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A SIMPLIFIED METHOD OF ELASTIC-STABILITY ANALYSIS FOR THIN CYLINDRICAL SHELLS
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SUMMARY

This paper develops a new method for determining the buckling

stresses of cylindrical shells under various loading conditions.

For convenience of exposition, it is divided into two parts.

In part I, the equation for the equilibrium of cylindrical

shells introduced by Donnell in NACA Report No. _79 to find

the critical stresses of cylinders in torsion is applied to find

critical stresses for cylinders with simply supported edges under

other loading conditions. It is shown that by this method solu-

tions may be obtained very easily and the results in each case may

be expressed in terms of two nondimensional parameters, one

dependent on the critical stress and the other essentially deter-

mined by the geometry of the cylinder. The influence of boundary

conditions related to edge displacements in the shell median

surface is discussed. The accuracy of the solutions found is

established by comparing them with previous theoretical solutions

and with test results. The solutions to a number of problems

concerned with buckling of cylinders with simply supported

edges on the basis of a unified viewpoint are presented in a

convenient form for practical use.

In part II, a modified .form of Donnell's equation for the

equilibrium• of thin cylindrical shells is derived which is equiv-

aleat to Donnell' s equation but has certain advantages in physical

interpretation and in ease of solution, particularly in the case

oJ shells having clamped edges. The solution of this modified

equation by means of trigonometric series and its application to

a number of problems concerned with the shear buckling stresses

of cylindrical shells are discussed. The question of implicit

boundary conditions also is considered.

INTRODUCTION

The recent emphasis on aircraft designed for very high

speed has resulted in a trend toward thicker skin and fewer

stiffening elements. As a result of this trend, a larger fraction

of the load is being carried by the skin and thus ability to

predict accurately the behavior of the skin under load has

become more important. Accordingly, it was considered

desirable to provide the designer with more information on

the buckling of curved sheet than has been available in the

past. In carrying out a theoretical research program for this

purpose, a method of analysis was developed which is be-

lieved to be simpler to apply than those generally appearing

in the literature. The specific problems solved as a part of

this research program are treated in detail in other papers.

The purpose of this paper, which is discussed in two parts,

is to present the method of analysis that was developed to

solve these problems.
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In part I, the stability of a stressed cylindrical shell is

analyzed in terms of Donnell's equation, a partial differential

equation for the radial displacement w, which takes into

account the effects of the axial displacement u and the cir-

cumferential displacement v. Part I shows the manner in

which this equation can be used to obtain relatively easy

solutions to a number of problems concerning the stability of

cylindrical shells with simply supported edges. The results

of the solution of this equation are shown to take on a simple

form by the use of the parameter k (similar to the buckling-

stress coefficients for flat plates) to represent the state of

stress in the shell and the parameter Z to represent the

dimensions of the shell, where Z is defined by the following

equations:

For a cylinder of length L

L 2

Z=741-_

and for a curved panel of width b

5 2

where

r radius of curvature

t thickness of shell

and

g Poisson's ratio for material

The accuracy of Donnell's equation is established by compari-

sons of the results found by its use with the results found by

other methods and by experiment.

In the simplest method that has been found for solving

Donnell's equation, the radial displacement w is represented

by a trigonometric series expansion. This method can be used

to great advantage for cylinders or curved panels with simply

supported edges but leads to incorrect results when applied

uncritically to cylinders or panels with clamped edges.

In part II, an equation is derived which is equivalent to

Donnell's equation but is adapted to solution for clamped as

well as simply supported edges by means of trigonometric

series. This modified equation retains the advantages of

Donnell's equation in ease of solution and simplicity of re-

sults: The solution of the modified equation by means of the

Galerkin method is explained, and the results obtained by

this approach in a number of problems concerned with the

shear buckling stresses of cylindrical shells are given in

graphical form and discussed briefly. Boundary conditions

implied by the method of solution of the modified equation

are also discussed.

285



286 REPORT NO. 874--NATIONAL ADVISORY COMMITTEE :FOR AERONAUTICS

L

Q, Q1,Q2

z

SYMBOLS

a length of curved panel (longer dimension)

b width of curved panel (shorter dimension)

d diameter of cylinder

i, j, m,t integers
n, p, ffJ

p laterM pressure, positive inward

r radius of cylindrical shell

t thickness of cylindrical shell

u displacement in axial (x-) direction of point on

shell median surface

v displacement in circumferential (y-) direction of

point on shell median surface

w displacement in radial direction of point on shell

median surface; positive outward
x axial coordinate

y circumferential coordinate

7 _numencal coefficients
Cmn_, amn j

(rtL 2 rtb 2
k, shear-stress coefficient \DTr 2 for cylinder or _ for

curved panel or infinitely long curved strip)
/

((r#L 2
k_ axial compressive-stress coefficient \ D_r2 for

zxtb 2
cylinder or_ for curved panel or infinitely

long curved strip)

k_ circumferential compressive-stress coefficient

z#L 2 o-_tb2
D_ 2 for cylinder or _ for curved panel or in-

finitely long' curved strip)

%

/

(p L2 
Up hydrostatic-pressure coefficient \D_r2 ]

w0 amplitude of deflection function

(Et3_
D plate flexural stiffness per unit length \_2(_2) /

E Young's modulus

F Airy's stress function for the median-surface

stresses produced by the buckle deformation

b2F

_, stress in axial direction; b2F_, stress in eir-

b2F shear stress)eumferential direction; --b_y'

length of cylinder

mathematical operators

("curvature parameter rt _/1_2 for cylinder or

b2

rt _/1--_ for curved panel or infinitely long

curved strip)

ft L/X for cylinder or b/X for infinitely long curved

strip

X half wave length of buckles; measured cireumfer-

entially in cylinders and axially in infinitely long

curved strips

T

Tcr

0"x

0"y

R_

R_

V 4

_7G4

V 8

dimensionless axial coordinate (x/b)

dimensionless circumferential coordinate (y/b)
Poisson's ratio

applied shear stress

critical shear stress

applied axial stress, positive for compression

applied circumferential stress, positive for compres-
sion

shear-stress ratio; ratio of shear stress present to

critical shear stress when no other stress is acting

axial-compressive-stress ratio; ratio of direct axial

stress present to critical compressive stress when

no other stress is acting

//_2 52 \2 b4 b4 b4 ,_
operatort

operator \\_+_] ]

operator \\_2+b7 / /

operator \\_+_] ]

inverse operator defined by equation

(v -_(vy) = v_(v-_) =2)

1. DONNELL'S EQUATION

THEORETICAL BACKGROUND

In most theoretical treatments of the buckling of cylin-

drical shells (see references 1 to 3) three simultaneous partial

differential equations have been used to express the relation-

ship between the components of shell median-surface dis-

placement u, v, and w in the axial, circumferential, and

radial directions, respectively. No general agreement has

been reached, however, on just what these equations should

be. In 1934 Donnell (reference 4) pointed out that the

differences in the various sets of equations arose from the

inclusion or omission Of a number of relatively unimportant

terms (referred to in the present paper as higher-order

terms), and proposed the use of simpler equations in which

only the most essential terms (first-order terms) were

retained. The omitted terms were shown to be small, and

thus the simplified equations to be applicable, if the cylinders

have thin walls and if the square of the number of circum-

ferential waves is large compared with unity. Donnell

further showed that the three simplified equations can be

transformed into a single eighth-order partial differential

equation in _o (see appendix A of the present paper) in which

the effects of the displacements u and v are properly taken

into account; chis equation will hereinafter be referred to as

Donnell's equation.

When higher-order terms are included in the three partial

differential equations previously mentioned, the resulting

theoretical buckling stresses are usually very complicated
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functions of the cylinder dimensions and the elastic proper-

ties of the material. A family of curves is ordinarily drawn

giving the critical stress as a function of the length-diameter

ratio for specified values of the radius-thickness ratio and

for given elastic properties (references 2, 3, and 5). When

the higher-order terms are omitted from the equations and

the requirements of an integral number of circumferential

waves is removed, new parameters can be introduced which

combine the cylinder dimensions and material properties in

such a way that the results can be given in terms of a single

curve. These parameters have been used, with slight varia-

tions in detail, by Donnell, Kromm, Leggett, and Redshaw

(references 4 and 6 to 9). The omission of the higher-order

terms also greatly simplifies the calculations, and the calcula-

tions are simplest if Donnell's equation, rather than the set

of three simultaneous equations, is employed. Donnell's

equation, or an equivalent equation, may therefore be

presumed to be the most promising for use in solving hitherto

unsolved problems in the stability of cylindrical shells.

