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Abstract

Since the existing stereo matching methods may fail in the regions of non-textures, boundaries and tiny details, a simplified 
independent component correlation algorithm (ICA)-based local similarity stereo matching algorithm is proposed. In order 
to improve the DispNetC, the proposed algorithm first offers the simplified independent component correlation algorithm 
(SICA) cost aggregation. Then, the algorithm introduces the matching cost volume pyramid, which simplifies the pre-
processing process for the ICA. Also, the SICA loss function is defined. Next, the region-wise loss function combined with 
the pixel-wise loss function is defined as a local similarity loss function to improve the spatial structure of the disparity map. 
Finally, the SICA loss function is combined with the local similarity loss function, which is defined to estimate the dispar-
ity map and to compensate the edge information of the disparity map. Experimental results on KITTI dataset show that the 
average absolute error of the proposed algorithm is about 37% lower than that of the DispNetC, and its runtime consuming 
is about 0.6 s lower than that of GC-Net.

Keywords Stereo matching · Cost aggregation · Independent component correlation · Region-wise loss function

1 Introduction

Stereo matching as a critical part of stereo vision has been 
extensively used in the fields of autonomous driving, object 
detection and 3D reconstruction [1]. Stereo matching is 
intended to solve the corresponding relationship between 
left and right pixels in a stereo image pair to obtain the dis-
parity map [2]. Classical stereo matching algorithms consist 
of four components: matching cost calculation, cost aggre-
gation, disparity calculation and disparity refinement [3]. 
However, stereo matching is highly challenging because 

complex scenarios including occlusion, textureless and 
disparity discontinuity make it difficult to obtain dense and 
precise disparity map. As a result, it is of great significance 
to accurately obtain dense disparity from a stereo image pair.

Generally, stereo matching algorithms can be divided into 
two categories: conventional algorithms and deep learning-
based algorithms. Specifically, conventional stereo matching 
algorithms can be subdivided into global stereo matching 
[4], local stereo matching [5–7], and semi-global stereo 
matching [8]. The effect of global stereo matching depends 
on accuracy of matching cost, and the calculation process 
is very slow as the disparity is solved by global energy 
function. On the contrary, local matching algorithm can 
match local properties within a certain range by comparing 
matching points, and consequently, it depends heavily on the 
rationality of the matching window and processes textureless 
areas poorly. Additionally, semi-global stereo matching algo-
rithm is the ensemble of global matching and local matching 
that should consider all disparity changes and dynamically 
plan an optimal path to minimize the energy function; how-
ever, the convergence rate of such algorithms tends to be 
slower when implemented. In conventional stereo matching 
algorithms, the design of manually extracting image features 
and cost volume leads to inadequate expression of image 
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information, which affects the execution of subsequent steps 
and the accuracy of the disparity map.

Stereo matching algorithm based on deep convolutional 
neural networks (DCNN) [9] has recently been developed to 
a large extent. It constructs the model of the stereo match-
ing problem using the DCNN, and constructs the matching 
cost volume with stereo image pair as input. This practice 
can avoid the artificially designed matching cost function 
and manually extracted properties from being partial, which 
not only effectively improves the accuracy, but also reduces 
the computational complexity. Compared to conventional 
algorithms, the DCNN-based methods based on CNN to 
obtain disparity map have been significantly improved on 
both accuracy and speed [10].

DispNetC [11] uses the correlation layer to generate the 
initial matching cost volume and then uses the encoder-
decoder structure to process the initial matching cost vol-
ume and finally uses the single pixel point loss function for 
disparity prediction. In this paper, the SILSSM algorithm 
is proposed. The cost aggregation step is introduced to the 
classic DispNetC, the matching cost volume pyramid and the 
SICA loss function are combined; and local similarity loss 
function is redefined based on the region-wise loss function 
combined with the conventional pixel-wise loss function; 
finally, the SICA loss function and local similarity loss func-
tion are combined to perform network training. This practice 
not only ensures the estimation speed of the disparity map, 
but also improves the estimation accuracy of the disparity 
map edge and the detail and reduces dependence on single 
pixel during the estimation process.

