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Abstract

Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery

performance, and requires an effective model and algorithm. Based on the least square

genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and

the corresponding parameter identification method were developed. The simplified model

was derived from the analysis of the electrochemical impedance spectroscopy data and

the transient response of lithium-ion batteries with different states of charge. In order to iden-

tify the parameters of the model, an equivalent tracking system was established, and the

method of least square genetic algorithm was applied using the time-domain test data.

Experiments and computer simulations were carried out to verify the effectiveness and

accuracy of the proposed model and parameter identification method. Compared with a sec-

ond-order resistance-capacitance (2-RC) model and recursive least squares method, small

tracing voltage fluctuations were observed. The maximum battery voltage tracing error for

the proposed model and parameter identification method is within 0.5%; this demonstrates

the good performance of the model and the efficiency of the least square genetic algorithm

to estimate the internal parameters of lithium-ion batteries.

Introduction

In recent years, with the rapid development of electric vehicle (EV) technology, lithium-ion

batteries have been attracting much attention because of their superior performance [1].

Unfortunately, unexpected system failures usually occur due to environmental impacts,

dynamic loading, and especially battery degradation [2]. Some special methods have been

developed to study the failure of lithium-ion batteries (LIBs), including the short circuit test

method [3], the internal parameter monitoring method [4], and so on. Xu et al. [5] investigated

the electrochemical failure behaviors of lithium-ion batteries with different states of charge

(SOC) underpinned by the short circuit phenomenon, and proposed a nominal stress–strain

curve to further quantify the short circuit occurrence with mechanical behavior. Yet, the short

circuit test method was destructive for the power system in EV. The internal parameters of
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lithium-ion batteries can reflect the main characteristics of batteries in different states [6],

thus, constant monitoring of these parameters could be useful to evaluate the battery perfor-

mance. However, the electrochemical process of lithium-ion batteries is so complex that the

internal parameters cannot be measured directly, so an accurate model and a highly precise

parameter identification algorithm are required [7].

In recent years attempts have been made to build models to estimate the internal parame-

ters of lithium-ion batteries, such as electrochemical models [8,9], mechanical models [10,11]

and equivalent circuit models (ECMs) [12,13]. The electrochemical models are usually used to

describe battery electrochemical properties combined with the mechanical models. For exam-

ple, Liu et al. [11] proposed a coupling electrochemical-circuit model to predict battery pene-

tration process, and designed a series of penetration test to validate the computational model.

ECMs consist of a series of electronic components including resistors, capacitors, and induc-

tors. First-order resistance-capacitance (1-RC) [3,14] and second-order resistance-capacitance

(2-RC) models [15,16] are the most commonly used ECMs; yet, high-order RC models have

been reported to be much more accurate. For example, a relaxation model has been proposed

by Schmidt et al. [17], in which tens or hundreds of parallel RC circuits were employed to rep-

resent the distributed relaxation times. Besides, electrochemical models such as pseudo-two-

dimensional models [18], single particle models, and extended single particle models [19] are

more accurate than ECMs; however, they require a large number of parameters that cannot be

measured.

Fractional order models (FOMs) [20,21], derived from the above-mentioned models, have

recently attracted increasing interest in this field. Wang et al. [22] presented a FOM for lith-

ium-ion batteries that showed higher accuracy for voltage tracing under different conditions

compared with the commonly used 1-RC models. Moreover, Xu et al. [20] reported a FOM in

which a fractional order calculus (FOC) was used to describe the constant phase element

(CPE) andWarburg element, and the differentiation order of the Warburg element was fixed

at 0.5. The models mentioned above have been widely used, but they do not provide satisfac-

tory estimation results. Hence, it is still a challenge to achieve a battery model with high accu-

racy and computational efficiency.

In addition, parameter identification methods, required for the characterization of lithium-

ion batteries, have been widely investigated [23–25]. Joel et al. [26] proposed a parameter identi-

fication method based on a genetic algorithm (GA) for a LiFePO4 cell electrochemical model.

Cell voltage and power were estimated with a relative error of 5%, a value higher than expected.