In spite of the fact that it was introduced some time ago,

Donnell's equatiort has not achieved the wide acceptance

for use in the stability analysis of cylindrical shells which

it appears to merit. Some investigators have continued to

use simultaneous differential equations in which higher-

order terms appear, presumably on the assumption that the

errors arising h'om neglect of these terms might be undesh'-

ably large. Others have dropped second-order terms but have

continued to employ simultaneous equations, probably in

order to specify directly edge-restraint conditions having to

do with displacements in the axial and circumferential

directions, which cannot be done with Donnell's equation.

The purposes of part I are to establish the accuracy of the

equation by comparing the results found by the use of

Donnell's equation with the results found by other methods

and with experimental results and to investigate the question

of boundary conditions on u and v. The additional purpose

is achieved of presenting the solutions of a number of

problems concerned with buclding of cylinders with simply

supported edges on the basis of a unified viewpoint and in a

convenient form for practical use.

BUCKLING STRESSES OF CYLINDERS WITH SIMPLY

SUPPORTED EDGES

Lateral pressure.--The theory for the lateral pressure

(uniform external pressure applied to walls only) at which

a cylinder will buckle is given in appendix B in which it is

assumed that the lateral pressure causes the buckling by

producing a circumferential stress _y and that it affects the

buclding in no other way. The results are shown in a

logarithmic plot in figure 1. The ordinate in this figure is"

the stress coefficient k_ which appears in the flat-plate

buckling equation (see, for example, reference 3, p. 339)

7r2D
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FIGURE 1.--Critical circumferential-stress coefficients for cylinders with simply supported edges.
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(The discussion given in the section of the present paper

entitled "Parameters Appearing in Buckling Curves" shows

the relationship between a cylinder of length L and an

infinitely long flat plate of width b=L.) The abscissa

L 2 ,_ /LX 2 r

may be regarded either as a measure of the curvature, or,

for any given ratio of radius to thickness, as a measure of the

length-radius ratio of the cylinder. Figure 1 shows that

for small curvature ]% approaches the value 4, which 'applies

in the case of simply supported long flat plates in longitudinal

compression (reference 3, p. 327). As the curvature param-

eter Z increases, the stress coefficient Icy also increases.

For large values of Z, the curve approaches a straight line of

slope 1/2. This straight line is expressed by the formula

ky_- 1.04Z '/_

As the length-radius ratio increases, for a given value of

r/t, the number of circumferential waves n diminishes. A1-

• though n must be an integer, the curves of figure 1 were

obtained on the assumption that n is free to vary continu-

ously. Only small conservative errors are involved in this

assumption. Because n--_l corresponds merely to a lateral

displacement of the entire circular cross section, the minimum

/0 3

u

I0 z

/0

value of n is 2, which corresponds to deformation of the

section into an ellipse. This limitation on n results in

splitting the curve of figure 1 into a number of curves for

different values of r/t when Z becomes large. A cylinder

having a value of r=20 buckles into an ellipse when L/r is
t

about 10, and the value of Lfr at which such budding occurs

increases with increasing r/t.

In figure 2 the curve of figure 1 is compared with results

based on more complicated calculations given in reference 3

and in reference 5. At fairly large values of Z the results

given in reference 3 and in reference 5 are in good agreement

with the results of the present paper. At small values of Z

the curve based on reference 3 (Timoshenko) is definitely too

low, because t% should approach the fiat-plate value of 4 as Z

approaches zero. An interesting feature of the comparison

is that one calculation gives results below, and the other

calculation results above, those given herein. The test data,

taken from reference 5, are in reasonable agreement with

and show more scatter than the theoretical curves.

In the case of cylinders so long that n----2, the requirement

for the validity of Donnell's equation that n2>>1 is no

longer satisfied and appreciable error is to be expected.

Indeed it may be shown tha_ for very long cylinders when

n_--2 Donnell's equation gives 4D/r 3 as the critical value of

the applied lateral pressure, whereas the accepted theoretical

J

Sfur'rn F _i:-IA_ o

#80 .... _:
_o5 "" .-_ -X

,- _b "'M_', "'.
/ o_ ""_'

/ (

t

_moshenko

.""-500
.... /00

FIGURE 2.--Comparison of present solution for critical circumfcrential-stress coefficients for simply supported cylinders with ether theoretical solutions and with test results.

(Timoshenko's solution is from reference 3 and Sturm's data and solution are from reference 5.)
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result is 3D/r 3 (by use of the formula given on p. 450 of

reference 3). The curves for n=2 will probably not often
L 2 5r

which in the case of thin cylinders corresponds to a very

large length-radius ratio, and if needed, the curves for

n=2 can be applied in conjunction with a correction factor

0.75.

Axial compression.--The theory for the axial stress at

which a cylinder will buckle is given in appendix B, and the

results are shown in figure 3. The ordinate is analogous to,

and the abscissa identical with, the corresponding coordinates

used in figure 1. Figure 3 shows that for small values of

Z, k_ approaches the value 1, which applies in the case of

long flat plates in transverse compression with long edges

simply supported (reference 3). For large values of Z, the

curve becomes a straight line of slope 1. This straight line

is expressed by the formula

kx= _23-Z= 0.702Z

For any fixed value of r/t some value of Z always exists

above which L/r is so large that the cylinder fails as an

Euler strut rather than by buckling of the cylinder walls.

Pin-ended Euler buckling of cylinders is indicated in figure 3

by means of dashed curves.

The result just given for the critical-stress coefficient for a

cylinder in axial compression leads to the following expression

for the critical stress:

1 Et

_= _/3(1-:_2) r (1)

/0<

I0 3

/0

I I I I IIIII

/ /0

-- Wo// buc/@ng
.S/rue/_uc/@ng

I I I IIIII I I I IIIII

10 2
L2

z=_ V1-_2

/ /0---.

(pJn-endedJ

I I I IIII

I0 3 /0 4

FIG UIZE3.--Critical axial-stress coefficients for cylinders with simply supported edges.

The value given in equation (1) for the eriticM stress of a

moderately long cylinder in axial compression by use of

Donnell's equation is identical with the value found by a

number of investigators using other equations as starting

points (references 1 to 3). In the case of cylinders under

axial compression the errors involved in dropping the second-

order terms are therefore concluded to be small.

The buckling stresses given by equation (1) are neverthe-

less in serious disagreement with the buckling stresses

obtained by experiment (reference 10). For a discussion of

the degree of correlation that can be found between theory

and experiment for cylinders under axial compression, see

reference 11.

ttydrostatic pressure on closed cylinders,--When closed

cylinders are subjected to external pressure, both axial and

circumferential stress are present. The theory for buckling

under these combined loads is given in appendix B. The

results are shown in figure 4. The ordinate C_ used in this

figure is a nondimensional measure of the pressure p de-

fined as follows :

C prL2
v_ _.2 D

The coefficient Cp can be directly related to the corresponding

stress coefficients ]c_ and ]% By definition

z_tL 2
k_l-- 7r2D

and, according to the hoop-stress formula,

pr
O'y-- t

It follows from the three preceding equations that Cv is

numerically equal to k_. Similarly Cp can be shown to be

numerically equal to 2k_.

At low values of Z, Cv approaches the value 2, which

implies that k_=l and k_=2. That these values of k rep-

resent a critical combination of stresses for an infinitely

long flat plate was shown in reference 12. At large values

of Z, the curve approaches the curve given in figure 1 for

buckling under lateral pressure alone and, like that curve,

has branches representing buckling into two circumferential

_vaves.

In figure 5 the computed values of the pressure coefficient

Cp at wtfich the cylinder would buckle if only the axial pres-

sure were acting and if only lateral pressure were acting are

compared with the results when both are acting because of

hydrostatic pressure. At large values of Z the circumferen-

tim stress at which buckling occurs under hydrostatic pres-

sure is substantially the same as it would be if no axial stress

were present, as in the case of lateral pressure. The reason

that the circumferential stress appears as the main factor in

buckling at high values.of Z presumably is that at these

values of Z the axial stress required to produce buckling is

many times the circumferential stress required, whereas

under hydrostatic pressure the axial stress actually present is

only one-hMf the circumferential stress.
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FIGURE 4.--Theoretical solution for hydrostatic pressure under which simply supported cylinders buckle.
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In figure 6 the curve of figure 4 is compared with curves

representing Sturm's theoretical results (reference 5) and

with a curve based on the following formula developed at

the United States Experimental Model Basin reference 13,

equation (9)) :

This formula is an approximation based on theoretical results

obtained by Von Mises (reference 3, p. 479) which are iden-

tical with the results in the present paper for buckling under

hydrostatic pressure. Figure 6 shows that Sturm's theoret-

ical results (reference 5) are in reasonable agreement with

those of the present paper and that the formula fi'om the

United States Experimental Model Basin practically coincides

with the present results except at very low values of Z.