2  Related work

Stereo matching based on DCNN generally obtains aggrega-
tion cost to complete the disparity estimation by manually 
designing the matching cost and simply accumulating the 
initial matching cost of the pixels in the window. In the lit-
erature [12], the feature points on the image to be matched 
were treated as the matching support points to make a tri-
angulation on the support points and run interpolation cal-
culation against the disparity, but the effect of the obtained 
disparity map was general. In the literature [13], stereo 
matching algorithm based on an adaptive weight was pro-
posed, and the impact of the pixels with remote special dis-
tance and large color difference was weakened according to 
the aggregation weight of the pixels in the support window 
identified from the color similarity and geometrical distance 
between pixel points. In the literature [14], the initial match-
ing cost calculation and cost aggregation were further exam-
ined, the mutual information of left and right images was 
added to the matching cost, and the matching cost along the 
multi-directional path of the center pixel was accumulated 

using dynamic programming algorithm (DP), thereby sig-
nificantly improving the accuracy of local stereo matching 
algorithm. A modified cross-based cost aggregation [2, 15] 
was then proposed to construct the adaptive irregular sup-
port window by extending to the horizontal and vertical 
directions of the center pixel according to color changes, 
which replaces conventional cost aggregation methods with 
high calculation load to a certain extent and achieves satisfy-
ing results. Because conventional stereo matching algorithm 
often involves several steps, its optimization will be limited. 
In addition, partial extraction of information may easily lead 
to missing of spatial structure, and the support window gen-
eration and the calculation of aggregation cost would be a 
problem [16].

The first category of stereo matching algorithms based 
on DCNN is the matching cost learning. In the literature 
[17], the convolutional neural network for the matching cost 
volume constructed with MC-CNN was proposed, whose the 
matching cost was calculated using a deep Siamese network; 
this proposed network can be trained to measure the similar-
ity of a pair of I

l
 image patch. In the literature [18], based 

on the MC-CNN, the matching cost volume was combined 
with the input color information using a federated filter to 
complete the cost aggregation until the final matching cost 
volume was obtained. Content-CNN [19], a network that 
can directly estimate disparity value, was proposed in the 
literature [19]. This method is similar to MC-CNN in terms 
of structure and idea, which can calculate the local matching 
cost by regarding disparity estimation as a multi-label classi-
fication task. However, these methods do not really use deep 
learning method to learn geometric features, but only use 
CNN to measure the similarity between image blocks and 
learn the matching cost. The involved steps in general are 
similar to conventional local algorithms. Admittedly, these 
modifications can improve the disparity estimation outcome, 
but the processing steps that follow still use conventional 
algorithms, which would affect the prediction accuracy of 
disparity map and it will be adverse to the overall network 
optimization.

The second category of stereo matching algorithms based 
on DCNN is the end-to-end training networks for the estima-
tion of disparity, where the four steps of stereo matching are 
integrated into one network to reduce manual participation 
and increase the overall fitting of the model. DispNetC is 
a classic end-to-end disparity estimation network with the 
similar network structure as Flownet [20]. To generalize the 
use of optical flow estimation to disparity estimation, a cor-
relation layer was used to generate matching cost volume 
that was then further processed by the network. In the litera-
ture [21], a cascading residual learning (CRL) network with 
more input information was proposed, which can extend the 
network structure of Dispnet and is formed by cascading 
DispFullnet and DispResNet, so that the detail part of the 
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disparity map can be modified. In the literature [22], Edg-
eSreteo [22] is with a similar structure as DispNet, the edge 
extraction network HED was further added, and the edge 
loss function was combined to refine the edge information 
of the disparity map. SegStereo [23] was designed based on 
DispNet and then further added with a semantic segmenta-
tion network; as a result, the segmented semantic features 
were merged with the feature map to make a full use of the 
structure information of the image while improving the esti-
mation accuracy on the disparity map. GC-Net [24] is a new 
high-performance disparity estimation network proposed in 
the literature, which extended the 3D feature spectra to 4D 
and added a new disparity dimension, as well as operated 
the matching cost volume on the disparity dimension using 
3D convolution without extra post-processing operations. In 
the literature [25], a significant cost aggregation process was 
added based on the GC-Net, which can be divided into two 
branches: the estimation branch that is used to generate the 
cost aggregation result and the guiding branch that is used 
to extract information from the image using 2D convolution.

