses from the original noiseless sequence w, as shown in Figure 2.

Pulse-Count Scenario

In addition to the qualitative analysis shown in Figures 3 and 4, a numerical simulation
run was executed (detailed in Section 4.3) to quantify the differences between CLT and PCI
in a pulse-count scenario. A trace x with one thousand pulses was simulated starting from
a noiseless sequence w. The detected events on x for each method (CLT and PCI) were
classified as follows:

• True positive (TP) events: since the original noiseless trace w is known, the simulator
is capable of tagging the expected pulse positions and look for triggered events in the
current threshold level.

• False negative (FN) events: following the same reasoning than with TPs, but looking
for missing expected triggers.

• False positives (FP) events: after seeking the TPs, the triggered events list for the
current threshold level is analyzed again, but excluding every TP index. The remaining
triggers in the list belong to the unexpected count set. This class corresponds to events
that were detected but were not meant to be there.

Sensors 2022, 22, 7697 7 of 24

Counting accuracy was computed using a metric based on precisionand recall. Preci-
sion, as shown in Equation (4), measures the capability of a classifier to discern between
the expected (TP) and unexpected (FP) events. Recall (also known as sensitivity) repre-
sents how well a classification system can detect the absence of an expected event (see
Equation (5)) by penalizing real events (TP) with missing counts (FN).

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

The precision-recall (PR) curve is a well-studied relationship used to estimate the
discrimination performance for imbalanced datasets [27–29]. The PR curve shown in
Figure 5 compares the detection capabilities over the full range of threshold values for CLT
and PCI. Note the higher precision and recall combination achieved by the two-stage (PCI)
method compared with simple cross-level trigger (CLT).

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PCI
CLT

Figure 5. Precision-recall curve of event recognition counts for simple cross-level trigger (CLT) and
two-stage triggering (PCI). Peak signal-to-noise ratio was set to 3 units for this test.

4. Simplified Correlation Index

An alternative correlation index to the original PCI is proposed in this section, aiming
to provide similar pattern recognition capabilities, but with lower computational complexity
for online operation at high data rates. Targeting real-time data processing, the Pearson
correlation index is adapted to a continuous data stream over a window in Section 4.1. In
Section 4.2, a derivation of the proposed correlation index (based on PCI) is provided as
an expression that can be implemented in hardware. A simulation developed to measure

Sensors 2022, 22, 7697 8 of 24

the recognition performance of the proposed simplified correlation index is described
in Section 4.3. The capabilities of the proposed method are quantified using metrics
that permit a fair comparison with the traditional correlation index in a pulse detection
scenario. Moreover, the design of a hardware implementation is detailed in Section 4.4,
aiming towards an experimental use case in a SoC/FPGA deployment for real-time pattern
recognition.

4.1. Pearson Correlation Definition for a Fixed-Length Sliding Window

The input data is a continuous stream in typical real-time signal processing applica-
tions. Thus, a fixed-length sliding window containing N samples of the input signal x is
fed into the system in a first-in-first-out manner for each discrete period as done by [30].
Using Equation (3), the windowed x is steadily correlated with the pattern y, which shares
the same length N.

Note that y is the representation of the ideal signal used as a reference for correlation,
and shall be defined as a constant length vector of coefficients, called pattern or template
from now on. These values must be carefully determined by either numerically evalu-
ating an analytical model or by averaging several experimental samples of the signal of
interest [12,25].

Moreover, the z-score vector zy from Equation (3) is divided by its norm ||zy||, thereby
replacing the 1/N factor. Consequently, the correlation computation is accelerated, ben-
efiting real-time applications [11]. A re-normalized version of the template vector c is
obtained, as shown in Equation (6). This operation ensures that the PCI output range varies
only between −1 and +1, independent of the chosen window length and stimulus signal
amplitude [31].

c =
zy

zy · zy
(6)

Thus, if the PCI of a segment x is computed against a constant normalized vector c,
the expression in (3) is reduced to ρxc (or simply ρ) and can be expressed as:

ρ =
N−1

∑
i=0

(
xi − x̄

σx

)
ci (7)

4.2. Simplified Correlation Index Definition

An alternative to PCI is proposed, aiming to obtain similar correlation results, with
the advantage of lower computational complexity. This simplified Pearson-like correlation
index (SCPI) uses the absolute mean deviation D as the dispersion metric rather than the
standard deviation σ.

Dx =
1
N

N−1

∑
i=0
|xi − x̄| (8)

Dy =
1
N

N−1

∑
i=0
|yi − ȳ| (9)

By removing the square root and squaring steps within the summation (required by the
standard deviation), the computational resources are reduced [32], providing a substantial
advantage in a real-time hardware implementation. Consequently, an alternative version
of the standard score z’y of y is determined using Equation (9), as follows.

z’y =

{
yi − ȳ

Dy

}
(10)

Sensors 2022, 22, 7697 9 of 24

Similarly, a new vector of coefficient c’ is determined based on the absolute mean
deviation. The same normalization approach from Equation (6) is used to obtain this new
pattern for SPCI:

c’ =
zy’

zy’ · zy’
(11)

The SPCI is represented by ρxc′ (or simply ρ′) and can be obtained using the
Equations (8) and (11), leading to the following expression:

ρ′ =
N−1

∑
i=0

(
xi − x̄

Dx

)
c′i (12)

4.3. Simulation

To test the SPCI feasibility compared to the PCI recognition performance, a simula-
tion software was developed using the NumPy numeric library version 1.20.1 (NumPy
Developers, https://numpy.org/) on Python version 3.8 (Python Software Foundation,
https://www.python.org/). Parallel processing was achieved using the built-in multi-
processing library to significantly reduce the simulation time. The software simulates a
continuous data stream (stimulus signal x) passing through a sliding window of a fixed
length N. Thereafter, the capabilities and differences in detecting an event or pattern are
quantified in diverse scenarios:

• Using a simple cross-level trigger (set to a static threshold value) over the original
data stream x.

• Computing in a continuous fashion the PCI ρ between x (the windowed portion of x)
and the pattern c. Subsequently, triggering over the obtained PCI trace.

• Continuously computing sample-by-sample the SPCI ρ′ and triggering in the same
way than with the original PCI algorithm.

Some configurable settings were chosen as global parameters to provide flexibility in
the simulation. The noise was also synthesized in the code to verify the behavior of the
system at diverse PSNR values.

The stimulus signal x is created by appending multiple patterns c, which are separated
from each other by a random number of null samples. Subsequently, x is scaled in amplitude
to match the required PSNR value for each simulation run. The sequence is complemented
by additive white Gaussian noise, which is defined by an unbiased random Gaussian
distribution with a unitary standard deviation.