Test results from references 5 and 13 are included in fig-

ure 6. The test data are in good agreement with the theoretical

results except at low values of the curvature parameter Z

at which the theoretical results are appreciably above those

obtained experimentally. A possible explanation of the

discrepancy between the theoretical and experimental results

at low curvature is suggested by tile relative importance of

axial and circumferential stress in causing buckling. The

axial stress becomes important only at low values of tile

curvature parameter Z. It is known experimentally that

buckling under axial stresses may occur far below the theo-

retical value of the critical stress. At low values of Z

/0 _
Tesf resulls [

o W/ndenbuFg ond TF////_g

u SIurm

10 2

in

U. 3. Ex/oec/'memra/ Mode/

,,,Bos/h formulo __ : o

oo0

"'Presen? soluHon

/ I I I I I I II I I I I I I II

I0 I0 _

cylinders under hydrostatic pressure may therefore be

expected to buckle well below the theoretical critical load

just as cylinders do under axial compression.

Torsion.--The problem of the determination of the buck-

ling stresses of cylinders in torsion was solved by Donnell

(reference 4) who gave an approximate solution of the equa-

tion of equilibrium. A somewhat more accurate solution of

this equation is given in reference 14. The essential results

are shown in figure 7 taken from reference 14. At low

values of Z the buckling-stress coefficient k8 approaches the

value 5.34 appropriate to infinitely long flat plates loaded in

shear (reference 15). At higher values of Z the curve

approaches a straight line given by

ks=O.85Z 3/4

At very high values of the curvature parameter the curve

splits up into a number of other curves, depending on the

value of r/t. The curves for various r/t values at high

values of Z represent buckling into two circumferential

waves. As mentioned before, Donnell's equation is not
/

reliable for the case n:2 (a case which occurs for cylinders in

torsionwhen(_f_10t)..T.. A solution for this case given

by Schwerin and discussed in reference 4 results in critical

stresses about 20 percent below those of the present paper.

Because Schwerin's solution does not satisfy the condition

w:0 at the end of the cylinder, however, it is probable that

the error in the present solution for n:2 is less than 20

percent.

S_uP/77

0 o [3

I I I I i I II I I I I I III

• lO s 10 4

_s .

Z = _ IVF-p

I I l I I I I I

i0 o

FIGURE &--Comparison of present solution for buckling of simply supported cylinders under hydrostatic pressure with other theoretical solutions and test results. (Sturm's results

are from reference 5 and Windenburg and Trilling's results are from reference 13.)



292 REPORT NO. 874--NATIONAL ADVISORY COMMITTEE FOR AERONAIJTICS

104

/0 _

11

.supported or _ clamped

•

/
y.

• Clamped.

S/mp/y SwppO/'f_d ed_

/I

.S
o..

i./

///

/

i.**" j

0 /

I I
I I I I II I I I I I I II I I I I ! I II I I I ] I I I I

fO I0 z lO s 10 4

FmURE 7.--Critleal-shear-stress coefficients for cylinders in torsion. (Fig. 1 of reference 14.)
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In experimental investigations of cylinders in torsion the

maximum rather than the critical loads have usually been

reported. Because these maximum loads usually exceed the

critical loads by only a small margin, it is common practice to

check theoretical buckling stresses by comparison with the

average stresses at maximum load. Such a comparison is

provided in figure 8 which incorporates test data from refer-

ences 4, 10, 16, and 17 For this figure the test results

average about 15 percent below those given by theory.

DISCUSSION

Parameters appearing in buckling curves.--The fact that

the buckling of a cylinder under axial compression, lateral

pressure, hydrostatic pressure, or torsion involves sub-

stantially the same parameters is not a mere coincidence but

is a direct consequence of the differential equation. The

differential equation implies that when the requirement of

an integral number of circumferential waves is removed the

six variables L, r, t, E, g, and the load may be combined into

two nondimensional parameters, one (k=, k_,, k_, or C_)

describing the stress condition, and the other (Z) essentially

determined by the geometry. (See appendix C.) It is also

shown in appendix C that the buckling of a curved rec-

tangular plate of any given length-width ratio may be

represented in terms of these parameters. The critical

stress of a cylinder or a curved plate of given length-width

ratio may therefore be given by a single curve relating the

two parameters provided that the number of circumferential

waves may be regarded as continuously variable. This

restriction becomes important at very large values of Z, for

which the curves may split into a number of curves for

cylinders of different values of r/t buckling into two circum-

ferential waves.

Except for hydrostatic pressure, each type of loading con-

sidered results in a single uniform stress in the cylinder, and

the nondimensional parameter k describing this stress is de-

fined as follows in analogy to the parameter used in de-

scribing the buckling of a fiat plate:

k= z(or T)
7r2D

L2t
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FIGURE &--Comparison of theoretieaI solution for critical shear stress of simply supported cyllnders_.n torsion with exFi?rimental ultimate stresses. (Lundquist's data are from

reference 10, Donnell's data are from reference 4, Moore and Weseoat's data are from reference 16, and Bridget, Jerome, and Vosseller's data are from reference 17.)

As the radius of the cylinder increases toward infinity (the

other dimensions remaining constant), the cylinder approaches

an infinitely long flat plate of the same thickness as the

cylinder, having a width b equal to the length L of the

cylinder. Accordingly, as the radius approaches infinity,

the critical-stress coefficient k for the cylinder approaches the

value of the corresponding stress coefficient for an infinitely

long fiat plat e under the appropriate loading condition.

The other nondimensionM parameter Z is defined by the

equation

L _ IL\2

If the small correction due to Foisson's ratio is neglected, a

direct physicM significance can be assigned to Z when its

magnitude is sm_ll. The maximum distance from a slightly

curved arc of length L and radius r to its chord can be shown

to be given by the expression L2/8r, which is called the" bulge"

by some writers (see references 8 and 9). Accordingly, in

the case of a curved strip of length L in the circumferential

direction, L2/8rt is the bulge divided by the thickness and is

thus a nondimensional measure of the deviation fl'om flatness

of the strip. As applied to a short cylinder, L2/8rt is the

deviation from flatness of a square panel of the cylinder,

each side of which is equal to the length of the cylinder. For

cylinders having a length greater than a few tenths of the

diameter, the parameter Z loses this simple physical signifi-

cance and is perhaps best regarded as a nondimensional meas-

ure of the length of the cylinder. Some indication of the

variety of cylinder shapes corresponding to a fixed value of

Z is given in figure 9.

Boundary eonditions.--When problems in the stability of

cylindrical shells are solved by the use of Donnell's equation,

boundary conditions on u and v cannot be imposed directly

because only w appears in the equation. The method of

solution, however, may in some Cases imply boundary condi-

tions on u or v. In appendix D it is shown that for simply

supported cylinders the method used in the present paper (a

s91ution using one or more terms of a Fourier series satisfying

the boundary conditions on w term by term) implies that ut
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FmVRE 9.--Representative cylinders corresponding to the same value of Z (Z about 150).

both ends of the cylinder the circumferential displacement v

is zero, but that the cylinder edges are free to warp in the

axial direction (u_ 0). For a simply supported rectangular

curved panel, the present method implies (with regard to

displacements within the panel median surface) zero displace-

ment along the four edges of the panel and free warping nor-

mal to the edges. These edge conditions on u and v are

appropriate to cylinders or panels bounded, by light bulk-

heads or deep stiffeners which are stiff in their own planes

but may be readily warped out of their planes.

Relatively few calculations of the stability of a cylinder

take into account the boundary conditions on u and v. A

calculation for the case of torsion, however, was recently

made by Leggctt (reference 18). The results of this calcu-

lation, computed for u=v=0 at the edges of the cylinder, are

given only for Z< 50. Throughout the range for which they

are given, however, they agree very closely with the results

found by the method employed in the present paper, which

implies that at the edge of the cylinder v=0 and u_0.

Restraining the ends of the cylinder from warping in the

axial direction may therefore be assumed to have a negligible

effect upon the buckling stress• This assumption receives

added support from the form of the equation of equilibrium

(appendix A) for the case of constant pressure

/ Dew. _ Dew . b2w. b_F1\ 0
Dv' +t 5x- +

In this equation, a,, _, and r are the stresses present just
• b2F

before buckhng and _ is the circumferential stress produced

by the buckling itself. The equation indicates that the only

difference between the buckling behavior of a cylindrical

sheet and that of a fiat pluto (found by omitting the last

term in the foregoing equation) is due to the effect of the

circumferential stresses caused by the buckling deformations.

Because the restraint against warping in the axial direction

requires the application of axial rather than circumferential

stresses, this restraint might be expected to have only small

effects on buclding stresses• Circumferential stresses would

have to be applied to the straight sides of a curved strip to

prevent warping normal to these edges during buckling.