The end-to-end training disparity estimation network 
can improve the accuracy of estimation on the disparity 
map, but there are still some deficiencies. Firstly, the cas-
cading structure or the 3D convolution-based structure 
for cost aggregation involves a high load of calculation 
at a slow speed; secondly, CNN may lose a part of the 
image edge information when acquiring features, result-
ing in inaccurate estimation on the disparity of the detail 
region or the boundary. When the foreground pixel and the 
background pixel approach or mix each other, the spatial 
discrimination ability will get lost. In the literature [26], 
an interaction-aware spatiotemporal pyramid attention 

mechanism was proposed, where the weights assigned 
by the correlation between channel features was used to 
extract salient features for face recognition. To use this 
attention mechanism for cost aggregation, the weights of 
pixels under different disparity scenarios may be consid-
ered without increasing the calculation load. In the litera-
ture [27], region-wise loss function was integrated based 
on single pixel loss function, so that the objects in the 
semantic segmentation have clear detail and edge informa-
tion. The attempt to combine the region-wise loss function 
and the loss function for disparity estimation can com-
pensate the near-boundary local information in estimation

3  SILSSM algorithm

The scheme of SILSSM algorithm is shown in Fig. 1. The 
specific steps are described below. Firstly, the algorithm 
inputs the stereo image pair, and then it extracts the fea-
ture of each pixel and constructs the matching cost vol-
ume by correlation operations, until the initial matching 
cost calculation is completed. Secondly, it sends the ini-
tial matching cost into the encoder-decoder structure. In 
the decoding part, the matching cost volumes of different 
layers are stacked for the SICA cost aggregation, and the 
defined SICA loss function is combined to obtain match-
ing cost weights. Then, the aggregated matching cost vol-
ume is sent into the last deconvolution layer to estimate the 
full-size disparity map by combining local similarity loss 
function and the SICA loss function. Finally, the predicted 
disparity map is output.

Fig. 1  SILSSM algorithm scheme
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3.1  Calculation of the initial matching cost

(1) Extraction of image features

To compare the similarity of two pixels, it is required to 
obtain a strong expression of each pixel; the image features 
I
r
 and y on the input pair F

l
 and F

r
 are extracted using 

CNN to prepare for the construction of matching cost.

(2) Calculation of the matching cost

Input F
c
 and F

c
 to the correlation layer to obtain the 

relationship between the relative location of M
′

i
 and M

′

i
 in 

the feature space, obtain the initial matching cost y and 
complete the conversion from the expression of features 
to the measurement of the pixel similarity.

3.2  SICA matching cost aggregation

The cost aggregation based on SICA is completed in the 
decoder part by the spatial pyramid formed from the stack 
of matching cost volumes, combined with the SICA loss 
function. It is devised to complete the measurement of 
the importance of this pixel with its neighboring pixels 
within the entire range of disparity search and complete 
the update of weights by using the correlation between 
channel vectors.

The matching cost volumes are stacked to form a spatial 
pyramid and to obtain the weights of channel by channel 
vector. The specific step is shown in Fig. 2:

Step 1 Stacking deconvolution results of different  
layers forms a spatial pyramid; upsampling the stacked 
deconvolution layers and the sampled size is the  
same as  the  f inal  deconvolut ion s ize  f

′

j
 , 

f
�

j
=

{

fi, j = i

ℜ(fi), j = 1, 2,… , i − 1

Step 2 Keeping the channel number of f
′

j
 constant flattens 

f
′

j
 into Xj ∈ R

WiHi×dj , in which Xj is composed of vector 
h

i

k
∈ Rw×h×c in each position.