The peak signal-to-noise ratio (PSNR) is defined as the noiseless peak amplitude of
the stimulus signal (s = max {wi}) divided by the noise standard deviation σn as follows:

PSNR =
s

σn
(13)

Since the added Gaussian noise is set to a unitary standard deviation σn = 1, the
Equation (13) can be reduced to

PSNR = s (14)

4.3.1. Simulation Validation

Tests were conducted to ensure the functionality of the simulation, including:

• Self-correlation of a pattern signal with itself (validation of perfect correlation);
• Correlation of a static-length stimulus signal with a pattern;
• Correlation of a streaming signal in a sliding window with the pattern.

The last item emulates a continuous stream of data x, which is the starting point of the
remaining tests for the pulse-count simulation.

https://numpy.org/
https://www.python.org/

Sensors 2022, 22, 7697 10 of 24

4.3.2. Simulation Parameters

The settings described in this subsection determine how the simulation is executed
in terms of the pulse model template c and how c will be replicated to synthesize the
continuous streams x. Multiple simulation runs are required to estimate the performance
of the correlation indices in diverse noise and sensitivity scenarios. Thus, a new stimulus
signal x is synthesized for every PSNR value, implying multiple simulation executions.
The amplitudes of the pattern c, stimulus signal x as well as noise standard deviation are
all expressed using the same arbitrary units. The numerical precision of the simulation
results can be controlled by regulating the granularity of the parameters, and so is the
time required to execute all the runs. The simulation can be configured by means of the
following settings:

• Pattern type: double-exponential pulse model [1], triangular, rectangular, and Kro-
necker delta.

• Pattern length N: defines the number of discrete samples of the template.
• Asymmetry factor p: affects the asymmetry of the pulses.
• Number of pulses per trace k: sets how many times the pattern c is replicated to

synthesize the stimulus signal x.
• PSNR range: each simulation run comprises the performance grading of both correla-

tion algorithms (ρ and ρ′) over diverse noise levels. The PSNR range sets the lower
and upper PSNR limits, for which the stimulus signal x is synthesized on each run.

• PSNR step: the step size sets the granularity of the expected results. The smaller the
step is set, the larger the number of simulation runs are executed. Multiple stimulus
signals x are synthesized and evaluated with diverse PSNR values within the imposed
range.

• Threshold level range: the algorithms’ performance evaluation depends on how well
they detect real events, and their ability to reject spurious ones. Thus, multiple runs
are executed to sweep over diverse threshold values at each PSNR step. A cross-level
trigger algorithm is run over each correlated output (ρ and ρ′) as a means of two-stage
discrimination. Since the trigger is meant to be executed over a correlated index, real
values between 0 and 1 are expected.

• Threshold level step: similarly to the PSNR step, the threshold level step sets the
granularity of the threshold level sweep within the corresponding range.

• The exponential parameter β sets the mean interval time between successive pulses.
The larger this constant, the lower the probability of pulse overlapping (pile-up) [1].
This constant is expressed in units of pattern length N. As a special case, if β = 0,
pulse overlapping never occurs.

4.3.3. Amplitude Discrimination Using Threshold Level

As a means of discrimination, the simulator first synthesizes a random stimulus trace
x, based on the given parameters and initial PSNR value. Then, the correlation over
the sliding window is computed using each of the algorithms (PCI and SPCI) over the
sequence x, as explained in Section 3.2. Once the correlated traces are obtained (ρ and
ρ′), a threshold sweep test is performed with the parameters detailed in Section 5. A flow
diagram representing the simulation steps is detailed in Figure 6.

Sensors 2022, 22, 7697 11 of 24

Set global and initial
simulation parameters

Synthesize input signal with
current PSNR value

Generate correlated traces
(PCI and SPCI) using
existent input signal

Compute and store trigger
events (TP, FN, FP) over the

current threshold level

yes

no
Last

threshold
 level?

Reset threshold level

yes

no
Last

PSNR
value?

End simulation and export
data matrix to file

Increase threshold
level by one step

Increase PSNR
value by one step

Figure 6. Summarized simulation flow diagram.

4.3.4. Detection Performance Estimation

As mentioned in Sections 3.2 and 4.3.3, CSI and PR curves are used to assess the
recognition performance of the correlation indices. The simulation has been prepared
to detect the known pulse patterns within a continuous data trace x. Each TP count
corresponds only to the first sample that exceeds the threshold within a predefined window
of time (the detection dead time). However, the so-called true negative (TN) events
correspond to the absence of such pulses. Thus, the low proportion of TP relative to the
TN count leads to an imbalanced distribution of classes. For instance, in Figure 2, only
ten pulses are expected to trigger a TP outcome; however, the trace contains thousands of
samples with “absence of events” (TN).

The CSI provides a measurement of the detection accuracy for events that matter in
the triggered system. That is, CSI is concerned only with the expected pulses (TP) and
how well the missing pulses (FN) and false alarms (FP) are rejected, whereas the absence
of events (TN) is not important [33]. Moreover, the CSI detection performance does not
change as a function of event frequency [34], making it suitable for diverse count-rate
scenarios. Although CSI is widely used to forecast weather events, it has been applied in
other disciplines, when discrimination of rare events is required [35].

Sensors 2022, 22, 7697 12 of 24

The Equation (15) shows how the TPs are penalized by missed events and unexpected
triggers. CSI ranges from 0 to 1, where the unit value is the perfect classification metric.

CSI =
TP

TP + FN + FP
(15)

Moreover, the area under the curve (AUC) of the PR serves as a normalized indicator,
capable of quantifying the recognition performance through all the threshold levels [36–38].

The CSI and the PR curve (explained in Section 3.2) use the same input parameters to
estimate the system performance; however, their application to demonstrate the recognition
capabilities are used in different contexts. The CSI is used to show the existence of an opti-
mal threshold setting using both correlation methods (PCI and SPCI) and the improvement
of signal-to-noise ratio in low PSNR scenarios. Meanwhile, the PR area-under-curve (PR-
AUC), computed using the trapezoidal rule [39], summarizes in a single plot the pattern
recognition performance of both correlation methods under every simulated condition.

4.4. Hardware Implementation

In order to verify the capabilities of the simplified correlation index (SPCI) tested in the
simulations, a comparison with the classic PCI was implemented in a real-time processing
environment using a Xilinx Zynq-7000 SoC/FPGA Zedboard development board. Two
individual processing blocks (IP cores or simply IPs) were designed using C++ high-level
synthesis (HLS), capable of executing each of the algorithms within the FPGA/processing
logic (PL) section of the SoC. Both HLS blocks share most of the source code, except for
the arithmetic expressions that differentiate the algorithms from each other. The standard
deviation (SD) was used for PCI computation, as in Equation (7), whereas SPCI featured
the mean average deviation (MAD) from Equation (12). The implemented arithmetic
operations were written using Xilinx’s integrated Vitis HLS math library to code the SD
and MAD, which also permitted an unbiased comparison between correlation algorithms.