Because the circumferential stress due to buclding appears

explicitly in the equation of equilibrium, the imposition of

the restraint v=0 to the straight sides of a panel should have

an appreciable effect on the buclding stress (except when the

straight sides of the panel are short compared with the curved

sides)•

Theoretical results on the buclding of curved strips

infinitely long in the axial direction are available to test the

foregoing conclusion• In figure 10 the critical axial'compres-

sive stress for an infinitely long curved strip with u and v

both zero along the edges (reference 8) is compared with the

critical axial compressive stress when u is zero along the

edges, and the edges are free to warp in the circumferential

direction. (See appendix B for solution•) The critical axial

stress is appreciably increased by the constraint v=0 in a

certain range of small curvature. In figure 11 the critical

shear stresses are compared under the same sets of edge

conditions (references 6 and 7). The critical shear stress is

conspicuously increased by the constraint v=0 except near

the limiting case of flat plates.

It appears from the foregoing discussion that the effect on

the buckling stresses of preventing free warping normal to

the curved edges of a cylinder or panel is very small but

that the effect on the buclding stresses of _ similar restrain_

on the straight edges of a panel may be quite important.

/0 a

tl

/0
,£eggett u=O

_ /, {v=O

"Pi-esent .so/u¢/bn

/

u=O

v#O

// I I I I I tll I _ I I I _11 I I I i i i ii/0 /0 2 /0 a
b e

z =_7-,/F_ -

FmV_E 10.--Comparison of the present solution for the buckling u-rider axial compi:ession

of a curved strip infinitively long in the axial direction, with solution found by Leggett

(reference 8).
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FIGURE ll.--Comparison of Leggett's solutions with present solutions for critical-shear-stress

coefficients of a long curved strip. (Fig. 2 of reference 20.)

Simplicity of results.--The theoretical results based on

Donnell's equation for the critical stresses of cylinders under

a given loading condition appear particularly simple when

presented as a logarithmic plot of buckling coefficient k

against the curvature parameter Z. As r approaches

infinity, and therefore as Z approaches zero, k approaches

the value appropriate to a flat plate. At large values of Z

the curve approached a straight line in each of the cases

investigated. These Straight lines had slopes 0.5, 0.75, and 1

and are given approximately by the following equations

which have already been given in the present paper and are

reassembled here and provided with upper and lower limits

for easy reference:

r 2(1oo< <
1., 2(1_,:0
r 2

These equations can also be written (when /_ is taken to be 0.316)

JEt(" tr'_ '/2 /t\3/2/r\
tz)

Et/tr \''_ (_ths'4(r_h''2
_-=0.747 r \r] \L]tp) =o7 7.

ax=0.608 JEt
r

(50t <(#)2 10

II. MODIFIED EQUATION

THEORY

DERIVATION OF MODIFIED EQUATION

The equation of equilibrium for a flat plate may be written

_+2_ bxby _)tp=u (2)

where p is lateral pressure. (This equation is equivalent to

equation (197) of reference 3.)

For a cylindrically curved plate having a radius of curva-

ture r, the following pair of simultaneous equations of equi-

librium may be written (as a generalization of equations (11)

and (10) of reference 7):

(crx b2W , _ b2W , b21,V ._s_" _--t o-,,_)+DV_w+ t
k

t b2F

4 , E b2w _
V F-b r _ :0 (4)

where F is Airy's stress function for the median-surface

stresses produced by the buckle deformation (reference 19).

Equation (3) differs from equation (2) only in the addition
t /b2F \

of theterm- , + whichexpressestheeffectofthe

curvature. Equation (4) shows that, unlike fiat plates,

cylindrical shells experience stretching of the median surface

when originally straight lines in the surface are bent slightly.

Elimination of F between equations (3) and (4) by suitable

differentiations and additions gives the following single

equation in w for the equilibrium of cylindrical shells:

DVSW+Er _ b4w . 4 b2w b2w --_+tv (,_, _ +2_- bx_+

_)z,w

°'u by2 _)+v*p=0 (5)

Equation (5), which was first derived by Donnell (reference 4),

was treated in part I.

An alternative method for obtaining a single equation in w

for the equilibrium of a cylindrical shell is to solve equa-

tion (4) for F and substitute the result into equation (3). This

procedure can readily be carried out _n the following manner.

Differentiation of equation (4) twice with respect to x gives

V4 b2F , E b4w
_-_-_=0 (6)

, b_F
The symbolic solution of equation (6) ior _ is

b_F E b_w

bx _ r b#
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Substitution of this result into equation (3) gives

DV4w+_ t V-4 b4w . 52w . _2w
?

Equation (7) is simply equation (5) modified by multiplica-

tion by the operator V-t In the present paper, equations (5)

and (7) are referred to as Donnell's equation and the modified

equation, respectively.

ADVANTAGES OF MODIFIED EQUATION

One of tile quickest and most convenient methods for ob-

taining solutions of flat-plate buckling problems to any

desired degree of approximation uses a Fourier series type of

expansion for the deflection surface w. Both Donnell's

equation and the modified equation can be solved by this

method in the case of buckling problems involving curved

plates having simply supported edges.

As mentioned in the "Introduction," however, Donnell's

equation is not well adapted to solution by Fourier series of

problems involving tile stability of shells with clamped edges.

The cause of the trouble appears to be that the calculation

of some of the high-order derivatives found in Donnell's

equation sometimes leads to divergent trigonometric series

when the edges are clamped. The modified equation, how-

ever, is applicable to clamped-edge problems as well as to

problems involving simply supported edges because lower-
order derivatives are involved.

Besides its advantages in the solution of problems involving

shells with clamped edges, equation (7) has the additional

advantage that each term has a definite physical significance:

The first term gives the restoring force per unit area of the

deflected surface due to bending and twisting stiffnesses;

the second term gives the restoring force per unit area due

to stretching stiffness; and the remaining terms give the

deflecting or restoring forces per unit area due to applied loads.

Because of these advantages, the modified equation was

adopted for general use in references 11, 14, and 20 to 23.

Both Donnell's equation and the modified equation result

in the same critical stresses for simply supported cylindrical

shells, and the two methods require essentially equivalent

mathematical processes. (See appendix E.) The charac-

teristics of solutions by means of Donnell's equation in the

case of simply supported shells--namely, the theoretical

cylinder parameters, the simplicity of calculations and re-

sults, and the implied boundary conditions on u and v--are

characteristics, also, of _olutions by means of the modified

equation. The same characteristics, except for a change in

the implied boundary conditions on u and v, also apply to

solutions of clamped-edge shell problems by means of the

modified equation. This change is discussed in the section

entitled "Boundary Conditions."

SOLUTION OF MODIFIED EQUATION BY GALERKIN METKOD

An approximate method of solving vibration and buckling

problems closely paralleling that of Ritz was introduced in

1915 by Galerkin. (See, for example, references 24 and 25.)

The main distinction between the Ritz and Galerkin methods

is that the Ritz method begins with an energy expression,

whereas the Galerkin method begins with an equation of

equilibrium. The Galerkin method is readily adaptable to

the solution of equation (7) and is now described briefly.

Let the equation of equilibrium be written

Q(w) =0 (8)

where Q is some operator in x and .y which for the purposes

of this paper is taken to be linear. According to the Galerkin

method, the equation may be solved by expanding the un-

known function w in terms of a suitable set of functions

J_(x)gj(y), each of which satisfies the boundary conditions

but not in general the equation of equilibrium:

(9)

Substitution of this expression for w into equation (8)

gives the following equation:

_, a_Q[J_(x)gj(y)] = 0 (10)
i j

Because the functions J_(x)gj(y) were chosen to satisfy

the boundary conditions rather than the equation of equi-

librium, equation (10) cannot, in general, be satisfied identi-

cally by any choice of the coefficients a_j. These coefficients

can be chosen, however, to assure the vanishing of certain

weighted averages of the left-hand side of equation (10).

The weighting functions used in the Galerkin method are

the original expansion functions, so that the following

simultaneous equations for determining the coefficients a_j
are obtained:

_,'_,,Bm_ja_¢=O (m:1,2,3 .... ; n=1,2,3, . . .) (11)
i j

where

Bm_j= f f fl,,,(x)g_(y) Q[f_(x)gj(y)] dx dy (12)

The simultaneous set of linear algebraic equations in the

unknown coefficients a_¢ (equation (11)), obtained by using

the original expansion functions as weighting functions, is

ordinarily the same set which would be found by the Ritz•

method, if the same series expansion for w were used. A

solution of any desired degree of accuracy may therefore be

obtained by the Galerkin method.

In applying the Galerkin method to equation (7) by use

of Fourier series expansion for w, expressions of the type

V-4 _ _ a ij sin i_x sin j_y
a b

must be evaluated. The operator V -g, the inverse of V4_

simply introduces into the denominator of each term of the

series the expression that comes into the numerator if V4 is

applied. Thus,

V-4 _. j_ a ij sin iv_xasin 2__Y=

a_j sin i_x "
i_r _ jTr _ _ sin2-_ y

(13}
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This result may readily be verified by applying the operator

V * to each side of equation (13).