Step 3 Obtain a weight matrix Yj from the flattened Xj and 
Yj which is the sum of the weights of all pixels of the chan-
nel vector hi

k
 , Yj = WaXT

j
⊕ ba.

Step 4 Normalize softmax to obtain the normalized weight 
matrix A

i
=

[

a
i
T

1
, a

i
T

2
,… , a

i
T

W
i
H

i

]

 . a
i is calculated by: 

ai = softmax(� (y1,… , yi)) , where �  is the fusion function 
using element-wise sum.
Step 5 Multiple A

i
 by Xj to obtain the aggregated vector 

M
i
 , Mi = AiXj . Transform the vector after cost aggregation 

M
i
∈ R

W
i
H

i
×d

i into the cost volume M
�

i
∈ R

W
i
×H

i
×d

i.

The acquisition of the weight of channel as mentioned 
above can be regarded as a simplified ICA process: Xj can be 
regarded as the signal that requires dimension reduction in the 
ICA process; ⊕b

a
 , the weight obtained from Yj = WaXT

j
⊕ ba , 

can be treated as the centralizing step in the ICA process when 
calculating the weight; the weight matrix A

i
 corresponds to the 

transformation matrix W in ICA, assigning a high weight to a 
core part in the matching cost volume f

′

j
 is similar to the pro-

cess of extracting key components from ICA.
However, the weight A

i
 at this point is just obtained by 

weighting the channel vector hi

k
 itself, without considering 

the influence of peripheral pixels. In the literature [26], the 
loss function inspired by principal component analysis (PCA) 
was used. For the extraction performance of features, when 
the number of independent principal components is more, the 
stability of principal components corresponding to the feature 
value gets worse; however, the inference speed of PCA is not 
efficient. For independent component correlation algorithm 
(ICA), when the number of independent principal compo-
nents is more, its recognition speed tends to be more efficient 
[28]. Given the complex structure of the disparity map, more 
objects are involved and more principal components need to 
be extracted, and thus this paper replaces PCA loss function 
with ICA reconstruction loss function. ICA reconstruction lost 
function is ‖‖W

T
Wx − x‖‖

2

2
 , and the orthonormality constraint 

is WW
T
= I , where W means the mapping matrix, mapping 

original data x to the feature.
Given the correlation between local pixels, the SICA loss 

function is combined here, the relationship between channels 
is used, that is, the similarity of different pixels under the same 
disparity case, to complete the cost aggregation. The matching 
cost volume processed with ICA can extract the main pixels 
from it, and the validity and reliability of weights can be fur-
ther enhanced by assigning greater weights to these pixels, 
combined with the interactive information between channel 
vectors hi

k
 . SICA loss function can be defined as:

where I means the unit matrix and x means the sum of 
square function. The weight matrix A

i
 corresponds to the 

(1)l
SICA

=
‖
‖
‖

A
T

i
A

i
X

i
− X

i

‖‖
‖

2

2

+ x
(
(A

i
A

T

i
) ⋅ (1 − I)

)

Fig. 2  Steps for construction of matching cost pyramid
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mapping matrix W  in the ICA reconstruction loss function 
and X

i
 corresponds to the original data x.The SICA loss 

function is combined with the spatial pyramid structure to 
form a complete cost aggregation process.

3.3  Disparity map prediction

The aggregated matching cost volume is continuously sent 
to the decoder part and then combined with local similarity 
loss function, and the detail and the edge of the disparity 
map are modified. The diagram of local similarity loss func-
tion is shown in Fig. 3.