Two versions of the IPs were tested for each correlation algorithm by enabling or
disabling one directive in the HLS code. The first version was left without any optimization
directive, resulting in implementations that required few hardware resources, which will
be referred to as area-optimized. The other version featured a pipeline directive inside the
main processing loop, explicitly forcing the compiler to optimize that section of code for
performance (throughput increase).

HLS tools have automatic rules when a specific directive is applied [9]. In a nested
loop, if the outer loop is pipelined, the inner loop is unrolled if static bounds are defined [40].
If the top-level function is pipelined, all loops inside the functions are unrolled. In the
performance version of the IP cores, the outer loop that buffers the data has the directive
PIPELINE applied so that each operation can run in parallel on different input data. More-
over, due to the presence of a nested loop in the source code, the insertion of this directive
in the outer loop leads to an automatic unroll of the inner loops [41].

A common hardware architecture design was devised to serve as a shared validation
platform for each processing unit under test (the IP cores), allowing them to be easily
swapped without affecting the test parameters. Such an implementation included an
instantiation of a processing system (PS7) based on an Arm Cortex-A9 dual-core processor
embedded in the SoC, as well as a configurable interface block (ComBlock) to manage the
communication between the custom hardware design and PS7 [42] as in [43]. Moreover, to
achieve the maximum throughput allowed by the PL, an online data exchange is carried
out using the AXI4-Stream protocol, which supports single-cycle bidirectional transmission
between the IP under test and the testbed. Furthermore, the PS7 section controls the custom
hardware (PL) behavior and synchronization via the ComBlock registers.

Sensors 2022, 22, 7697 13 of 24

A dataset was generated by the simulator explained in Section 4.3, which was used
to stimulate the correlation blocks under test. A pattern pulse c, a synthetic noisy trace
input signal x, and a pair of PCI (ρ) and SPCI (ρ′) outputs were generated to validate the
IP cores in a real hardware implementation. Prior to feeding the synthetic trace x, type
conversion was performed to match the IP’s fixed-point representation. Then, using the
integrated logic analyzer (ILA) from the Xilinx Vivado Tool, the input and output of the
actual IP cores were captured in real time and exported to a text file for offline verification.

Each IP core was tested on the aforementioned platform using a Xilinx Vivado 2020.2
block-level design environment as the hardware development tool. A sketch of the system
design is depicted in Figure 7, which shows the exchangeable IPs as Correlation HLS Block*.

SoC
Fabric (PL)

Arm Cortex-A9
Embedded

Microprocessor
(PS7)

COMBLOCK

Comblock Registers

Comblock
Dual-port RAM

AXI-Lite Interface

AXI-4 Interface

Correlation
HLS Block*

D
D

R
3 R

AM

AXI-Stream Interface
*Exchangable processing units under tests:

Pearson or Simplified HLS correlation blocks

JTAG
Debugging
Interface

Serial console

Computer
Storage
and CLI

RAM
Address
Counter

AXI-Stream Interface

Zynq-7000 SoC

Figure 7. Hardware implementation block diagram with exchangeable IP processing blocks. The
block named Correlation HLS block * represents the algorithms under test (PCI or SPCI), implemented
as exchangeable IP cores developed using HLS. Each correlation index IP core was individually tested
under the same conditions.

Constraints were set to allow IP cores deployment, along with the surrounding stimu-
lus and control blocks. This action was necessary because of the limitation of the available
hardware resources in the PL of the target SoC/FPGA device. This approach avoids a
significant accuracy loss, as in [44].

• An important compression ratio was achieved by quantizing the data to a 14-bit
fixed-point representation (as done by [45,46]), rather than using the double-precision
floating-point numeric resolution of the original Python simulation. Such optimization
methods have been proven to reduce the required hardware resources in PSD and
machine learning applications without significantly affecting the accuracy [47–49].

• The stimulus signal x was fed into the IPs from a circular buffer in a triggered fashion.
This synchronization technique allowed us to easily align the processed output data
and compare them with the expected (simulated) results.

Accordingly, the pattern signal model and its length were maintained the same as
those in the Python simulation (double-exponential pulse model, number of samples
N = 64). In addition, correlation computations—including the averaging and deviation
calculations—are executed on every clock cycle, demonstrating the real-time operational
capabilities of the processing blocks. Thus, a fair comparison of the performance of the
algorithms in a hardware platform was achieved.

Sensors 2022, 22, 7697 14 of 24

5. Results

Both numerical simulations and hardware tests are important for demonstrating the
behavior of the correlation algorithms. Therefore, their specific results are divided into
Sections 5.1 and 5.2. To keep the simulation and hardware experiments as homogeneous as
possible, the working parameters were set equal in both cases.

• Pattern signal vector size: N = 64 samples;
• Pattern signal type: double exponential pulse;
• Asymmetry factor: p = 0.45;
• Number of pulses per trace: k = 1000;
• Exponential distribution constant: β = 5× N;
• Variable PSNR between 1.0 and 8.0 with 0.25 step size;
• Variable threshold level between 0.1 and 1.75 with 0.025 step size.

The double exponential model is used to synthesize the patterns (c and c’) and the
traces w. The model is defined by the following discrete-time equation [1]:

f [n] = A(e
−n

(1−p)τ − e
−n
pτ) (16)

Where the constant A represents a scaling factor applied to normalize the model ac-
cording to the required PSNR value for each simulation run, computed using Equation (14).
Similarly, the time constant τ in Equation (16) depends on the template length (τ = N/5).
As the pattern is defined with length N = 64, the time constant value is τ = 64/5. The
parameter p establishes the pulse rise time and decay time relationship, which is constant
in all simulation runs p = 0.45. Figure 8 shows a sample plot of the synthetic pattern c,
highlighting the individual coefficients (samples) inherent to the discrete-time definition
with small dots.

0 10 20 30 40 50 60
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

 (a
rb

itr
ar

y
un

its
)

Pattern signal (c)

Figure 8. Pattern signal with parameters N = 64, τ = N/5, and p = 45/100, as it was used in the
simulation runs.

The stimuli traces x are synthesized by appending multiple pattern signals c consec-
utively and adding unitary Gaussian noise. A random separation between each pattern
signal is applied, as explained in Section 3. An extract of how such traces may look is
shown in Figure 9, where the pulses were configured to create a trace with PSNR equal to 3,
for this particular example. The signal in the plot shows only 10 of the original 1000 pulses
to improve visual interpretation of the sequence.

Sensors 2022, 22, 7697 15 of 24

The length of the correlated signal is the difference between the length of the input
signal trace x and the length of the pattern N. A representative plot of the single-run results
(ρ and ρ′) is shown in Figure 10a: for both cases, an output range of [−1, +1] is expected [26].
The high qualitative likeliness of both algorithms is evident along the output traces, as
shown in detail in Figure 10b, where the residuals of PCI and SCPI are plotted. A numerical
test suite is detailed in Section 5.1 to demonstrate the quantitative similarity between the
two methods.