In writing equation (13) the quantity V-4J, as defined by

the equation

v_v-y=.f

was tacitly assumed to be unique. The quantity actually

is not unique; any number of terms which vanish when

operated upon by V 4 could be added to the right-hand side

of equation (13). The omission of such terms makes the

present analysis parallel to the analysis using Donnell's

equation (see part I) and implies certain boundary conditions

on u and v, which are discussed in a subsequent section

entitled "Boundary Conditions."

DEFLECTION FUNCTIONS

Simply supported edges.--For simply supported cylindri-

cal shells, the following series expansions for w may be used

to represent the buckle deformation to any desired degree of

accuracy (in these functions, x is the coordinate in the axial

direction and y, the coordinate in the circumferential

direction) :

(1) Rectangular curved plate

circumferential dimension b)

(axial dimension a and

w= _2, _, am_ sin m_rx . n_rysin -- (14)
m=l n=l a b

(2) Curved strip long in the axial direction (circumferen-

tial width b and axial wave length 2X)

(a) Direct stresses only

• _rx _ m_ry
_/)=sln _- _,, am sin (15)

Yl=l b

(b) Shear stress with or without addition of direct stress

_/)_sln _- _,, a m ?rx y
m=l =

(3) Complete cylinder (length L and circumferential wave

length 2X)

(a) Direct stresses only

• _ry _, sin mTrx
w_-sm X- rn=12"Ja,,_ L (17)

(b) Shear stress with or without addition of direct stress

mTrx , Try x%, mTrxw=sin _, am sin --if--t-cos T 2.5 b,,_ sin (18)

Clamped edges. Probably the simplest method of treating

cylindrical shells with clamped edges is to employ the

expansions in equations (14) to (18) modified by substituting

functions of the type

mrrx . _rx 1[- (m--1)_rx (m_al)Trx __(x)=sin a Sma=2[e°s a -cos .....

(19)
• wtTrx

wherever functions of the type sin-- appear, with a
a

similar substitution for functions of y (all terms involving

summation subscripts m and n are thus changed; terms

7rx

involving X, such as sin _- remain unchanged). The func-

tions ,pro(x) form a complete set so that finite expansions for

w of the type suggested for shells with clamped edges as well

as those for shells with simply supported edges may be used

to represent the buckle deformation to any desired degree of

accuracy.

BOUNDARY CONDITIONS

Simply supported edges.--Appendix D shows that,.if the

buckling stress of a simply supported shell is found by means

of the expansions for w given in the preceding section en-

titled "Deflection Function," the boundary or edge condi-

tions implied for the median-surface displacements u and v

are zero displacement along each of the edges of a cylinder

or curved panel and free displacement normal to each edge.

(Although the proof given used equation (5), the proof

could equally well have been based on equation (7).)

The boundary conditions for simple support may thus be

written, at a curved edge (x:Constant),

b2.u_ b2F ^

w = bx_= v= _= u (20)

and, at a straight edge (y=Constant),

b2w b2F - (21)
W=_yy2=U= bx2 =O

Clamped edges.--By a method similar to that in appendix D

solutions using the functions suggested in the preceding

section for the treatment of clamped edges can be shown to

correspond to the boundary conditions zero displacement

normal to an edge and fi'ee displacement along an edge•

The boundary conditions for clamped edges therefore be-

come, at a curved edge (x=Constant),

bw D2F ^ (22)
w= bx = U = bx 2= o

and, at a straight edge (y: Constant),

bw b2F
w=--=v=a_a =0 (23)

by by

Discussion.--As mentioned in part I, the boundary con-

ditions implied for u and v in the ease of simply supported

edges are appropriate for cylinders or panels bounded by light

bulkheads or deep stiffeners, which are stiff in their own

planes but may be readily warped out of their planes•

The boundary conditions on u and v appropriate for a

clamped edge would seem to be zero displacement normal

to the edge and zero, rather than free, displacement along

the edge. Comparison of critical stresses for shells with

clamped edges found by the method in the present paper

with critical stresses found by the method in references 7

and 8, giving boundary conditions u=v=0, however, indi-

cates that the imposition of the added requirement of zero

displacement along the edge ordinarily has very little effect

on the critical stresses.

A less satisfactory method for solving problems concerning

shells with clamped edges involves the use of functions of the

type

--1sin m_rx 1 sin (m+2)_rx
m '_ a m+2 a
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instead of those described by equation (19). In this method,

the functions used are those for simple support taken in

such combinations that the edge slope is zero. Use of such

functions leads to the same boundary conditions on u and

v as were described for simply supported edges; at the edge

y= Constant, for example, the boundary conditions become

_w D2F

w--_y =u=_=0 (24)

The use of these functions to represent shells with clamped

edges is not recommended, however, for the following reasons:

The associated boundary conditions seem to be artificial

and unlikely to be reproduced even approximately in actual

construction; the method leads in some cases to solutions that

differ considerably from the solution for ideal clamped-edge

conditions in which u=v-----0; and the solutions obtained

generally converge rather poorly.

APPLICATIONS AND DISCUSSION

Among the more difficult shell-stability problems to treat

theoretically are those which involve shear stresses. In fact,

until 1934, when Donnell's paper on critical shear stress of

a cylinder in torsion was published (reference 4), such prob-

lems were generally regarded as impracticable to solve. In

order to illustrate the type of solution to be found by the

method of analysis just outlined and the effect of boundary

conditions on critical stresses, the results obtained for a

number of shell-stability problems involving shear stresses

are reproduced and discussed briefly here. The problems

treated are summarized in table I.

Critical shear stress of long curved strip.--The critical

shear stress for a long plate with transverse curvature is given

by the equation

7r2D

.rc,=k_ b2t

where k_ is a dimensionless coefficient, the value of which

depends upon the dimensions of the strip, Poisson's ratio

for the material, and the type of edge support. In figure 12

(fig. I of reference 20) the shear-stress coefficient k_ is given

for plates with simply supported edges and with clamped

edges. This solution for simply supported edges coincides

with that given by Kromm (reference 6).

As indicated in the previous section entitled "Boundary

Conditions," the solution corresponding to the boundary

conditions of equation (24) (dashed curve of fig. 12) is poorly

convergent and deviates appreciably from the results for

completely fixed edges. Figure 12 shows this poor conver-

gence in the limiting case of a fiat plate, for which the critical

stress is independent of boundary conditions on u and v.

Even a tenth-order determinant led to a result that is

7 percent above the true solution; whereas the result using a
fourth-order determinant obtained with the deflection

functions recommended for clamped edges is only 1 percent

above.

In figure 11 (fig. 2 of reference 20) the solutions given in

figure 12 are compared with the results given by Leggett

(reference 7) for simply supported and clamped edges with

u=v=0 at each edge. Throughout the range for which

TABLE I.--INDEX OF PROBLEMS TREATED

Problem Edge condition

[Simply supported (u= 0, v#0).

0
[Clamped (u=0, v#0).

[Simply supported (u=0, v_0).
{Clamped (u_0. v=O).

[Clamped (u=O, v#O).

(u=v=0).
(u=v=0).

@ Simply supported.

Clamped.

1[_ l Simply supported.

I I

Simply supported.

Clamped.

@ Simply supported.

1 t Clalnped.

they are given, Leggett's results for clamped edges differ

only slightly from those of the present paper. On the other

hand, the previously mentioned discrepancy between the

results for completely fixed edges (u=v=0) and those for

the boundary conditions of equation (24) (dashed curve)

may be inferred from this figure to be considerable for large

values of Z. A minimum measure of this discrepancy is the

distance between the clamped-edge curves for v=0 and for

u----0 in figure 11, since Leggett's curve must always lie

above the curve for v----0.

The reason for the marked increase in buckling stress of

simply supported curved strips when the edges are restrained

against circumferential displacement during buckling is

discussed in part I.

Critical shear stress of cylinder in torsion.--The critical

shear stress of a cylinder subjected to torsion is given by the

equation

_r2P

-r_=k_ L2 t

In figure 7 (fig. 1 of reference 14) tile values of k_ are given

for cylinders with simply supported edges (boundary con-

ditions of equation (20)) and cylinders with clamped edges

(boundary conditions of equation (22)). At high values

of Z, the values of k, for thick cylinders are given by special
r

curves for various values of 7 _/_' as discussed in part I.

At values of Z greater than about 100 only a.small

increase in buckling stress is caused by clamping the edges.
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FmVRI_ 12.--Critieal-shear-stress eeefficients for a long eurved strip. (Fig. 1 of referenee 20.)

The results indicated in figure 7 are in very close agreement

with Donnell's results for the same problem, except in the

range 5 <Z< 500 where the somewhat lower curves of the

present paper represent a more accurate solution.