In stereo matching, pixel-wise loss function is usually 
used and the difference between the estimated disparity map 
and the ground truth disparity map is calculated and used as 
training loss. The loss function for a single pixel in Disp-

NetC is L
s
=

1

N

‖
‖
‖
‖

d
n
−

∧

d
n

‖
‖
‖
‖1

 , where N is the number of pixels 

and d
n
 , 

∧

d
n
 are the estimated disparity and the ground truth 

disparity of the n th pixel. This loss function only considers 
the factor of single pixel, instead of the image structure and 
the semantic information between neighboring pixels 
between labels. The disparity map generated by the decoder 
part can obtain a relatively accurate effect from textureless 
region, but the edge of an object is often obscure and the 
details cannot be shown. Therefore, region-wise loss func-
tion is used to make up for the deiciencies of pixel-wise loss 
function. The use of region-wise loss funtion can extend the 
dependence on independent pixels to the dependence on 
neighboring pixels information.

Region-wise loss function [27] can be written as:

where D
kl
() means the Kullback–Leibler divergence and 

offers a way to quantify the difference between the two dis-
tributions P and Q. Region-wise loss function measures the 
similarity between two neighboring pixels with KL diver-
gence. There are two types of label relationships between 

(2)Lr =

⎧⎪⎨⎪⎩

Dkl

�
di
���dj

�
, when

∧

di =
∧

dj

max

�
0, m − Dkl(di

�� dj)

�
, others

pixel i and neighboring pixel j : whether their labels are the 
same or different. When the ground truth of i and j are same, 
then the loss of the estimated disparity of i and j should be 
made as small as possible. If the ground truth of i and j are 
different, then the loss of the estimated disparity of i and j 
should be made as big as possible.

Local similarity loss function can be defined as:

where N is the total number of pixels. In the region loss 
function L

r
 , R(d

n
) means the estimated disparity value in 

the region, R(d̂
n
) means the ground truth in the region, n 

means the center pixel in the region, in which R() means a 
3 × 3 neighborhood.

In a word, the SICA loss function is combined with 
local similarity loss function, and then total loss function 
can be defined as:

wherein � is the weight parameter, which is used to control 
the ratio of importance of the SICA loss function to the local 
similarity loss function. In this paper, the learning process 
of the proposed SILSSM algorithm is explained in Algo-
rithm 1. The proposed method is trained with ground truth 
depth data by supervised learning. As the entire loss func-
tion is differentiable, the network is trained using backpropa-
gation algorithm in order to minimize the loss function. The 
disparity map can be estimated by training the loss function.

Algorithm 1: SILSSM algorithm

Input Stereo image pair I
l
 and I

r
.

Output Network parameters and disparity map y.

1: Calculate depth features F
l
 and F

r
 based on network struc-

ture.

2: Calculate the initial matching cost F
c
.

3: Send F
c
 to encoder–decoder structure and calculate the 

weighted matching cost volume M
′

i
 in the decoder part.

4: The matching cost volume M
′

i
 is sent to the last layer of the 

decoder part and output the disparity map y.

5: Calculate the derivative of Eq. (3) and update the network 
parameters using backpropagation algorithm.

6: Repeat steps 1 to 4 until the parameter values have not 
changed.

(3)L
l
=

1

N

∑

(

L
s

(

d
n
, d̂

n

)

+ �
1

R
L

r

(

R(d
n
), R(d̂

n
)

))

(4)

L = L
l
+ �LSICA

=
1

N

∑(
L

s

(
d

n
, d̂

n

)
+ �

1

R
L

r

(
R(d

n
), R(d̂

n
)

))

+�

[
‖‖‖

A
T

i
A

i
X

i
− X

i

‖‖‖

2

2
+ x

(
(A

i
A

T

i
) ⋅ (1 − I)

)
]

Fig. 3  Diagram of local similarity loss function
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4  Experimental results