0 200 400 600 800 1000 1200 1400
Time (samples)

2

0

2

4

Am
pl

itu
de

 (a
. u

.)

Input signal (x)
PSNR = 3

Figure 9. Synthetic stimulus signal composed by 10 individual pulses with additive white gaussian
noise emulating a PSNR equal to 3.

0 200 400 600 800 1000 1200 1400
Time (samples)

1.0

0.5

0.0

0.5

1.0

C
or

re
la

tio
n

in
de

x

PCI ()
SPCI (′)

0 200 400 600 800 1000 1200 1400
Time (samples)

0.10

0.05

0.00

0.05

0.10

PC
I -

 S
PC

I

a

b

Figure 10. (a) Pearson (ρ) and simplified (ρ′) correlation results of stimulus (x) with PSNR = 3 over
a sliding window, based on a double exponential pattern (c) of size N = 64. (b) Difference between
correlation indices ρ and ρ′.

Sensors 2022, 22, 7697 16 of 24

5.1. Simulation

A set of scripts was built atop of the core simulation tests from Section 4.3, as detailed
in Section 4.3.3. This implementation simulates multiple parameter variations and measures
the performance of the algorithms. A summary of the results of both indices is then exported
to a comma-separated file. Such information is further analyzed to quantitatively compare
both correlation indices and main results are explained in the following subsections.

5.1.1. Noise Immunity

A family of curves is shown in Figure 11 to verify the recognition performance of
the algorithms (PCI and SPCI) at diverse thresholds, where the CSI is referenced to the
trigger level. In addition, the PSNR corresponding to each simulation run is shown in the
corresponding curve. Naturally, the pulse recognition capabilities in noisy environments—
such as PSNR values close to one—imply low CSI values across all the threshold levels.
However, at PSNR > 2, the CSI improves dramatically at threshold levels close to 0.5. This
characteristic allows the user to fix a default trigger value regardless of the noise level,
thereby providing immunity to unexpected noise variations. Besides, both algorithms
perform similarly within the entire threshold range for all PSNR values. Thus, the SPCI
behaves on-pair with its more computationally complex counterpart. A depiction of the
consistent discrimination performance through multiple noise levels with a fixed threshold
level is shown in Figure 12.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold level

0.0

0.2

0.4

0.6

0.8

1.0

C
ri

tic
al

 s
uc

ce
ss

 in
de

x

PSNR = (1, 2, 3, 6)
PCI
SPCI

Figure 11. Critical Success Index estimation of both algorithms (PCI and SPCI) versus threshold level.
A family of curves represents the different PSNR values evaluated along the threshold values.

Sensors 2022, 22, 7697 17 of 24

1 2 3 4 5 6 7 8
PSNR

0.0

0.2

0.4

0.6

0.8

1.0

C
ri

tic
al

 S
uc

ce
ss

 In
de

x

Threshold = 0.5

PCI
SPCI

Figure 12. Critical Success Index estimation of both correlation indices (PCI and SPCI) versus PSNR.
The recognition performance is shown to be similar and close to 80% in all cases, even at PSNR
values as low as three and pile-up caused by the parameter β = 5, while remaining practically
unchanged up to the maximum evaluated limit. A convenient threshold value (0.5) is set to reinforce
the discrimination robustness under diverse noise scenarios.

5.1.2. Recognition Performance

A PR curve is used to quantitatively assess the performance likeliness of SPCI and PCI,
which also evidences the improved recognition capabilities compared to CLT. The PR curve
in Figure 13 is set at a fixed noise level PSNR = 3. Note that even at such PSNR values, both
implementations perform quite well [36], similar to the results obtained in [18]. The area
under the curve (AUC) is also computed for each PR curve through all PSNR conditions
evaluated in the simulation, providing a general indication of the recognition capabilities.
This comparison is shown in Figure 14, as the AUC for both correlation algorithms and
for CLT.

A figure of merit (FOM) has been defined to quantify the difference in recognition
performance between PCI and SPCI, based on the AUC of PR curves (PR-AUC) from
Figure 14. The FOM is expressed as the absolute difference of PR-AUC values (y-axis)
between the PCI and SPCI curves, relative to their average at every PSNR value (x-axis).
By naming the y-axis variables yP(x) for PCI and yS(x) for SPCI, the FOM is expressed
as follows:

FOM(x) =
|yS(x)− yP(x)|

1
2 [yS(x) + yP(x)]

(17)

The largest FOM obtained by evaluating Equation (17) through all the PSNR values
was less than 2%. This result shows the high similarity between both correlation indices for
recognition performance under all the simulated scenarios.

Sensors 2022, 22, 7697 18 of 24

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PSNR = 3.0

PCI
SPCI
CLT

Figure 13. PR curves of both correlation indices (PCI and SPCI) and simple cross-level trigger (CLT).
The plot axes were set using the threshold ranges specified in Section 5.

1 2 3 4 5 6 7 8
PSNR

0.0

0.2

0.4

0.6

0.8

1.0

PR
 A

re
a

un
de

r
cu

rv
e

Precision-Recall AUC

PCI
SPCI
CLT

Figure 14. Area-under-curve (AUC) for PCI, SPCI and CLT PR curves. The abscissa axis represents the
PSNR. Unit AUC value indicates perfect pattern recognition capabilities under the tested conditions.

5.1.3. Simulation Execution Benchmark

Several simulation trials were run to compare the required execution time for both
correlation indices. A workstation equipped with an Intel Xeon E5-268 v2 processor, 64 GB
of RAM and Ubuntu 20.04.5 was used for this experiment. Execution time of the SPCI
simulation was on average 24% faster than PCI after one hundred trials. The simulation
script was run in single-core mode.

Sensors 2022, 22, 7697 19 of 24

5.2. Hardware Implementation

In total, four IP cores were implemented to verify the behavior in hardware. For each
correlation algorithm, two versions were tested: area and performance, which yielded
excellent results for different types of applications. Starting with the area-optimized
algorithm comparison, where the HLS and synthesis tools were left with default settings,
both correlation blocks occupied similar hardware resources. The SPCI implementation
stood out in the DSP Block utilization, by saving such resources by a factor greater than
60 times compared to the PCI. Being DSP blocks one of the most limiting resources in
several FPGA applications [50,51], the SPCI has a significant advantage for applications in
constrained areas, or projects that require parallel implementations of the same algorithm.
However, some tasks demand fast processing and response [46,52,53], constraining the
latency to a ceiling value and requiring higher throughput: which is the case where the
performance optimization may be better suited. The latter optimization consisted of an
explicit pipeline directive in the main processing loop inside the code, causing the HLS
compiler to further infer loop unroll parameters inside the pipelined stage. Further details
of the HLS implementation can be found in Appendix A.