Part I shows that boundary conditions imposed upon u

and v at the curved edges of a panel or cylinder have an

almost insignificant effect on the buckling stresses, whereas

conditions imposed on v at the straight edges may be quite

important. Comparison of figure 12, in which boundary

a/b

299

I0 I0 z
6_

z=77_

FIGIJRE 13.--Critical-shear-stress coeffieients for simply supported curved panels having cir-

cumferential dimension greater than axial dimension. (Fig. 1 of reference 21.)

I I I I I I I I

/Os

conditions on straight edges are considered, with figure 7, in

which conditions on curved edges are considered, indicates

that a similar situation exists with respect to restraint

against edge rotation.

Critical shear stress of curved panel.--The values of /c,

giving the critical shear stresses of simply supported curved

rectangular panels are given in figures 13 and 14 (figs. 1 and

2, respectively, of reference 21). The corresponding bound-

ary conditions on u and v are zero displacement parallel to

'

' ' ' '"%3

FIGVRE 14.--Critical-shear-stress coemelents of simply supported curved panels having axial

dimensions greater than circumferential dimension Dashed curve estimated.) (Fig. 2

of reference 21.)
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the edges and free warping normal to the edges. Figure 13

indicates that, as the curvature parameter Z increases, the

critical shear stresses of panels having a circumferential

dimension greater than the axial dimension approach those

for a cylinder. Figure 14 indicates that, as the curvature

parameter Z increases, the critical shear stresses for panels

having an axial dimension greater than the circumferential

dimension deviate more and more from the critical shear

stress for an infinitely long curved plate. Reference 21

shows that the reason for this deviation in figure 14 is that

at high curvatures the buckling stresses of these panels, as

well as those of figure 13, approach those of the cylinder

obtained by extending the circumferential dimensions of the

panels.

The effects of boundary conditions in the limiting cases of

infinitely long curved strips (fig. 12) and of complete cylin-

ders (fig. 7) suggest that the curves of figure 13 are sub-

stantially independent of edge restraint at large values of Z

but that the curves of figure 14 would be considerably

affected by a change in edge restraint.

Long curved strips under combined shear and direct axial

stress.--Reference 22 shows that the theoretical interaction

curve for a long curved strip under combined shear stress

and direct axial stress is approximately parabolic when the

edges are either simply supported or clamped, regardless of

the value of Z. This parabola is given by the formula

R_2 + Rz= 1

where R, and Rx are the shear-stress and compressive-stress

ratios, respectively.

• At high values of Z curved strips, like cylinders, buckle at

compressive stresses considerably below the theoretical crit-

ical stresses. In order to take this condition into account,

certain modifications in the theoretical results are proposed

in reference 22 for use in design.

Cylinders under combined shear and direct axial stress.-

The theoretically determined comblnations of shear stress

and •direct axial stress which cause a cylinder with simply

supported and clamped edges to buckle are shown in figure

15 (fig. 1 of reference 23). Considerable variation in the

shape of the interaction curves occurs for low values of Z.

For high values of Z the interaction curves for either simply

supported or clamped edges are similar to the curve for

Z=30.

Because cylinders actually buckle at a small fraction of

their theoretical critical compressive stress, the theoretical

interaction curves of figure 15 cannot be expected to be in

satisfactory agreement with experiment when a very ap-

preciable amount of compression is present. For semi-

empirical curves and a check of available test data, see

reference 23.

CONCLUDING REMARKS

The use of Donnell's equation to find the buckling stresses

of simply supported cylindrical shells leads to simpler results

and involves less labor than the use of equations in which

second-order terms are retained. The buckling stresses

found by use of Donnell's equation are in reasonable agree-

ment with results based on other theoretical calculations.

I I I I
-- Tens�on- --- Compress/oR

,I I

3&

\ ?ens/on Coi7 Dress/on

'_,

\ -.... _

-4 0 4 8 /2

\.,

\

/6 20 _°4

(a) Simply supported edges.

(b) Clamped edges.

FIGURE 15.--Critical combinations of shear-stress and direct-axial-stress coefficients for

cylinders. (Fig. 1 of reference 23.)

Except for the case of axial loading, they are also in reason-

able agreement with test results. Boundary conditions having

to do with axial and circumferential displacements cannot

be handled directly by use of Donnell's equation. This

disadvantage is not considered serious, however, because the

boundary conditions on axial and circumferential displace-

nIent, which are implied by the simple solutions given,

correspond approximately to those that are most likely to

occur in practical construction and because in many cases

the buckling stress is not very sensitive to these boundary

conditions. The restriction to simply supported edges in

Donnell's equation can be removed by the introduction of

a new equation which is equivalent to Donnell's equation

but is better adapted to solution by Fourier series. This

modified equation can be solved for the buckling stresses of

curved sheet having either simply supported or clamped

edges by established methods essentially equivalent to those

in use for flat sheet. This approach permits a simple and

straightforward solution to be given for a number of prob-

lems previously considered rather formidable.

IJANGLEY _ViEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLET FIELD, VA., March 20, 19_7.



APPENDIX A

SIMPLIFIED EQUATIONS OF EQUILIBRIUM FOR CYLINDRICAL SHELLS

The principal sets of simplified equations currently in use

for the equilibrium of cylindrical shells are listed for con-

venient reference. The various sets of equations are equiva-

lent. The referegce papers in which the equations are derived

are also listed. The equations given are generMly not

identical with those in the reference papers but are modified

in certain respects to include all the loading conditions

studied in the present paper or to put them in the notation of

the present paper.

The three following simultaneous equations in displace-

ments u, v, and w (reference 3) are derived from the conditions

of static equilibrium:

b2u.a 1--_b2u q 1+_ b2v . _bw=0 (A1)
bx _" 2 by 2 2 bxby t-r bx

b2v } l--i_ bev 1-]-_ b2u . 1 bw
bf 2 bx 2[ 2 bxby _-r by =0 (A2)

Et by

DV4w _ r(1--t _2) (_y+_ ___t_r)+buw\

/ b2w b2w . b2w tT_.\

Two simultaneous equations in deflection w and stress func-

tion F (reference 6) are as follows:

_ . E b2w_
V/_'+r _-- 0 (A4)

( °5
p=0 (As)

A single equation in deflection w (Donnell's equation, refer-

ence 4) is

DVSw+ Et 54w 4 b2w _ b2w .

a_ bf + V4p = 0 (A6)

The relationships between u and w and between v and w arc

(reference 4)

haw. b_w

rV 4u= -- # _t_y2 (A7)

haw haw (AS)
rV4v= -- (2q- #) bx2by by a
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APPENDIX B

THEORETICAL SOLUTIONS

Donnell's equation for the equilibrium of cylindrical shells

is used to investigate the stability of simply supported

cylinders subject to lateral pressure, axial compression, and

hydrostatic pressure, and of simply supported curved strips

long in the axial direction subject to axial compression.

CYLINDER UNDER LATERAL PRESSURE

If bending of the cylinder wall is neglected, constant

lateral pressure on a cylinder causes only circumferential

stresses. Donnell's equation (equation (A6)) then reduces

to

Et b4w . _ b2w _DVSw +
_+%tV _y_=0 (B1)

where

and p is the pressure applied. (By virtue of the preceding

equation the terms involving p and ¢_2yappearing in equation
r

(A6) cancel in the present case.) Division of equation'(B1)

by D results, with proper substitutions, in the following

•equation:

12Z 264w._ 7r_V_ b2w _
VSw-k L 4 _-t-tcu D _ =o (B2)

The boundary conditions corresponding to simply supported

edges (no deflection and no moment along the edges) are

w(O,y) =w(L,y) =0

b2w . b_w

5x 2 (0,y)=_ (L,y)=0

A solution of equation (B2) satisfying the boundary condi-

tions for simple support is

V m_xW=Wo sin sin L (B3)

where X is the half wave length in the circumferential direc-

tion. Combining equation (B3) and equation (B2) yields

the following equation:

12Z2m 4

(m2-]- fl2)_d 7r4 k_fi_(m2+_)_=0 (B4)

The solution of equation (B4) for k u is
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k_,= (m2+fl_)_4 12Z2m4
_2 _r4f12(m2 I_f_2)2 (B5)

where

L

The critical value for ky is found by minimizing the right-

hand side of equation (B5) with respect to m and fL If the

numerator and denominator of the last term in equation

(BS) are divided by m 4, it becomes evident that under the

restriction of integral values of m, kv will be a minimum

when m=l. Equation (B5) therefore becomes

/ca_ (1 +f12)_ 12Z 2 (B6)
_ } _ ( 1+ IS_)2

The results found by minimizing this expression for k_ with

respect to _ (considered continuously variable) are shown in

figure 1 by the curve independent of r/t.