Moreover, Chen et al. [27] described a GA-based parameter identification method for a 2-RC

model with a sufficiently precise margin of error; however, the application of a GA-based identi-

fication method to a fractional order impedance model (FIM) has not yet been reported.

In this paper, a simplified FIM for lithium-ion batteries and the corresponding parameter

identification method are presented. The simplified FIM is derived from the analysis of elec-

trochemical impedance spectroscopy (EIS) and hybrid pulse power characteristic (HPPC) test

data, and the model parameters are identified using an equivalent tracking system through a

least square genetic algorithm (LSGA). The effectiveness and accuracy of the proposed model

and the corresponding parameter identification method are verified by experiments and

simulations.

Fractional impedancemodel

EIS and ECM of lithium-ion batteries

EIS is one of the best methods to describe the dynamic characteristics of batteries [28]. In the

EIS test, the sinusoidal AC signals of different frequencies and amplitudes were applied to

Model and parameter identification
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electrochemical systems, and the signal feedback in the frequency domain was obtained. The

EIS measurements provided accurate impedance values at different frequencies, and it is con-

venient to determine the battery dynamic response via the EIS test. Therefore, the EIS test

could be used to describe the properties of battery system.

In this study, commercially available Panasonic NCR18650 lithium-ion batteries with 2.9

Ah capacity, nickel manganese cobalt oxide cathode and graphite anode, designed for electric

vehicle applications, were used. The specifications of the lithium-ion batteries are shown in

Table 1A in S1 File. The EIS of three batteries were measured using a Princeton electrochemi-

cal workstation at room temperature 25˚C, and the batteries were test under different maxi-

mum discharge capacities and SOC conditions as shown in Table 1. Results of the EIS test are

presented in Fig 1.

It can be seen from Fig 1 that the EIS curves are similar in shape, but the Zre and–Zim val-

ues change with the test condition at the same frequency. The EIS of the battery with a capacity

of 2855 mAh and 60% SOC (Fig 2), recorded in the frequency range 5 mHz–5 KHz, consists of

three sections, namely, a high-frequency, a mid-frequency, and a low-frequency section.

In the high-frequency region (1 Hz–5000 Hz), the plot consists of a vertical straight line,

associated with an element, followed by a depressed semicircle, indicating a resistor parallel

to a CPE. In the mid-frequency region (0.05 Hz–1 Hz), the impedance spectrum shows a

depressed semicircle, which could be modeled by a parallel resistor/CPE combination; the par-

allel combination could represent the charge-transfer reaction on the solid electrolyte inter-

phase layer described by the Butler-Volmer equation. In the low-frequency region (0.005 Hz–

0.05 Hz), the EIS curve looks like to be a straight line with a constant slope of 1, which could

be expressed as a Warburg element, previously modeled by a CPE element [20]. The EIS

response in the low-frequency section could be used to reflect the diffusion dynamics inside

spherical particles determined by Fick’s second law. The impedance spectrum was normalized

to obtain an ECM, as shown in Fig 2.

A hybrid pulse power characteristic (HPPC) test was carried out with a sampling time of

0.1 s, which is commonly used in engineering applications. As can be seen in Fig 3(A), the bat-

tery transient response process consists of three stages, i.e., a rapidly rising, a slowly rising, and

a slow steady stage. The battery response in the rapidly rising stage could be associated with

the EIS response in the high-frequency region. The battery voltage increased rapidly due to

Ohmic polarization; this can be simplistically modeled by a resistor, instead of the complex

model in the high-frequency region shown in Fig 2. In the slowly rising stage, the battery

could be modeled by the parallel combination of a resistor and a CPE, which corresponds to

the mid-frequency region in Fig 2. The battery voltage slowly increased in the slow steady

stage, which is associated with the low-frequency region in the EIS spectrum. The HPPC test

results indicate that the low-frequency plot should be regarded as a part of a depressed semicir-

cle with a large diameter rather than a straight line. Thus, a parallel combination can be used

to explain the depressed semicircle in the low-frequency section.