Consequently, a significant latency reduction was achieved in both algorithms in per-
formance mode, at the cost of an enormous increase in resource utilization. A throughput
improvement was also evident in the performance optimization—according to the post-
implementation reports—compared to the area-optimized versions. The Performance Explore
Post-Route strategy was chosen in the place and route settings, aiming to take advantage
of the available resources in the FPGA. Nevertheless, all the IP core versions are capable
of working at a constant throughput greater than 100 MHz in all cases. Besides, SPCI is
expected to use less power, while reaching higher throughput than its classic counterpart, in
addition to consuming less critical resources in the FPGA. Table 1 summarizes the aforemen-
tioned results, where the resources utilization of the correlation IP core implementations
are detailed with absolute units quoted in parentheses. Power consumption was computed
from the estimations reported in the post-place and route tool.

Table 1. Comparison of correlation methods implemented in SoC/FPGA target. Resource utilization
and timing characteristics are summarized according to post-implementation reports. The figures in
this table correspond only to the IP correlation indices. Two types of optimizations are summarized
for each correlation IP core: area and performance. The area optimization resulted in fewer resources
utilization, whereas the performance optimization provided higher throughput and reduced latency.
A great advantage in computational resources is evident for SPCI compared to PCI, particularly
considering the reduced DSP blocks utilization and power consumption.

Area Optimization Performance Optimization

PCI SPCI PCI SPCI

Resources utilization

LUT (53,200) 11.21% (5962) 15.15% (8058) 40.13% (21,349) 42.70% (22,718)

Registers (106,400) 4.71% (5016) 4.74% (5040) 20.23% (21,524) 22.06% (23,468)

Block RAM (140) 0.00% (0) 0.00% (0) 0.00% (0) 0.00% (0)

DSP Blocks (220) 29.55% (65) 0.45% (1) 54.55% (120) 24.09% (53)

Timing results

Max. frequency (MHz) 119.3 122.4 137.8 143.4

Latency (clock cycles) 2.23× 106 2.23× 106 1.1× 103 1.1× 103

Estimated power consumption @ 100 MHz

Average power (mW) 190 118 796 705

Sensors 2022, 22, 7697 20 of 24

The accuracy of both indices (PCI and SPCI) was also measured in the hardware im-
plementation. In this regard, sample-by-sample amplitude differences with the simulation
were quantified. The mean absolute error (MAE) was used as the metric [54]. The MAE
was further normalized to obtain a relative error value represented in proportion to the
expected result of each correlation index, leading to the normalized mean absolute error
(NMAE). In both cases (PCI and SPCI) the NMAE was lower than 2%, proving the high
accuracy expected from the hardware implementation.

6. Discussion

A simplified version of the Pearson correlation index (SPCI) was presented, targeting
real-time pulse recognition systems implemented in hardware. As a starting point, the
improvement in discrimination capabilities has been evidenced with the classic Pearson
correlation-based (PCI) triggers, compared to cross-level triggering over a raw signal trace
(CLT). Once the discerning performance is shown to increase with the Pearson correlation
as a preprocessing step, the rest of the paper demonstrates its similarity with a version of
the algorithm based on the proposed simplified correlation index. A simulation frame-
work was implemented to support the hypothesis, and by emulating multiple noise and
threshold level scenarios, well-known statistical tools were used to measure the similarity
in terms of noise immunity and recognition ability. Moreover, both correlation index-based
algorithms were implemented in hardware (as IP cores) using a SoC/FPGA development
board as a target device with high-level synthesis (HLS). Quantization was applied to
reduce the hardware complexity and improve the performance, at the cost of negligible un-
certainty. In addition, two types of optimization arose for each algorithm: one aimed at low
resource utilization, while the other dramatically reduced latency. In total, the four IP cores
were individually deployed in a common unit test surrounded by control and test logic,
which allowed us to stimulate them and obtain the output results using a logic real-time
debugger (ILA). Besides, both SPCI-implemented optimizations (area and performance)
outperformed the PCI counterpart, at very low cost in terms of accuracy. The concordance
of the hardware outputs was measured using an input/output validation dataset generated
by the aforementioned simulator. Thus, not only was the superior recognition ability of
correlation-based trigger systems demonstrated, but the proposed optimized algorithm
resulted in an excellent alternative to the classic methods in terms of hardware resource
usage and performance. In addition, the flexibility to choose between high-performance or
low-power optimizations, according to the target design requirements, was demonstrated.

Author Contributions: Conceptualization, A.C., I.R.M. and M.L.C.; methodology, A.C., I.R.M. and
M.L.C.; software, I.R.M., R.S.M. and J.F.K.; validation, A.C., L.G.G., R.S.M. and B.V.; formal analysis,
A.C., I.R.M., L.G.G. and J.F.K.; investigation, A.C., I.R.M., M.L.C., L.G.G., R.S.M., B.V. and J.F.K.;
resources, M.L.C. and S.C.; data curation, I.R.M., L.G.G. and B.V.; writing—original draft preparation,
I.R.M.; writing—review and editing, A.C., M.L.C. and S.C.; visualization, A.C., I.R.M. and S.C.;
supervision, A.C., M.L.C. and S.C.; project administration, M.L.C. and S.C.; funding acquisition,
M.L.C. and S.C. All authors have read and agreed to the published version of the manuscript.

Funding: The author Iván René Morales Argueta acknowledges the receipt of a fellowship from the
ICTP Programme for Training and Research in Italian Laboratories, Trieste, Italy.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Acknowledgments: The authors acknowledge the support of the Nuclear Sciences and Instrumenta-
tion Laboratory (NSIL), International Atomic Energy Agency (IAEA).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 7697 21 of 24

Abbreviations
The following abbreviations are used in this manuscript:

PCI Pearson’s correlation index
SPCI Simplified Pearson’s correlation index
CLT Cross-level trigger
FPGA Field-programmable gate array
PL Programmable logic
PS7 Processing System
SoC System-on-a-chip
IP Core Intellectual Property Core
ComBlock Communication Block IP Core
HLS High-level synthesis
DSP Digital signal processor
PSD Pulse-shape discrimination
FIR Finite impulse response
ILA Integrated logic analyzer
CSI Critical success index
PR Precision-recall
AUC Area under curve
PSNR Peak signal-to-noise ratio
TP True positives
FP False positives
FN False negatives
TN True negatives
MAE Mean absolute error
NMAE Normalized mean absolute error

Appendix A. Pseudocode of HLS IP Cores

Two IP cores were developed in HLS to evenly compare PCI and SPCI. The only code
section that differs from each other is the correlation standardization. Standard deviation
(SD) is used for PCI, whereas mean average deviation (MAD) is computed for SPCI. In
both cases, the arithmetic operations involving square root (for SD) and absolute value (for
MAD) were implemented using the HLS Math library. In Algorithm A1 the pseudocode
illustrates the definition of both correlation methods. More specifically, the code in line 19
([Deviation code snippet]) is meant to be replaced by the standardization pseudocode snippets
that distinguish each correlation index, being Algorithm A2 for PCI and Algorithm A3
for SPCI.