4.1  Dataset and network training

This proposed algorithm is written in Python, and its train-
ing and testing are implemented on Tensorflow. All experi-
ments are conducted on NVIDIA Tesla V100 GPU. The 
effect of the proposed method is validated on Scene Flow 
and KITTI binocular image dataset. The ground truth val-
ues provided by the KITTI dataset are sparse, that is, only 
the disparity values of certain points on the original image 
are provided. Consequently, the training process is first on 
Scene Flow dataset. Scene Flow training set is a synthesized 
dataset containing 35,454 pairs of training images, 4370 
pairs of test images, the dataset is so large that over-fitting 
will not occur during the training process. The real-world 
KITTI dataset includes two subsets with sparse ground truth 
disparities. KITTI 2012 contains 194 training and 195 test 
image pairs, while KITTI 2015 consists of 200 training and 
200 test image pairs. After a certain number of training–vali-
dation repeated experiments, the iteration and learning rate 
will be set as 100 k and 0.01, respectively. To perform the 
matching cost calculation, the max displacement disparity 
will be set to 100.

4.2  Analysis of algorithm performance

The itemized validation of this network is analyzed on 
Scene Flow. The proposed network structure is similar to 
the DispNetC. In the method of DispNetC, the disparity map 
is directly estimated using the pixel-wise loss function in the 
decoder part. In this paper, the SICA matching cost aggre-
gation and local similarity loss function are added on the 
DispNetC encoder–decoder structure to make the edge of the 
disparity map clearer and the estimated accuracy of dispar-
ity higher. Table 1 analyzes the advantages of the SICA loss 
function and local similarity loss function on Scene Flow 
and compares the PCA cost aggregation [26] and the SICA 
cost aggregation.

Metrics include error > 1px, error > 3px, mean absolute 
error (MAE) and running time. Wherein, error > t px means 
the percentage of erroneous pixels; when the endpoint error 

(EPE) of the estimated disparity of a pixel is greater than t 
pixels, this pixel would be considered to be erroneously esti-
mated. EPE means the average Euclidean distance between 
the estimated disparity and the ground truth. MAE means 
the average value of the estimated disparity and the true 
error.

As is seen from Table 1, if the cost aggregation is only 
considered, the MAE in the case of using the SICA cost 
aggregation reduces by 12% when compared with the PCA 
cost aggregation, and the use of the SICA cost aggregation 
has little influence on the running time. The running time 
of the proposed network framework is 0.23 s slower than 
that of the DispNetC, but the MAE of the former reduces 
by about 37%, which provides a theoretical basis for future 
stereo matching in the shooting scenario.

Figure 4 plots the variation of the validation error during 
the training on the Scene Flow and compares the proposed 
loss function and the conventional pixel-wise loss function. 
As is seen from Fig. 4, the training speed of the conventional 
pixel-wise loss function is faster than that of the proposed 
loss function. However, the error rate of the proposed func-
tion is comparatively lower.

In Table 2, this proposed method is compared with GC-
Net, EdgeStereo and SegStereo on KITTI2012 stereo data-
set. In this table, “All” means that all pixels were consid-
ered in error estimation, whereas “Noc” means that only the 
pixels in non-occluded regions were taken into account. In 
KITTI2012, error > 2px, error > 3px, error > 5px and run-
ning time are calculated in the case of occlusion and no 
occlusion. In Table 3, this proposed framework is compared 
with GC-Net, EdgeStereo and DispNetC on KITTI2015 ste-
reo dataset. In this table, the three columns “D1-bg,” “D1-
fg” and “D1-all” mean that the pixels in the background, 
foreground, and all areas. In KITTI2015, the performance 
assessment is performed in the case of occlusion and no 
occlusion, and the three-pixel-error (3PE) was calculated in 
the case “D1-bg,” “D1-fg” and “D1-all,” respectively. 3PE 

Table 1  Algorithm itemized validation

Model >1px >3px MAE Time

DispNetC 11.3 7.2 4.0 0.06

+PCA cost aggregation 10.7 7.1 3.9 0.19

+SICA cost aggregation 9.6 6.5 3.4 0.19

+Local similarity loss Function 10.0 6.6 3.1 0.13

Proposed 8.5 5.2 2.5 0.29
Fig. 4  Validation error
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means the percentage of pixels with endpoint error more 
than 3.