On the basis of the EIS analysis and HPPC test, the battery ECM could be simplified as

shown in Fig 3(B). Vser denotes the voltage for Rser, which represents the Ohmic voltage. V1

represents the concentration polarization voltage, and V2 denotes the activation polarization

voltage.

Table 1. EIS test conditions.

Battery number Capacity/mAh SOC

001 2422 80% 60% 40%

002 2661 80% 60% 40%

003 2855 80% 60% 40%

doi:10.1371/journal.pone.0172424.t001

Model and parameter identification
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FIM

Previous study showed that FOC can be used to design a more accurate system model [22, 29].

FOC is an area of mathematics used for the study of real number order differential and integral

calculus, which is a natural extension of the classical integer order calculus. The operator aD
r
t is

used to represent the FOC, where r 2 R.

aD
r
t ¼

dr= dtr ; r > 0

1 ; r ¼ 0

Z

t

a

dðφ�rÞ ; r < 0

ð1Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

Three definitions are commonly used for FOC, including the Caputo definition, the Rie-

mann-Liouville definition, and the Grünwald-Letnikov (GL) definition. The GL definition was

often used to discretize the continuous fractional order equations [22, 30]. The Grünwald-

Fig 1. EIS curves of lithium-ion batteries with different SOC andmaximumdischarge capacities.

doi:10.1371/journal.pone.0172424.g001

Model and parameter identification
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Letnikov FOC is defined as:

G
aD

r
t f ðtÞ ¼ lim

h! 0

kh ¼ t � a

h�r
X

k

j¼0

ð�1Þ
j
r

j

 !

f ðt � jhÞ ð2Þ

where h is the sampling period, k is the amount of sampling, and
r

j

 !

represents the Newton

binomial coefficient generalized to real numbers, which can be expressed as
r

j

 !

¼ r!
j!ðj�rÞ!

.

As an extension of integer order calculus, the presentation of FOC is highly similar to that

of integer order differential in a dynamic system. The fractional order differential equation

(FODE) is defined as:

anD
anyðtÞ þ an�1D

an�1yðtÞ þ � � � þ a0D
a0yðtÞ ¼ bmD

bmuðtÞ þ bm�1D
bm�1uðtÞ þ � � � þ b0D

b0uðtÞ ð3Þ

Fig 2. ECM based on the EIS response of the lithium-ion battery with 2855mAh capacity and 60%SOC.

doi:10.1371/journal.pone.0172424.g002

Model and parameter identification
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where y(t) is the output of system, u(t) is the input of system, ai 2 R and bj 2 R are both coefficients,

i = 0, 1,���, n, and j = 0, 1,���,m. In addition, the fractional order transfer function can be expressed

as:

YðtÞ

UðtÞ
¼

X

bjs
bj

X

ais
ai
; i ¼ 0; 1; � � � ; n; j ¼ 0; 1; � � � ;m ð4Þ

The CPEs in Fig 3(B) could be deciphered by fractional order elements [31]:

ZCPE1ðsÞ ¼ 1=½C1s
a�

ZCPE2ðsÞ ¼ 1=½C2s
b�

ð5Þ

where α 2 R, 0� α � 1, β 2 R, and 0� β � 1 are arbitrary numbers; C1 2 R and C2 2 R are

coefficients.

When α = 1 and β = 1, CPE1 and CPE2 correspond to capacitors with capacitance C1 and

C2, respectively:

ZCPE1ðsÞja¼1 ¼ 1=½C1s�

ZCPE2ðsÞjb¼1 ¼ 1=½C2s�
ð6Þ

Fig 3. (a) HPPC test of lithium-ion battery; (b) Simplified lithium-ion battery ECM based on EIS analysis and
HPPC test.

doi:10.1371/journal.pone.0172424.g003

Model and parameter identification
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From the equivalent circuit illustrated in Fig 3(B) and the above analysis, according to the

circuit theory, the following equations can be obtained:

Vo ¼ Vocv þ Vser þ V1 þ V2 ð7Þ

Vser ¼ �Rser � I ð8Þ

�I ¼ C1 � D
aV1 þ V1=R1 ¼ C2 � D

bV2 þ V2=R2 ð9Þ

where Δα is the FOC operator with the fractional order of α.
The current I is assumed to be positive when the battery is discharging. Thus,