Moreover, two versions of the IP cores were tested for each correlation algorithm,
without requiring source code modifications: area and performance optimizations. The
absence or presence of the PIPELINE directive in line 2 from Algorithm A1 was the only
change required to define the area or performance variants, accordingly. In the performance
version, the presence of the PIPELINE directive infers a complete array partitioning for the
64 slots of the data buffer fifo. Unrolling of fifoLoop, avgLoop, and deviationLoop loops are
inferred completely with a factor of 64 as well. Meanwhile, in the area-optimized version
the fifoLoop is not unrolled and the other inferred directives remain the same.

Sensors 2022, 22, 7697 22 of 24

Algorithm A1 Pseudocode of HLS IP Cores

Input: BUFFER_SIZE = 1024
Input: N_COEFFICIENTS = 64
Input: f i f o[N_COEFFICIENTS]

1: for i = 0, i < BUFFER_SIZE do . samplingLoop
2: #pragma PIPELINE
3: for j = N_COEFFICIENTS −1, j ≥ 0 do . f i f oLoop
4: if j = 0 then
5: f i f o.read(inStream)
6: end if
7: for k = 0, k < N_COEFFICIENTS do . avgLoop
8: meanVal ← f i f o[k]
9: end for

10: meanVal ← meanVal/N_COEFFICIENTS
11: thisR← PATTERN_COEFF_LIST[j] ∗ (f i f o[j]−meanVal)
12: if j = N_COEFFICIENTS - 1 then
13: correlation← thisR
14: else
15: correlation← correlation + thisR
16: end if
17: if j = 0 then
18: deviation← 0
19: [Deviation code snippet] . deviationLoop
20: correlation← correlation/deviation
21: outStream.write(correlation)
22: end if
23: end for
24: end for

Algorithm A2 Pseudocode snippet of standardization (SD) for Pearson’s correlation index
(PCI)

1: for k = 0 to N_COEFFICIENTS do . Replace in deviationLoop
2: deviation← deviation + (f i f o[k]−meanVal)2

3: end for
4: deviation←

√
deviation

Algorithm A3 Pseudocode snippet of standardization (MAD) for simplified correlation
index (SPCI).

1: for k = 0 to N_COEFFICIENTS do . Replace in deviationLoop
2: deviation← deviation + abs(f i f o[k]−meanVal)
3: end for

References
1. Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2010.
2. Angelucci, B.; Anzivino, G.; Avanzini, C.; Biino, C.; Bizzeti, A.; Bucci, F.; Cassese, A.; Cenci, P.; Ciaranfi, R.; Collazuol, G.; et al.

Pion–Muon separation with a RICH prototype for the NA62 experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel.
Spectrometers Detect. Assoc. Equip. 2010, 621, 205–211. [CrossRef]

3. Liu, J.; Zhang, Y.; Zhao, Q. Adaptive ViBe Algorithm Based on Pearson Correlation Coefficient. In Proceedings of the IEEE 2019
Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 4885–4889. [CrossRef]

4. Zhang, C.C.; Fang, J.D. Edge Detection Based on Improved Sobel Operator; Atlantis Press: Dordrecht, The Netherlands, 2016.
[CrossRef]

5. Nakhostin, M. A General-Purpose Digital Pulse Shape Discrimination Algorithm. IEEE Trans. Nucl. Sci. 2019, 66, 838–845.
[CrossRef]

6. Wurtz, R.E. Consistent Principles for Particle ID from PSD Systems; SPIE: Bellingham, WA, USA, 2019; p. 34. [CrossRef]

http://doi.org/10.1016/j.nima.2010.05.062
http://dx.doi.org/10.1109/CAC48633.2019.8997209
http://dx.doi.org/10.2991/ceis-16.2016.25
http://dx.doi.org/10.1109/TNS.2019.2910153
http://dx.doi.org/10.1117/12.2528898

Sensors 2022, 22, 7697 23 of 24

7. Chandhran, P.; Holbert, K.E.; Johnson, E.B.; Whitney, C.; Vogel, S.M. Neutron and gamma ray discrimination for CLYC using
normalized cross correlation analysis. In Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging
Conference (NSS/MIC), Seattle, WA, USA, 8–15 November 2014; pp. 1–8. [CrossRef]

8. Digilent. ZedBoard Hardware User’s Guide. Available online: https://files.digilent.com/resources/programmable-logic/
zedboard/ZedBoard_HW_UG_v2_2.pdf (accessed on 21 March 2022).

9. Cong, J.; Liu, B.; Neuendorffer, S.; Noguera, J.; Vissers, K.; Zhang, Z. High-Level Synthesis for FPGAs: From Prototyping to
Deployment. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2011, 30, 473–491. [CrossRef]

10. Huang, Y.; Bao, H.; Qi, X. Seismic Random Noise Attenuation Method Based on Variational Mode Decomposition and Correlation
Coefficients. Electronics 2018, 7, 280. [CrossRef]

11. Pani, D.; Barabino, G.; Citi, L.; Meloni, P.; Raspopovic, S.; Micera, S.; Raffo, L. Real-Time Neural Signals Decoding onto Off-the-
Shelf DSP Processors for Neuroprosthetic Applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 993–1002. [CrossRef]
[PubMed]

12. Ordóñez, L.G.G.; Molina, R.S.; Morales, I.R.; Crespo, M.L.; Cicuttin, A.; Carrato, S.; Ramponi, G.; Figueroa, H.E.P.; Escobar, M.G.B.
Pulse Shape Discrimination for Online Data Acquisition in Water Cherenkov Detectors Based on FPGA/SoC. In Proceedings of
the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Sissa Medialab: Trieste, Italy, 2021;
p. 274. [CrossRef]

13. Blair, B.; Chen, C.; Glenn, A.; Kaplan, A.; Ruz, J.; Simms, L.; Wurtz, R. Gaussian mixture models as automated particle classifiers
for fast neutron detectors. Stat. Anal. Data Mining ASA Data Sci. J. 2019, 12, 479–488. [CrossRef]

14. Iniguez-Lomeli, F.J.; Bornat, Y.; Renaud, S.; Barron-Zambrano, J.H.; Rostro-Gonzalez, H. A real-time FPGA-based implementation
for detection and sorting of bio-signals. Neural Comput. Appl. 2021, 33, 12121–12140. [CrossRef]

15. Pollastrone, F.; Riva, M.; Marocco, D.; Belli, F.; Centioli, C. Automatic pattern recognition on electrical signals applied to neutron
gamma discrimination. Fusion Eng. Des. 2017, 123, 969–974. [CrossRef]

