
Int. J. Communications, Network and System Sciences, 2014, 7, 37-42 
Published Online January 2014 (http://www.scirp.org/journal/ijcns) 
http://dx.doi.org/10.4236/ijcns.2014.71005  

A Simplified Improvement on the Design of QO-STBC 
Based on Hadamard Matrices 

K. O. O. Anoh1, Y. A. S. Dama1,2, R. A. A. Abd-Alhameed1, S. M. R. Jones1 
1Mobile and Satellite Communications Research Centre, University of Bradford, Bradford, UK 

2An-Najah National University, Nablus, Palestine 
Email: o.o.anoh@student.bradford.ac.uk, yasdama@najah.edu  

 
Received November 9, 2013; revised December 9, 2013; accepted December 16, 2013 

 
Copyright © 2014 K. O. O. Anoh et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor- 
dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual 
property K. O. O. Anoh et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. 

ABSTRACT 
In this paper, a simplified approach for implementing QO-STBC is proposed and evaluated with improved per- 
formance. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard matrix property to 
attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and con- 
sequently, a decoding matrix so that a diagonal matrix which permits linear decoding is achieved. Using quasi- 
cyclic matrices in designing QO-STBC systems requires that the codes should be rotated to reasonably separate 
one code from another such that error floor in the design can be minimized. It will be shown that, orthogonaliz- 
ing the secondary codes and then imposing the Hadamard criteria of the scheme can be well diagonalized. The 
results of this simplified approach demonstrate full diversity and better performance than the interference-free 
QO-STBC. Results show about 4 dB gain with respect to the interference-free QO-STBC scheme and it performs 
alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent 
mathematical proposition of the Hadamard matrix and its property is also shown in this study. 
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1. Introduction 
One of the ways of achieving dependable broadband 
network in wireless communications systems is by the 
use of multiple input multiple output (MIMO) technol- 
ogy. MIMO technology is a transmission scheme that is 
used to transfer high data rate depending on the number 
of transmission branches (diversities). The commonest of 
all is the space-time block codes (STBC) for two trans- 
mitter diversities discussed in [1]. This technique ex- 
ploits full transmission power for orthogonal codes so 
long as the transmitter diversity order is no more than 
two [2,3]. In transmissions involving more than two an- 
tennas, the full rate power is not attainable [1]. Beyond 
the two transmitter diversity transmissions for full rate, 
the codes are rather formed in a special orthogonal way. 
The new codes are usually described as the quasi-or- 
thogonal STBC (QO- STBC). Besides performing trans- 
missions of more than two antennas, the QO-STBC also 

improves the channel capacity and also improves bit er-
ror ratio (BER) statistics for MIMO technology [3].  

TheQO-STBC scheme [2,4,5] has been discussed to 
achieve full transmission rate but not full diversity [6]. 
The BER curves suggest that the codes outperform the 
codes of orthogonal design only at low signal-to-noise 
ratios (SNRs), but worsen at increased SNRs. This is due 
to the fact that the slope of the performance curve de- 
pends on the diversity order gain, i.e. whether full of par- 
tial diversity gain. One of the major problems that limit 
the BER performance of the QO-STBC system is from 
interference incurred in the decoding process. These in- 
terference terms are off-diagonal terms that violate the 
possibility of simple linear decoding such that full diver- 
sity is not achievable. It has been shown that these inter- 
fering terms are removable by some methods [3,7]. 

Examples of common methods of eliminating these 
interfering terms to improve the QO-STBC codes per-  
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formance towards full diversity have been discussed in [3, 
6-9]. For instance, the minimum distance between dif- 
ferent codewords may reduce the likelihood of correctly 
decoding the right code. Hence, it is discussed that by 
properly choosing the constellations, the minimum dis- 
tance between the STBC codewords is increased, then 
the QO-STBC performance can be improved towards full 
diversity [6,7,10]. Some other common methods by which 
full diversity can be attained by interference reduction 
have been shown in [3,8,9]. Most of these techniques 
have been presented for three and four transmitter an- 
tennas QO-STBC designs.  