Vo ¼ Vocv � Rser � I þ V1 þ V2 ð10Þ

D
aV1 ¼ �I=C1 � V1=R1C1

D
bV2 ¼ �I=C2 � V2=C2R2

ð11Þ

(

These equations can be summed up as follows:
(

D
Nx ¼ A � x þ B � I

y ¼ C � x þ D � I
ð12Þ

where A ¼
�1=R1C1 0

0 �1=R2C2

" #

, B ¼
�1=C1

�1=C2

" #

, C = [1 1], D = [−Rser], N ¼
a

b

" #

,

x ¼
V1

V2

" #

, y = [Vo−Vocv], and x 2 R
2.

Battery parameters identification based on LSGA

The battery internal parameters are difficult to obtain under non-laboratory conditions due to

the complex electrochemical reaction. Many parameter identification methods have been pro-

posed in literatures, such as least squares method [7], recursive algorithm [20], and genetic

algorithm [27].

The least square genetic algorithm (LSGA), derived from the combination of the least

squares method and the genetic algorithm, was used to identify the internal parameters of the

FIM developed above. The basic operations of the algorithm include coding methods, individ-

ual fitness evaluation, and genetic operators (such as selection, crossover, and mutation). The

individual fitness evaluation is commonly used to determine the probability of individual

genetic population, which must be non-negative (i.e.,� 0).

An equivalent voltage tracking system was developed for parameter identification, which

can be described by the following model:
(

D
N
bx ¼ A � bx þ B � I

by ¼ C � bx þ D � I
ð13Þ

where bx ¼
bV 1

bV 2

2

4

3

5, and by ¼ ½bV o � bV ocv�. bx 2 R2 is the state vector of tracking system, and by is

the estimated output voltage of tracking system.

Model and parameter identification
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The output voltage difference between the tracking system and the battery system is defined

as:

e ¼ by � y ð14Þ

The tracking target of LSGA is represented by the following goal equation:

JðyÞ ¼

Z t2

t1

ðeT � eÞdt ð15Þ

The FIM is discretized according to the stochastic theory, and the discrete state space func-

tion is obtained as follows:
(

D
Nxkþ1 ¼ A � xk þ B � Ik

yk ¼ C � xk þ D � Ik
ð16Þ

where Ik is the current of battery at the time index k, yk is the working voltage of battery at the

time index k, and xk is the state of battery system at the time index k.

The FIM expressed by FOC is denoted as:

D
Nxk ¼

1

TNS

X

k

j¼0

ð�1Þ
j
N

j

 !

xk�j ð17Þ

where TS is the system sampling time, and
N

j

 !

¼

(

1 j ¼ 0

NðN � 1Þ � � � ðN�jþ 1Þ=j! j > 0
.

Thus,

D
Nxkþ1 ¼

1

TNS
xkþ1 þ

X

kþ1

j¼1

ð�1Þ
j
N

j

 !

xkþ1�j

2

4

3

5 ð18Þ

The dynamic mathematical model of the identified battery system is obtained:

xk ¼ TNS A � xk�1 þ T
N
S B � Ik�1 �

X

k

j¼1

ð�1Þ
j
N

j

0

@

1

Axk�j

yk ¼ C � xk þ D � Ik

ð19Þ

8

>

>

<

>

>

:

The equivalent voltage tracking system is discretized as follows:

bxk ¼ TNS A � bxk�1 þ T
N
S B � Ik�1 �

X

k

j¼1

ð�1Þ
j
N

j

0

@

1

A

bxk�j

byk ¼ C � bxk þ D � Ik

ð20Þ

8

>

>

<

>

>

:

Next, the parameter identification method was aimed at identifying the minimum value of

the goal equation:

JðyÞ ¼
X

N�1

0

fðyk � bykÞ
T
� ðyk � bykÞg ð21Þ

The flow chart of parameter identification is presented in Fig 4. In which, I andVocv are the

input parameters of the tracking system,Vo is the output voltage of battery, which can bemeasured

Model and parameter identification
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directly, and bV o is the output voltage of the tracking system, which can be adjusted via the equiva-

lent tracking model. The batter parameters were identified through the LSGA and FIM developed

above, based on the voltage difference between the battery system and the tracking system.