As is seen from Table 2, the matching accuracy of the pro-
posed method is the highest. Given all pixels and when the 
error threshold is 2px, the matching accuracy of the proposed 
algorithm is about 0.2 and 0.07% higher than that of GC-Net 
and EdgeStereo, respectively. Of which, the matching accu-
racy of SegStereo is the lowest and is about 0.54% lower than 
that of the proposed method. In addition, the running speed 
of SILSSM algorithm is about 3 times of GC-Net, GC-Net 
can process the matching cost volume with 3D convolution 
to extract the geometry and context information, thereby sig-
nificantly increasing the calculation complexity. In contrast, 
SILSSM algorithm uses SICA cost aggregation combined with 
local similarity loss function to modify the spatial structure of 
the disparity map without increasing excessive calculations.

As is seen from Table 3, compared with the DispNetC, 
the proposed algorithm adds an obvious cost aggregation 
step. Despite the reduced running speed, its accuracy is 
improved substantially. Compared with GC-Net and EdgeS-
tereo, the accuracy of the proposed method increases by 0.41 
and 0.13%, respectively, under the conditions of all pixels 
D1-all. EdgeStereo is further added with a network for the 
extraction of edge information. Compared with the proposed 
method, its estimation accuracy for the background region 
of all pixels is about 0.06% higher. However, its running 
time is 30 ms slower due to the addition of an extra network.

4.3  Subjective quality evaluation

The images of KITTI2012 and 2015 stereo datasets are 
shot in the actual outdoor driving. The quality of the 

disparity map is a direct reflection of the performance 
of the algorithm. Therefore, the KITTI dataset is used to 
perform subjective quality evaluation. Figure 5 shows the 
qualitative comparison results among the proposed algo-
rithm framework and PSMNet, GC-Net, SegStereo and 
DispNetC on KITTI2015.

It can be observed from Fig. 5 that the proposed method 
can generate smoother disparity prediction results. The 
edges of traffic lights, traffic signs and other objects remain 
intact, and the details are clearer. Compared with Disp-
NetC, the proposed method is able to handle challenging 
scenarios and ensure the integrity of the disparity map 
structure. The prediction of objects such as traffic lights 
and traffic signs are better than that of the other three 
methods, and the details are more discriminative.

5  Conclusion

In this paper, the network structure and objective function 
of DispNetC are modified to propose SILSSM algorithm. 
The edge and details of the disparity map are refined by 
using the SICA cost aggregation and the local similarity 
loss function. The experimental results show that the pro-
posed method can estimate the edge of the disparity map 
on KITTI dataset clearly. In addition, this proposed algo-
rithm runs at a fast rate and its running speed improves by 
0.6 and 0.3 s, respectively, compared to GC-Net and Edg-
eStereo. The subsequent research will be intended to fur-
ther improve the estimation accuracy of the disparity map 
by the proposed algorithm while reducing its complexity.

Table 2  Results on KITTI 2012 
stereo benchmark

In experiments, bold performs better than other networks

Model >2px >3px >5px Time

Non-occ All Non-occ All Non-occ All

GC-Net 2.70 3.46 1.77 2.30 1.15 1.47 0.90

EdgeStereo 2.64 3.33 1.72 2.15 1.05 1.30 0.31

SegStereo 3.27 3.80 2.47 2.87 1.09 1.29 0.68

Proposed 2.66 3.26 1.67 2.27 1.05 1.29 0.29

Table 3  Results on KITTI 2015 
stereo benchmark

In experiments, bold performs better than other networks

Model All pixels Non-occluded pixels Time

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

GC-Net 2.21 6.16 2.87 2.02 5.58 2.61 0.91

EdgeStereo 2.27 4.18 2.59 2.12 3.84 2.40 0.33

DispNetC 4.32 4.41 4.34 4.11 3.72 4.05 0.06

Proposed 2.31 4.05 2.46 2.02 3.89 2.31 0.30
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