16. Glenn, A.; Cheng, Q.; Kaplan, A.D.; Wurtz, R. Pulse pileup rejection methods using a two-component Gaussian Mixture Model for
fast neutron detection with pulse shape discriminating scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers
Detect. Assoc. Equip. 2021, 988, 164905. [CrossRef]

17. Simms, L.M.; Blair, B.; Ruz, J.; Wurtz, R.; Kaplan, A.D.; Glenn, A. Pulse discrimination with a Gaussian mixture model on an
FPGA. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 900, 1–7. [CrossRef]

18. Alharbi, T. Distance metrics for digital pulse-shape discrimination of scintillator detectors. Radiat. Phys. Chem. 2019, 156, 205–209.
[CrossRef]

19. Moore, C.H.; Lin, W. FPGA Correlator for Applications in Embedded Smart Devices. Biosensors 2022, 12, 236. [CrossRef]
[PubMed]

20. Wang, L.; Pun, S.H.; Mak, P.U.; Klug, A.; Zhang, B.J.; Vai, M.I.; Lei, T.C. A real-time correlational combination algorithm to
improve SNR for multi-channel neural recordings. In Proceedings of the 2021 IEEE Asia Pacific Conference on Circuit and
Systems (APCCAS), Penang, Malaysia, 22–26 November 2021; pp. 213–216. [CrossRef]

21. Lee, D.; Lee, S.; Oh, S.; Park, D. Energy-Efficient FPGA Accelerator With Fidelity-Controllable Sliding-Region Signal Processing
Unit for Abnormal ECG Diagnosis on IoT Edge Devices. IEEE Access 2021, 9, 122789–122800. [CrossRef]

22. He, X.; Li, L.; Liu, Y.; Yu, X.; Meng, J. A Two-Stage Biomedical Event Trigger Detection Method Integrating Feature Selection and
Word Embeddings. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1325–1332. [CrossRef]

23. Sevilla, D.J.R. Probability distributions for Poisson processes with pile-up. arXiv 2013, arXiv:1310.7566.
24. Romo, R.; Hernández, A.; Zainos, A.; Salinas, E. Correlated Neuronal Discharges that Increase Coding Efficiency during

Perceptual Discrimination. Neuron 2003, 38, 649–657. [CrossRef]
25. Faisal, M.; Schiffer, R.T.; Flaska, M.; Pozzi, S.A.; Wentzloff, D.D. A correlation-based pulse detection technique for gamma-

ray/neutron detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 479–482.
[CrossRef]

26. Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [CrossRef]
27. Goadrich, M.; Oliphant, L.; Shavlik, J. Learning Ensembles of First-Order Clauses for Recall-Precision Curves: A Case Study in Biomedical

Information Extraction; Springer: Berlin/Heidelberg, Germany, 2004; pp. 98–115. [CrossRef]
28. Johnson, R.A.; Chawla, N.V.; Hellmann, J.J. Species distribution modeling and prediction: A class imbalance problem. In

Proceedings of the 2012 Conference on Intelligent Data Understanding, Boulder, CO, USA, 24–26 October 2012; pp. 9–16.
[CrossRef]

29. Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on
Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [CrossRef]

30. Rana, K.; Singh, R.; Sayann, K. Correlation based novel technique for real time oscilloscope triggering for complex waveforms.
Measurement 2010, 43, 299–311. [CrossRef]

31. Eldukhri, E.E.; Anayi, F.J.; Fahmy, A.A.; Etumi, A.A.A. New Algorithm Based on Auto-Correlation and Cross-Correlation Scheme to
Detect the Internal Fault in Single Phase Transformer; Institution of Engineering and Technology: Stevenage, England 2014; p. 12.79.
[CrossRef]

32. Gorard, S. An Absolute Deviation Approach to Assessing Correlation. Br. J. Educ. Soc. Behav. Sci. 2015, 5, 73–81. [CrossRef]
33. Schaefer, J.T. The Critical Success Index as an Indicator of Warning Skill. Weather. Forecast. 1990, 5, 570–575. [CrossRef]

http://dx.doi.org/10.1109/NSSMIC.2014.7431169
https://files.digilent.com/resources/programmable-logic/zedboard/ZedBoard_HW_UG_v2_2.pdf
https://files.digilent.com/resources/programmable-logic/zedboard/ZedBoard_HW_UG_v2_2.pdf
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.3390/electronics7110280
http://dx.doi.org/10.1109/TNSRE.2016.2527696
http://www.ncbi.nlm.nih.gov/pubmed/27164593
http://dx.doi.org/10.22323/1.395.0274
http://dx.doi.org/10.1002/sam.11432
http://dx.doi.org/10.1007/s00521-021-05853-7
http://dx.doi.org/10.1016/j.fusengdes.2017.03.009
http://dx.doi.org/10.1016/j.nima.2020.164905
http://dx.doi.org/10.1016/j.nima.2018.05.039
http://dx.doi.org/10.1016/j.radphyschem.2018.11.014
http://dx.doi.org/10.3390/bios12040236
http://www.ncbi.nlm.nih.gov/pubmed/35448296
http://dx.doi.org/10.1109/APCCAS51387.2021.9687737
http://dx.doi.org/10.1109/ACCESS.2021.3109875
http://dx.doi.org/10.1109/TCBB.2017.2715016
http://dx.doi.org/10.1016/S0896-6273(03)00287-3
http://dx.doi.org/10.1016/j.nima.2010.10.072
http://dx.doi.org/10.2307/2685263
http://dx.doi.org/10.1007/978-3-540-30109-7_11
http://dx.doi.org/10.1109/CIDU.2012.6382186
http://dx.doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1016/j.measurement.2009.11.002
http://dx.doi.org/10.1049/cp.2014.0151
http://dx.doi.org/10.9734/BJESBS/2015/11381
http://dx.doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2

Sensors 2022, 22, 7697 24 of 24

34. Baldwin, M.E.; Kain, J.S. Sensitivity of Several Performance Measures to Displacement Error, Bias, and Event Frequency. Weather.
Forecast. 2006, 21, 636–648. [CrossRef]

35. Larner, A. Assessing cognitive screeners with the critical success index. Prog. Neurol. Psychiatry 2021, 25, 33–37. [CrossRef]
36. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2021, 17, 168–192. [CrossRef]
37. Berrar, D. On the Noise Resilience of Ranking Measures; Springer International Publishing: Berlin, Germany, 2016; pp. 47–55.