The Hadamard matrix has the ability to diagonalize 
quasi-cyclic matrices [11,12] and matrices are readily 
invertible if they are complex [10,13]. These properties 
have been exploited in discussing QO-STBC systems 
based on Hadamard matrices in [8,10]. In this work, the 
Hadamard based QO-STBC is extended. The base quasi- 
cyclic codes are rather formulated according to the 
space-time block codes design criteria earlier discussed 
in [1]. This design is shown for frequency flat fading 
channel using a QPSK mapping scheme. The Hadamard 
based QO-STBC studied is for three and four transmitter 
diversities. Using the Hadamard matrix, it will be shown 
that the Hadamard based STBC maintains the orthogo- 
nality criteria with no interference. The resulting decod- 
ing matrix shows the perfect diagonal matrix with no off- 
diagonal terms and results obtained agree with the ones 
earlier presented in [10] with optimal rotation. This op- 
timal rotation is not used in this study. 

In Section 2, the system model is described and then in 
Section 3, the Hadamard based STBC is presented. The 
numerical simulation results are compared with that of 
interference-free QO-STBC and the traditional orthogo- 
nal QO-STBC in Section 4 and ended with summarized 
conclusions. 

2. System Model 
In this section, the applied system model is discussed. 
Assume that there are NT transmit antennas and NR re- 
ceive antennas. In addition, QO-STBC that encodes a 
vector of input symbols [ ]1 2 3 2Lg g g g  into G where 

TL NG C ×∈  is considered, such that TL NC ×  is a complex 
matrix of L × NT dimension, whereL is the block size. Let 
the channel impulse response be correlated such that 
multipath with kθ  phase that influences signal of kα  
amplitude exist. If the transmission channel is flat, then 

kα  will be uniform for all paths, K, where K is the 
number of all resolvable paths traversed by the signal. 
Consequently, the channel impulse response will be 
summarized as ( ) ( )e kjh k k θα= . For more than one 
transmit antenna such as Ti N∈  whose output is re- 
ceived by each j-antenna (j is equivalently 1 in this 
study), then; 

( ) ( ) ( )( )
{ }

1
e ,

1, , 4

T
k

N
j

i , j i , j k
n

h k k t
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θα δ τ τ
=

= −

∀ ∈

∑
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     (2) 

The frequency response of Equation (2) becomes: 
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= − ⋅

∀ ∈ − ∀ ∈

∑
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If H describes the channel matrix, the transmit signal 
is G, then the received symbol will be [14]; 

T

Y HG Z
N
ρ

= +               (4) 

where Z is the Gaussian noise term similar to the additive 
white Gaussian noise (AWGN) and G is the QO-STBC 
codeword matrix formed according to the approaches in 
[2,5] also discussed in [8,10] as; 

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

* * * *

* * * *

g g g g
g g g g

G
g g g g
g g g g

 
 − − =
 
 
− − 

          (5a) 

where NT is the maximum number of transmit antenna 
and L is the length of the input symbols. Notice that 

TL NG C ×∈  matrix from code-word in Equation (5a). 
Also, notice that G is formed from the Alamouti space 
time block coding method [1] as: 

3 41 2
12 34

4 32 1

, * ** *

g gg g
G G

g gg g
  

= =    −−   
        (5b) 

Such that in QO-STBC scheme, 

12 34

34 12

G G
G

G G
 

=  
 

 

It is possible to decompose G into two such as G1 and 
G2 to permit maximum-likelihood decoding. This can be 
expressed in the following way [7]: 

( ) ( )1 1 3 2 2 4,0, ,0 0, ,0,G G g g G g g= +  

This is because, 1 2 2 1 0H HG G G G+ = . 
The equivalent channel matrix of the above QO-STBC 

code (G) can be represented as: 

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

* * * *

* * * *

h h h h
h h h h

H
h h h h
h h h h

 
 − − =
 
 

− − 

            (6) 

It is can be noted that the above description is per-
formed for four transmit antennas diversity order. The 
detection matrix can be formed as: 
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0 0
0 0

0 0
0 0

HD H H

λ β
λ β

β λ
β λ

 
 
 = =
 
 
 

         (7) 

where λ is the diagonal of the (4 × 4) I4 matrix which is 
the sum of the channel power (or the path gains) and re-  
presented as 2

1 , 1, 2,3, 4TN
nn h nλ

=
= ∀ =∑ . Also, the  

other terms in the detection matrix, β, represent the in- 
terfering terms that deplete the full diversity performance 
expected of QO-STBC of the 4-transmit antenna ele- 
ments and is computed as: 1 3 2 4 1 3 2 4h h h h h h h hβ ∗ ∗ ∗ ∗= + + + . 
Thus, β will degrade the BER (the pairwise error prob- 
ability) performance of the system so long as the follow- 
ing decoding approach is followed and the full diversity 
will not be attained. 