Results and analysis of parameter identification

In order to demonstrate the validity of the proposed model and the designed algorithm, Pana-

sonic NCR18650 batteries were tested via an experimental battery test bench as shown in

Figure A in S1 File. In this study, a voltage step response test was performed in order to vali-

date accuracy of the proposed model and parameter identification method. The battery was

charged until the voltage reached 3.95 V at a current of 2.065 A. The charging time should be

exceeded 10 min in order to ensure a charging balance state, followed by a 30 min rest period.

The obtained voltage at the end of rest is regarded as the open circuit voltage (OCV). The test

includes, as a key step, an impulse response, which was implemented by discharging the bat-

tery with a current of 5.8 A for 30 s. The discharging time was relatively short, so it was consid-

ered that the OCV remained unchanged during the test. At the end of the step response test, a

10 min rest was allowed, and the voltage step response was traced using the proposed FIM and

LSGA. As shown in Fig 5, the error range of the tracing voltage and the reference voltage can

be well confined between –0.004 V and 0.003 V; in particular, the tracing error is mainly in the

Fig 4. Flow chart of parameter identification.

doi:10.1371/journal.pone.0172424.g004

Model and parameter identification
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range between –0.002 V and 0.002 V, and it is close to zero after 400 s. For a more detailed

analysis of the voltage tracing results, the voltage tracing error probability was also calculated

(Fig 5(C)). These observations indicate that the model and parameter identification method

can well characterize the step response of lithium-ion batteries.

Next, the Urban Dynamometer Driving Schedule (UDDS), a common used driving cycle

for EVs, was also performed in order to verify the accuracy of the model online. The scale of

the current profile was reduced in accordance with the battery features, and a 1000 s UDDS

test was performed to ensure that the OCV remained unchanged (Fig 6). As a comparison, the

UDDS test was also carried out using a 2-RC model and the recursive least squares (RLS)

method, to demonstrate the superiority of the method proposed in this paper. To simplify the

statement, the proposed estimate method based on the fractional model is referred to as a

FIM&LSGA method, and the estimate method based on the RC model is referred to as a

2-RC&RLS method. The internal parameters of the batteries were estimated online, and the

battery voltage was traced based on the 2-RC&RLS and FIM&LSGA methods (Fig 6(B)),

respectively. The tracing voltages were obtained with different accuracy: the fluctuations of the

tracing voltage based on the 2-RC&RLS method are larger than those of the tracing voltage

based on the FIM&LSGA method. For a more detailed analysis, the tracing errors of the two

methods were calculated (Fig 6(C)). Because the battery current changed rapidly and fre-

quently during the UDDS driving cycle, the voltage tracing error is larger than that observed

in the voltage step response test. The tracing error curve based on FIM&LSGA is almost a

straight line, close to zero, and mostly with an error bound of 0.02 V. On the other hand, the

Fig 5. Voltage step response test. (a) Battery voltage and current response; (b) Tracing voltage and tracing error; (c)
Voltage tracing error probability.

doi:10.1371/journal.pone.0172424.g005

Model and parameter identification
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tracing errors based on 2-RC&RLS vary within a large range, even> 0.25 V. Moreover, as can

be seen from Fig 6(D), the error distribution of the FIM&LSGA-based method is mostly

restricted to the region between –0.015 V and 0.02 V, which corresponds to an error lower

than 0.5%; this indicates that the tracing error is small enough for our method to be effectively

applied in EV battery management systems.

Conclusions

In this study, the EIS and HPPC data of lithium-ion batteries were analyzed, and a simplified

FIM was developed by introducing a FOC method based on the GL fractional definition. The

parameters of the FIM were identified using an equivalent tracking system model through the

LSGA. A voltage step response test and a UDDS driving cycle were introduced to assess the

performance of the proposed method. The results show that the FIM and parameter identifica-

tion method can trace the battery work voltage well. Moreover, the voltage tracing error of

the proposed method was found to be stabilized at 0.5%, indicating that the FIM and LSGA

designed in this work can be applied in EV battery management system. The battery frac-

tional-order model and parameter identification proposed in this study could be used for SOC

estimation in the BMS, which is an important performance index of power system for EVs.