At low values of Z, buckling is characterized by a large

number of circumferential waves. As Z increases, the num-

ber of circumferential waves decreases until it finally becomes
/ ._\

(x=Ir@]), corresponding to buckling into an elliptical
two

cross section. The curves for buckling into two circumferen-

tial waves are shown in figure 1 as the curves for various
r

values of- i _/_. The equations for these curves are

found by substituting in equation (B5) the last of the follow-

ing expressions for fl:

fiL2L2/ Z

CYLINDERIN AXIALCOMPRESSION

When only axial stress is present, equation (A6) becomes

D s . Et b4w . V* 5_W--o
V w-+-_- _#+_,t bx 2- (B7)

Division by D results, with proper substitutions, in the

following equation:

12Ze b_w _ V_ bsw (B8)
VSw4 L _ bx _ t-k,_ _=0

Combination of the deflection equation (B3) with equation

(B8) yields the following equation:

12Z_m _

(m2-{- f12)4-] _4 k_m:(m2+B2)_=O (B9)
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The solution of equation (B9) for k_ is

(m 2_[_ R2"_2 ] 2Z 2m2

lo_= _ m(" _ _4(m_+[3_)_

The critical value of k_ for a given value of Z may be found

by minimizing lc_ with respect to the parameter

(m:+_) _

m 2

If no restrictions are placed on the value that this parameter

can take, the minimum value of k_ is found to be

k_=_ Z=0.702Z (131o)

which coincides with the results generally given for the

buckling of long cylinders.

For values of Z below 2.85, however, the straight-line

formula (equation (B10)) cannot be used, since it implies

either imaginary values of the circumferential wave length X

or the number of axial half waves m below unity. The

critical stress coefficient k_ for Z_2.85 is found by substitut-

ing the limiting values B=0 and m=l in equation (B9).

The results are shown in figure 3.

CYLINDERUNDERHYDROSTATICPRESSURE

Hydrostatic pressure applied to a closed cylinder produces

the following axial and circumferential stresses:

The equation of equilibrium (equation (A6)) when both

circumferential and axial stress are present is (since V4p=0)

D S Et b4w 4 b2w 4 b_w
V w+_ _d-_tV b_d-¢#V _y2=0 (Bll)

By use of the definition

C_ 2DrL2

equation (Bll) can be written

VSw -_ L4 bx 4 _-C_L2 - _2+_-_)=0 (I312)

If the deflection equation (equation (B3)) is combined with

equation (B12), the following expression results for U_:

U= (m2+B2)2_t_ 12Z2m 4
_2 t

(B13)

The critical value of Cp is found by minimizing the right-

hand side of equation (B13) with respect to m and fl, with

due regard to the values which m and fl may assume. It

can be shown that the minimum vMue of C_ is found by

taking m equal to 1, so that equation (B13) becomes

(B 14)

Equation (B14) is equivMent to an equation derived by

Von Mises (reference 3, p. 479). The results of minimizing

Cp with respect to _ are shown in figure 4. (The curves

given for various values of t_l--_2 have the same signif-

icance as in the case of a cylinder buclding under lateral

pressure alone.)

LONG CURVED STRIP IN AXIAL COMPRESSION

Because it merely describes equilibrium at a point, equa-

tion (B7) applies to the buckling of a long curved strip as

well as to cylinder buclding. In modifying this equation to

obtain nondimensional coefficients as in equation (B8),

however, it is convenient to define k_ and Z in terms of the

width of the strip b rather than in terms of the axial length

L, which applied in the case of the cylinder. Accordingly,

equations (B7) and (B8) for a cylinder in axial compression

may be applied also to the buckling of a curved strip, long

in the axial direction, subjected to axial compression,

provided the curved width b is everywhere substituted

for the length L. Substitution of the deflection

_rx n_ry
w=w0 sin _ sin b

into equation (B2) (modified by substitution of b for L) gives

(n2+f12)2 l- 412Z2_2
(B 5)

where

b

Equation (B15) is very similar to equation (B9) and each

equation yields the same critical value for k_ at large values

of Z. At small values of Z, the minimum value of k_ is

found by taking n=l in equation (B15) and minimizing

with respect to _ the resulting expression for k_. The results

are given in figure 10 together with results found by Leggett

(reference 8).



APPENDIX C

PARAMETERS

It is shown that Donnell's equation implies that under

certain limitations the buckling coefficient k, familiar from

flat-plate theory, can be expressed in terms of the curvature

parameter Z alone in the case of a complete cylinder or a

curved rectangular panel of given length-width ratio.

Donnell's equation (A6) is (when p is constant or zero)

DVSw+_ b4w 4 _2w _2w 52w\ +tv @ (c1)
Leb

X

.-5=_

_7

and

V _--5_J 5_
a -- 5_2 • 57_

Then

/ 5 2 52 \

Multiplication of equatio n (C1) by bs and substitution of

the dimensionless coordinates } and 7 gives

b_tv 5_w. b_w__
Etb4 b4w Jr b2tVa 4 z_

Division by D results in

VoSw4 Etb4 b4w b2t 4/ b2w b2w b2w'_= 0
-vo 5¢/

Et 3

or, since D= 12(1--_z)'

54w 2 4/- 52w - 52w - 52w\

(c2)
where

5 2

z=;_ 4i-. _
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Even without solving this equation it is clear that w must

be a function of the independent variables _ and 7, and also

the parameters Z, lc_, k_, and ku, and the derivatives of w

will be functions of the same variables and parameters.

Thus, if only one type of loading (represented by the buckling

coefficient k) is present, equation (C2) may be written

¢_(_,7,Z,k)-l-12Zff2($,7,Z, lc)-]-Tr21c/3($,7,'Z,k)=O (C3)

where 2Cl,J:, and f3 are definite, though unknown, functions.

The variables _ and 7 may now be eliminated by integration

of both sides of this equation over the entire range of _ and n.

In the case of a curved panel of circumferential dimension a

and axial dimension b the resulting equation is

a

d_ dT[.f_(_,7,Z,k) + 12Z_(_,7,Z,k) +

_U_(_,7,z,k)]=0 (c_)

The integrals of the functions fl, f_, and fs depend only

upon Z, k, and _he value of the ratio a/b. Accordingly,

equation (C4) implies that a relationship of the following

type exists :

Equation (C5) indicates that for any given vMue of the panel

aspect ratio a/b, the critical-stress coefficient k depends only

upon Z.

If a complete cylinder of length L rather than a panel of

length b i_ under consideration, and the deflection w is

periodic with wave length 2X in the circumferential coor-

dinate, the integration

a

Ji _ d7

appearing in equation (C4) may be replaced by

2),

_d7

where _ and 7 are now defined as x/L and y/L, respectively.

The result then becomes

or
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The actual buckling stress is found by mininfizing k with

respect to 2X/L.

Theoretically, X must satisfy the equation

rrr=nX (C7)

where n is the number of circumferential waves and therefore

an integer. When many circumferential waves are present,

however, this restriction does not significantly affect the

buckling stress, and the minimization of k with respect to

2b_ (considered leads to the resultcontinuously variable)

k=/,(z) (cs)

Equation (08) indicates that provided the number of cir-

cumferential waves is not too small the critical-stress coeffi-

cient for a cylinder depends for practical purposes only upon

the curvature parameter Z.

When n is so small that its integral character must be taken

into account, it appears from equations (C6) and (C7) that

lc depends upon both Z and r/L. Since, however,

r_ 2 1 r ,
Z/=Z ¥

]cfor small values of n can alternatively be expressed in terms

r 2

of Z and _ _, as in figures 1, 4, and 7.

By a sinfilar analysis, it can be shown that when the buck-

ling of a cylinder under hydrostatic pressure is represented

by plotting the pressure coefficient Cp against Z, a single

curve is obtained except where the small number of circum-

ferential waves requires splitting the cm've into a series of

curves for different values of _- _/1--/,2.

APPENDIX D

BOUNDARY CONDITIONS ON EDGE DISPLACEMENTS WITHIN THE MEDIAN SURFACE

The solution of Donnell's eighth-order partial differentfal

equation for the stability of cylindrical shells is not unique

under the imposition of the ordinary boundary conditions

for simply supported or clamped edges. Two more bound-

ary conditions at each edge, for example, one condition for

u and one for v, are required to define completely the phys-

ical problem and are therefore needed to make the solution

unique. Because only w appears in the equation, boundary

conditions on u and v cannot be imposed directly; they may,

however, be implied by the method of solution. The put-

pose of this appendix is to show what boundary conditions

on u and v are implied by the method of solution used in

the present paper. In order to simplify the discussion, the

analysis will first be made for the case when only axial

compression is present and will then be extended to other

cases.