3. Hadamard Based QO-STBC 
In this section, the traditional Hadamard based QO- 
STBC system is reviewed, then with the simplified Ha- 
damard based QO-STBC approach following. The Ha- 
damard matrices are described as matrices of 1’s and 
−1’s entries whose columns are orthogonal. It has the 
property that [13]; 

H H
n n n n nH H H H nI= =            (8) 

where In is an identity matrix for an n × n order which 
belongs to the channel gain. Equation (8) has the prop- 
erty that the channel gain is amplified n-times. Since the 
Hadamard matrix is defined for rem (n, 4) = 0, then in 
our case where n = 4, the channel gain is amplified four 
times.  

Let the Hadamard matrix be thought of as being 
formed from the traditional orthogonal STBC codes. 
Then, recall the orthogonal codes of the channel matrix 
for a two transmitter system discussed in [15] as; 

1 2
2

2 1

h h
H

h h
 

=  − 
              (9) 

From Equation (9), the eigenvectors of the matrix can be 
given as; 

2

1 1
1 1

V  
=  − 

               (10) 

By Equation (10) tradition, we further define eigenvec-
tors for a 4 transmit element (with one receiver) system 
as in [16] following Equation (10) as follows: 

2 2
4

2 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

V V
V

V V

 
 − −   = =   − − − 
 

− − 

       (11a) 

It is well-known that the codes that construct QO-STBC 
are not orthogonal, instead quasi-orthogonal. However, 
only the codes that construct the orthogonal STBC are 
orthogonal. We shall henceforth refer to Equation (11a) 
as: 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

HadV

 
 − − =
 − −
 

− − 

          (11b) 

Meanwhile, the columns of the QO-STBC system hold 
orthogonal characteristics. Then by constructing an en- 
coding matrix according to the Hadamard matrix yields 
QO-STBC systems whose decoding matrix is a diagonal 
matrix provided a proper quasi-cyclic Hadamard design 
is maintained. This explicitly eliminates any interfering 
terms (by default) so that exact full diversity will be 
achieved. 

3.1. Traditional Hadamard Based QO-STBC 
The earlier design of QO-STBC based on Hadamard ma- 
trix like in [8] stemmed from the quasi-cyclic matrix 
discussed in [11,12]. Recently, [8] has described the QO- 
STBC for the quasi-cyclic Hadamard matrix as: 

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

s s s s
s s s s

S
s s s s
s s s s

 
 
 =
 
 
 

           (12) 

Equation (12) can be decomposed into two to permit 
maximum likelihood decoding according to [7] as fol- 
lows: 

( ) ( )1 1 3 2 2 4,0, ,0 0, ,0,S S s s S s s= +  

This is because, 1 2 2 1 0H HS S S S+ =  provided the or- 
thogonal space-time block coding criteria discussed in [1] 
is satisfied. In the case of a Hadamard based QO-STBC, 
the codewords belong to [10]; 

( ) ( )
( ) ( )

1 2 3 4

3 4 1 2

, ,
, ,

S s s S s s
S

S s s S s s
 

=  
 

        (13) 

Where, 

( ) 1 2
1 2

2 1
* *

s s
S s ,s

s s
 

=  − 
 

Sometimes, the constellation ( )3 4S s ,s  are rotated 
(see [10] and then [7]). This rotation is to increase the 
minimum separation between different received code- 
words which minimizes the error floor of received sym- 
bols and improves the BER performance statistics of the 
QO-STBC code. The channel matrix of Equation (12) is 
constructed similarly to the encoding matrix of Equation 

OPEN ACCESS                                                                                       IJCNS 



K. O. O. ANOH  ET  AL. 40 

(12) except for changing symbols si to hi 1, , 4i∀ =   in 
that case.  

In this work, we describe a Hadamard-based formula- 
tion of QO-STBC system whose decoding matrix is a 
diagonal matrix which would lead to linear decoding and 
has the form: 

( )
( )

( )
( )

4 4

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

HC C

λ β
λ β

λ β
λ β

 + 
 + =  − 
 − 

(14) 

Equation (14) is the decoding matrix. If properly for- 
mulated, the encoding matrix which is usually complex 
and invertible must satisfy the condition 

H H
n n n n nC C C C nI= =  nIn where In is the identity of n × n 

matrix and the superscript, (.)H is the Hermitian transpose 
operator. Notice that n = 4 in this study. It is possible to 
extend these conditions for QO-STBC code constructions 
that satisfy the Hadamard matrix criteria. 