And the fractional-order parameter sensitivity with battery degradation will be discussed in

future based on this study.

Fig 6. Voltage tracing in UDDS drive cycle test. (a) Battery current and voltage response in UDDS; (b) Voltage tracing
of the UDDS test; (c) Voltage tracing error of the UDDS test; (d) Voltage tracing error probability distribution of the UDDS
test.

doi:10.1371/journal.pone.0172424.g006

Model and parameter identification
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ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM)
optimization algorithm. Electric Power Systems Research. 2016; 131:195–204.

17. Schmidt JP, Berg P, Schonleber M,Weber A, Ivers-Tiffee E. The distribution of relaxation times as
basis for generalized time-domain models for Li-ion batteries. J Power Sources. 2013; 221:70–7.

18. Doyle M, Fuller TF, Newman J. Modeling Of Galvanostatic Charge And Discharge Of the Lithium Poly-
mer Insertion Cell. J Electrochem Soc. 1993; 140(6):1526–33.

19. Schmidt AP, Bitzer M, Imre AW, Guzzella L. Experiment-driven electrochemical modeling and system-
atic parameterization for a lithium-ion battery cell. J Power Sources. 2010; 195(15):5071–80.

20. Xu J, Mi CC, Cao BG, Cao JY. A newmethod to estimate the state of charge of lithium-ion batteries
based on the battery impedance model. J Power Sources. 2013; 233:277–84.

21. Zhou D, Zhang K, Ravey A, Gao F, Miraoui A. Parameter Sensitivity Analysis for Fractional-Order
Modeling of Lithium-Ion Batteries. Energies. 2016; 9(3):123.

22. Wang B, Li SE, Peng H, Liu Z. Fractional-order modeling and parameter identification for lithium-ion bat-
teries. J Power Sources. 2015; 293:151–61.

23. Cheng X, Yao L, Xing Y, Pecht M. Novel Parametric Circuit Modeling for Li-Ion Batteries. Energies.
2016; 9(7):539.

24. Zahid T, Li W. A Comparative Study Based on the Least Square Parameter Identification Method for
State of Charge Estimation of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric
Vehicles. Energies. 2016; 9(9):720.

25. He Z, Yang G, Lu L. A Parameter Identification Method for Dynamics of Lithium Iron Phosphate Batter-
ies Based on Step-Change Current Curves and Constant Current Curves. Energies. 2016; 9(6):444.

26. Forman JC, Moura SJ, Stein JL, Fathy HK. Genetic identification and fisher identifiability analysis of the
Doyle–Fuller–Newmanmodel from experimental cycling of a LiFePO4 cell. J Power Sources. 2012;
210:263–75.

27. Chen Z, Mi CC, Fu YH, Xu J, Gong XZ. Online battery state of health estimation based on Genetic Algo-
rithm for electric and hybrid vehicle applications. J Power Sources. 2013; 240:184–92.

28. Buller S, Thele M, De Doncker RWAA, Karden E. Impedance-based simulation models of supercapaci-
tors and Li-ion batteries for power electronic applications. Ieee T Ind Appl. 2005; 41(3):742–7.

29. Xu J, Mi CC, Cao B, Cao J. A newmethod to estimate the state of charge of lithium-ion batteries based
on the battery impedancemodel. J Power Sources. 2013; 233:277–84.

30. Concepción A Monje YC, Vinagre Blas M., Xue Dingyu, Feliu Vicente (2010) Fractional Order Systems
and Control—Fundamentals and Applications. New York: Springer, London.

31. Leith DJ, LeitheadWE. Survey of gain-scheduling analysis and design. Int J Control. 2000; 73:1001–
25.

Model and parameter identification

PLOSONE | DOI:10.1371/journal.pone.0172424 February 17, 2017 13 / 13