[CrossRef]
38. Sofaer, H.R.; Hoeting, J.A.; Jarnevich, C.S. The area under the precision-recall curve as a performance metric for rare binary

events. Methods Ecol. Evol. 2019, 10, 565–577. [CrossRef]
39. Davis, J.; Goadrich, M. The Relationship between Precision-Recall and ROC Curves; ACM Press: New York, NY, USA, 2006;

pp. 233–240. [CrossRef]
40. kyu Choi, Y.; Cong, J. HLS-based optimization and design space exploration for applications with variable loop bounds. In

Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Marrakech, Morocco, 5–8
November 2018; pp. 1–8. [CrossRef]

41. Tsoutsouras, V.; Koliogeorgi, K.; Xydis, S.; Soudris, D. An Exploration Framework for Efficient High-Level Synthesis of Support
Vector Machines: Case Study on ECG Arrhythmia Detection for Xilinx Zynq SoC. J. Signal Process. Syst. 2017, 88, 127–147.
[CrossRef]

42. Florian, W.; Valinoti, B.; García, L.G.; Cervetto, M.; Marchi, E.; Crespo, M.L.; Carrato, S.; Cicuttin, A. An Open-Source
Hardware/Software Architecture for Remote Control of SoC-FPGA Based Systems. In Proceedings of the International
Conference on Applications in Electronics Pervading Industry, Environment and Society, Genova, Italy, 26–27 September 2022;
pp. 69–75. [CrossRef]

43. Ordóñez, L.G.G.; Morales, I.R.; Crespo, M.L.; Carrato, S.; Cicuttin, A.; Perez, H.D.L.T.; Barrientos, D.; Levorato, S.; Valinoti, B.;
Florian, W.; et al. DAQ platform based on SoC-FPGA for high resolution time stamping in cosmic ray detection. In Proceedings
of the 36th International Cosmic Ray Conference (ICRC2019)-CRI-Cosmic Ray Indirect, Madison, WI, USA, 24 July–1 August
2019; Sissa Medialab: Trieste, Italy, 2019; p. 266. [CrossRef]

44. Roy, S.; Banerjee, P. An Algorithm for Trading Off Quantization Error with Hardware Resources for MATLAB-Based FPGA
Design. IEEE Trans. Comput. 2005, 54, 886–896. [CrossRef]

45. Coelho, C.N.; Kuusela, A.; Li, S.; Zhuang, H.; Ngadiuba, J.; Aarrestad, T.K.; Loncar, V.; Pierini, M.; Pol, A.A.; Summers, S.
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors. Nat.
Mach. Intell. 2021, 3, 675–686. [CrossRef]

46. Duarte, J.; Han, S.; Harris, P.; Jindariani, S.; Kreinar, E.; Kreis, B.; Ngadiuba, J.; Pierini, M.; Rivera, R.; Tran, N.; et al. Fast inference
of deep neural networks in FPGAs for particle physics. J. Instrum. 2018, 13, P07027. [CrossRef]

47. Molina, R.S.; Garcia, L.G.; Morales, I.R.; Crespo, M.L.; Ramponi, G.; Carrato, S.; Cicuttin, A.; Perez, H. Compression of NN-Based
Pulse-Shape Discriminators in Front-End Electronics for Particle Detection. In Proceedings of the International Conference
on Applications in Electronics Pervading Industry, Environment and Society, Genova, Italy, 26–27 September 2022; pp. 93–99.
[CrossRef]

48. Fahim, F.; Hawks, B.; Herwig, C.; Hirschauer, J.; Jindariani, S.; Tran, N.; Carloni, L.P.; Guglielmo, G.D.; Harris, P.; Krupa, J.;
et al. hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine Learning Devices. arXiv 2021,
arXiv:2103.05579. [CrossRef]

49. Garcia, L.G.; Molina, R.S.; Crespo, M.L.; Carrato, S.; Ramponi, G.; Cicuttin, A.; Morales, I.R.; Perez, H. Muon–Electron Pulse
Shape Discrimination for Water Cherenkov Detectors Based on FPGA/SoC. Electronics 2021, 10, 224. [CrossRef]

50. Aarrestad, T.; Loncar, V.; Ghielmetti, N.; Pierini, M.; Summers, S.; Ngadiuba, J.; Petersson, C.; Linander, H.; Iiyama, Y.; Guglielmo,
G.D.; et al. Fast convolutional neural networks on FPGAs with hls4ml. Mach. Learn. Sci. Technol. 2021, 2, 045015. [CrossRef]

51. Xiao, Q.; Liang, Y.; Lu, L.; Yan, S.; Tai, Y.W. Exploring Heterogeneous Algorithms for Accelerating Deep Convolutional Neural
Networks on FPGAs. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX, USA, 18–22 June 2017;
pp. 1–6. [CrossRef]

52. Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L. Optimization on fixed low latency implementation of the GBT core in FPGA. J.
Instrum. 2017, 12, P07011. [CrossRef]

53. Nottbeck, N.; Schmitt, D.C.; Büscher, P.D.V. Implementation of high-performance, sub-microsecond deep neural networks on
FPGAs for trigger applications. J. Instrum. 2019, 14, P09014. [CrossRef]

54. Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing
average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

http://dx.doi.org/10.1175/WAF933.1
http://dx.doi.org/10.1002/pnp.719
http://dx.doi.org/10.1016/j.aci.2018.08.003
http://dx.doi.org/10.1007/978-3-319-46672-9_6
http://dx.doi.org/10.1111/2041-210X.13140
http://dx.doi.org/10.1145/1143844.1143874
http://dx.doi.org/10.1145/3240765.3240815
http://dx.doi.org/10.1007/s11265-017-1230-1
http://dx.doi.org/10.1007/978-3-030-95498-7_10
http://dx.doi.org/10.22323/1.358.0266
http://dx.doi.org/10.1109/TC.2005.106
http://dx.doi.org/10.1038/s42256-021-00356-5
http://dx.doi.org/10.1088/1748-0221/13/07/P07027
http://dx.doi.org/10.1007/978-3-030-95498-7_13
https://doi.org/10.48550/arXiv.2103.05579
http://dx.doi.org/10.3390/electronics10030224
http://dx.doi.org/10.1088/2632-2153/ac0ea1
http://dx.doi.org/10.1145/3061639.3062244
http://dx.doi.org/10.1088/1748-0221/12/07/P07011
http://dx.doi.org/10.1088/1748-0221/14/09/P09014
http://dx.doi.org/10.3354/cr030079

	Introduction
	Related Works
	Pulse Shape Recognition through Pattern Correlation
	Simple Cross-Level Trigger
	Two-Stage Triggering

	Simplified Correlation Index
	Pearson Correlation Definition for a Fixed-Length Sliding Window
	Simplified Correlation Index Definition
	Simulation
	Simulation Validation
	Simulation Parameters
	Amplitude Discrimination Using Threshold Level
	Detection Performance Estimation

	Hardware Implementation

	Results
	Simulation
	Noise Immunity
	Recognition Performance
	Simulation Execution Benchmark

	Hardware Implementation

	Discussion
	Pseudocode of HLS IP Cores
	References