3.2. Simplified Hadamard Based QO-STBC 

Now, let the formulation of the quasi-cyclic Hadamard 
codes for the channel matrix proceed in the following 
way: 

1 2
12

2 1

h h
h

h h
 

=  
 

             (15a) 

and, 

3 4
34

4 3

h h
h

h h
 

=  
 

             (15b) 

Instead of the combination that yielded Equation (12), let 
the orthogonal space time block coding reported in [1] be 
invoked such that: 

34 12

12 34
4 * *

h h
H

h h
 

=  − 
            (16) 

Then, by multiplying the resulting codes of Equation (16) 
according to the Hadamard matrix to form the new 

channel matrix, we obtain that: 

34 12

12 342 2

2 2
* *v

h hV V
H

h hV V
  

= ×    −−   
        (17a) 

This is equivalent to: (see Equation (17b)). 
This is the case of a 4 × 1 MISO antenna configuration. 

By applying Equation (8) in the formulation of Equation 
(17) during the decoding process, it can be found that 
(remembering that ( )  H

v v nH H nI= ): 

( )
( )

( )
( )

( )

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

H
v vQ H H

λ β
λ β

λ β
λ β

 + 
 + = =  −
 

−  
(18) 

where 2
1 , 1, 2,3, 4TN

nn h nλ
=

= ∀ =∑ and  
1 3 2 4 1 3 2 4h h h h h h h hβ ∗ ∗ ∗ ∗= + + +  

Notice that Equation (18) yields full diversity and is 4- 
times louder in amplitude compared to the interference- 
free QO-STBC which is a diagonal matrix. Notice also 
that the Hadamard property of Equation (8) defined as 

( )H
v v nH H nI=  is well satisfied. The equivalent enco- 

ding matrix can as well be easily formed as: (see Equa-
tion (19)). 

The converse of Equation (17) is also true, for instance; 

34 12

12 34 2 2

2 2
* *v

h h V V
H

h h V V
   

= ×   − −  
 

In that case, the decoding property satisfies the following: 
( )H

v v nH H nI=  instead of ( )H
v v nH H nI= .  

By nulling the fourth antenna element, a three-antenna 
scheme can be shown as: 

3
34

3

0
0
h

h
h

 
=  
 

               (20) 

Now, substituting Equation (20) into Equation (17): 

34 12

12 342 2
3

2 2
* *v

h hV V
H

h hV V
  

= ×    −−   
          (21) 

Expanding Equation (21), it can be seen that: 
 

1 2 3 4 1 2 3 4 3 4 1 2 3 4 1 2

1 2 3 4 2 1 3 4 3 4 1 2 4 3 1 2

1 2 3 4 1 2 3 4 3 4 1 2 3 4 1 2

1 2 3 4 2 1 3 4 3 4 1 2 4

* * * * * * * *

* * * * * * * *

v * * * * * * * *

* * * * * *

h h h h h h h h h h h h h h h h
h h h h h h h h h h h h h h h h

H
h h h h h h h h h h h h h h h h
h h h h h h h h h h h h h

+ + + + + + + − − + − −
− + − − − + − − + − + −

=
+ − − + − − + + + + + +
− − + − + − − + − 3 1 2

* *h h h

 
 
 
 
 

− − +  

             (17b) 

1 2 3 4 1 2 3 4 3 4 1 2 3 4 1 2

1 2 3 4 2 1 3 4 3 4 1 2 4 3 1 2

1 2 3 4 1 2 3 4 3 4 1 2 3 4 1 2

1 2 3 4 2 1 3 4 3 4 1 2 4

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * *

s s s s s s s s s s s s s s s s
s s s s s s s s s s s s s s s s

S
s s s s s s s s s s s s s s s s
s s s s s s s s s s s s s

+ − − + − − + + + + + +
− − + − + − − + + − − +

=
+ + + + + + + − − + − + −
− + − − − + − − + 3 1 2

* *s s s

 
 
 
 
 

− + −  

               (19) 
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3

1 2 3 1 2 3 3 1 2 3 1 2

1 2 3 2 1 3 3 1 2 1 3 2

1 2 3 1 2 3 3 1 2 3 1 2

1 2 3 1 1 3 3 1 2 2 1 3

v

* * * * * *

* * * * * *

* * * * * *

* * * * * *

H

h h h h h h h h h h h h
h h h h h h h h h h h h
h h h h h h h h h h h h
h h h h h h h h h h h h

 + + + + − − − −
 

− + − − − + − − =  + − + − + + + +
 

− − − − + − − −  

 

The equivalent encoding matrix of Equation (21) is 
easy to be formed by the elimination of a column in 
Equation (19) in a similar method to [9] and in the 
following: 

1 2 3 4 1 2 3 4 3 4 1 2

1 2 3 4 2 1 3 4 3 4 1 2

1 2 3 4 1 2 3 4 3 4 1 2

1 2 3 4 2 1 3 4 3 4 1 2

* * * * * *

* * * * * *

* * * * * *

* * * * * *

s s s s s s s s s s s s
s s s s s s s s s s s s

S
s s s s s s s s s s s s
s s s s s s s s s s s s

 + − − + − − + + +
 

− − + − + − − + + =  + + + + + + + − −
 

− + − − − + − − +  

 

(22) 
It is easy to verify via simulation that, the received sym- 
bol can be expressed as: 

[ ]T1 2 3 4v
T

Y H s s s s Z
N
ρ

= ⋅ +       (23) 

where [ ]T⋅  is a transpose operation. Notice that Equa- 
tion (23) can easily be processed by computing 
( )H

vH Y  which leads to recovering the input symbols 
with the amplitudes of [ ]T1 2 3 4s s s s  influenced by 
the resulting coding gain.  

4. Numerical Simulation Results and 
Discussion 

Using the Rayleigh fading channel model for a frequency 
non-selective fading, we evaluate the performance of the 
proposed method with respected to the traditional QO- 
STBC along with the interference-free QO-STBC. 

This performance comparison is carried out for a 
QPSK system. In the study, it is assumed that the signal 
total transmit power for the respective three-transmit an- 
tenna and four transmit antenna systems were shared 
uniformly over the respective transmission branches for 
each case. During the transmission process, it is also as- 
sumed that, for three-transmit antennas that the scheme 
was quasi-static for three time slots and for four-transmit 
antennas, it was supposed that the system was constant 
for four-time slots. 

In Figure 1, the results are shown in terms of bit error 
ratio (BER) for different signal-to-noise powers. The 
results obtained for the interference-free method and tra- 
ditional QO-STBC are consistent with the earlier referred 
work. However, it is seen from the simulation results that 
the proposed method agrees with the mathematical pro- 
position consequent on the Hadamard matrix property 
exploited and is four-time louder than the interference- 
free QO-STBC. Also, the results are similar to the ones 

reported in [10]. This scheme provides the advantage of 
improved performance in comparison to interference re- 
duction approach and reduced computation when com- 
pared to the rotation method discussed in [10]. 

As in Figure 1, Figure 2 shows a comparison of the 
proposed QO-STBC scheme with earlier methods such as 
the traditional QO-STBC and the interference QO-STBC 
for a MISO systems (3 × 1). The result is approximately 
4dB times better than the interference approach.  

5. Conclusion 
A simplified method for implementing quasi-orthogonal 
space-time block codes has been presented with impro- 
ved performance. Earlier QO-STBC based on Hadamard 
matrix used the quasi-cyclic codes. In this work, it was 
shown mathematically that, by computer simulation, 
 

 
Figure 1. Comparison of new QO-STBC with traditional 
QO-STBC and interference-free QO-STBC (4 × 1). 

 

 
Figure 2. Comparison of new QO-STBC with traditional 
QO-STBC and interference-free QO-STBC (3 × 1). 
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these code constructions do not completely exploit the 
Hadamard advantage and also, do not attain full diversity. 
These were addressed by adopting a different approach 
to this code construction. It was shown that Hadamard 
matrix diagonalizes the QO-STBC codes which permits 
linear decoding. This property paves the way for achiev- 
ing full diversity with reduced computational complexity. 
The results obtained are consistent with the mathematical 
property and fully exploit full diversity advantage of the 
QO-STBC scheme based on the Hadamard criteria. Con- 
sequently, the design of a QO-STBC system using the 
Hadamard matrix provides useful design advantage for 
improved multi-antenna design. 
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