When only axial stress is present, Donnell's equation

(equation (A6)) becomes

DVSwq__t_2 b_w 4 52w

If the shell described by this equation is a curved panel with

the origin of coordinates in one corner of the panel, a solu-

tion satisfying the usual boundary conditions for simple

support is

n_ryW=Wo sin m_x sin (D1)
a b

where m and 'n are integers. This solution is also the

solution to the problem of the buckling of an infinite two-

dimensional array of panels identical to the one under con-

sideration. (See fig. 16.) When such an array buckles, the

displacements u, v, and w as w'ell as the stresses, described

by the stress function F, may be presumed to be periodic

over the interval 2a in the axia] direction and 2b in tbe

circumferential direction.

Any function u(x, y) that is periodic with a wave length

2a in the x-direction and with a wave length 2b in the

y-direction may be expanded as follows (see, for example,

reference 26) :

u=_ _,a .... sinmTrXsill_-Y+
m=l n=l a

_, _ bm_ sin m_rx cos +
m=l n=0 (:b

_, _c .... cos a sinb+
m=0 n=l

_ 7_JrX %?ry
_, _,, d .... cos -- cos --
m=O _z=0 gb b

(])2)

/

/

\
\

J

/
/

/

/ /

/
/

/

/

7 /

\ \
\, \

FIOUI'_E 16.--Two-dimensional array of identical curved panels.
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The relationship which must exist between u and w is

(equation (AT))

b3w. b3w

rV4u = --1_ _ q bxby2

Substitution into this equation of the expressions for u and w

from equations (D2) and (D1), respectively, and use of the

orthogonality of the functions in equation (D2) leads to the
result

Accordingly, the boundary conditions on u are

u(x,O) =0 (D3)

u(x,b) =0 (D4)

bu (0,y)=0 (D5)
bx

• bu

b_ (a,y) = 0 (D6)

Similarly by use of equation (A8) instead of equation (A7)

it can be shown that the boundary conditions on v are

v(O,y) =0 (D7)

v(a,y) =0 (D8)

b v (x,0) =0 (D9)
by

b_ (x,b) =0 (D10)
by

The boundary conditions of equations (D5), (D6), (D9),

and (D10) may be combined to give four boundary condi-

tions on the stresses induced by buckling. These boundary

conditions, which are also derivable from equation (A4) by

a method analogous to thag iust used to derive the conditions

relating to u, are

b2F

by 2 (0,y) :0 (Dll)

b2F

by 2 (a,y)=O (D12)

b_F (x,O)=O (D13)
bx 2

b2F (x,b)--O (D14)
bx 2

where b2F and b2F
bye"- _ are, respectively, the median-surface

axial and circumferential stresses caused by buckling. The

eight boundary conditions given by equations (D3), (D4),

(D7), (D8), and equations (Dll) to (D14), plus the eight

boundary conditions on w for simple support of the four panel

edges taken together uniquely determine the buckling stress.

Although the preceding discussion of boundary conditions

started with the assumption of axial stress only, the only use

made of this assumption was in obtaining equation (D1) as

the solution for the bucMing deformation. The same defor-

mation, and hence the same arguments, apply when circum-

ferential stress is present. When shear is present, a series of

terms of the type in equation (D1) must be used to repre-

sent the deflection surface, and hence series of terms occur

in the expressions for u, v, and F. Since the boundary condi-

tions derived in the preceding analysis apply to each of the

terms individually, by the principle of superposition they

must also apply for the sum, so that equations (Dll) to

(D14) represent the boundary condition no matter what the

applied stresses are.

In summary it may be stated that the substitution of one

or more terms of a double-sine-series expansion for w into

Donnell's equation and solution of the resulting equation for

the buclding stress gives the solution corresponding to the

following boundary conditions:

(1) Each edge of the panel (or cylinder) is simply sup-

ported; that is, the displacement normal to the surface of the

panel and the applied moments are zero at the edges.

(2) Motion parallel to each edge during buckling is

prevented entirely.

(3) Motion normal to each edge in the plane of the sheet,

occurs freely.



APPENDIX E

COMPARISON OF RESULTS OBTAINED BY USING DONNELL'S EQUATION AND THE MODIFIED EQUATION IN THE
STABILITY ANALYSIS OF SIMPLY SUPPORTED CURVED PANELS

SOLUTION OF DONNELL'S EQUATION

Donnell's equation expressing the equilibrium of a curved

panel under constant median-surface stresses can be written

in general form as

DVSwq__ b4w • 45:w 4 b2w • b2w
-bx4q-a,tV _x2q-2rtV bT_-q-z,,tv4 _=o (El)

where x is the axial coordinate and y the circumferential

coordinate. Division of equation (El) by D and the int{o-

duetion of the dimensionless stress coefficients kx, ky, and

k,, and the curvature parameter Z results in the following

equation :

VSw-_

where

and

12Z2 54w " k v2 V4 __i52w_2k, _ V4 b2q]) ' -- T'2 4b2q_)
b_ 6_+ _2 bx 2 , _ bT_-_v _y2=0

(E2)

b2t

]cz==(7z7c2D

k,= r b2t
r?D

b2t

Icy--=-o"u 7r2D

5 2

Z=r_ 4T--_ _

Equation (E2) can be represented by

Q, (w) = 0

where Q_ is defined as the operator

(E3)

b 2 ,/i -2 b 2 71-2 b 2

12ZZ b4 " " _V _- oxoy o _2Vs__ b4 _:fi_i_k_ _r2 4 2k,62 V4 _]_k_ _ V4

The equation of equilibrium (equation (E3)) is solved by

using the Galerkin method as described in the section

entitled "Theory." In applying this method the unknown

deflection w is represented in terms of a set of functions (see

equation (9)), each of which satisfies the boundary conditions

but not in general the equation of equilibrium. A suitable

set of functions of this type, which satisfies the boundary

conditions for simple support, is

W= _ amn sin m_rx . nTry-- sin- (E4)
_t=l n=l a b

where the origin is taken at a corner of the plate. Substi-

tuting in equations (11) and (12)

f,_(x) =sin m_x
_b

nvy
g_(y) = sin b

and

Q=Q1

and performing the integration over the whole plate (limits

x=O, a; y=O, b) gives the set of equations

a_,_ [(m2+n 2 a2"_b_] q 12Z2m4a4_r4b4

,_ Cb2

kzm" _ (m2 q-n 2 a'2k2_) --ku n2 a4 / a2\2"-1

a_V32k_ a.a _ p2__q2 _) mnpq_
_ _ #___1_ _._ =0 (E_)q=_ (m2--p _) (n2--q 2)

where m=l, 2, 3, . . . , n=l, 2, 3, . . . , and p and q take

only those values for which m±p and n:t:q are odd numbers.

Equation (E5) represents an infinite set of homogeneous

linear equations involving the unknown deflection coeffi-

cients a_. In order for the deflection coefficients to have

values other than zero, that is, in order for the panel to

buckle, the determinant of the coefficients of the unknown

deflection coefficients a,_must vanish. This determinant can

be factored into two subdeterminanLs, one involving the

unknown deflection coefficients a_ for which i±j is odd

and the other involving those coefficients for which i±j is

even. Buclding occurs, therefore, when either of the two

subdeterminants vanishes. Only the buclding criterion in-

volving the even subdeterminant is treated here. This

criterion is
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where
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(/,11 (hi3 a22 a31 a33 • • .

4 / a2V

MH 0 _[4+4b2 ) 0 0 . • ,

4 / a2\ _

0 M= 0 0 • • •

4, 30
/ a2\ 2

0 0 --4-k4q-4_)5 M3, 0 • • •

36 / aS\ 2

0 0 _[4q-4 ,_]\ o-/ 0 M33 • •

m=l, n=l

m---_l, n=3

m=2, n=2

m=3, n=l

m=3, n=3

7rSb 3 f-/ (/2",,4

----0

aS / a2\2 a4 2 as"\2-]

12Z2m4a4_r4b_ kxm2b2[m2+n2_) --kcn2_(mS-bn b2) .J

Division of euch column of the determinant in equation (E6) by the proper

gives the simplified equation

/ a2\2

_] as= _d' a31 q-_) a33 • • •

4
Nll 0 _ 0 0

4
0 N_3 5 0 0

4 4 4 36

-3 N_ 5 25

4
0 0 Na 0

5

36
-- _ 330 0 25 0 _[

(E6)

=0 (E7)

where

_r2ba V / a2\ 2 (/2 Cb43

12Z2m% 4 s 2 k_m2b2-- kvn2 b- l

]

The vanishing of this determinant is the criterion for the

symmetrical buckling of the shell. The same buckling cri-

terion results from the use of the modifed equation, as is

shown in the following section.

SOLUTION OF MODIFIED EQUATION

The modified equation expressing the equilibrium of a

curved panel under constant median-surface stresses in

general form is

DV4W+ Er2t -4 64w " b2w b2w " b2w -¢_t _x 2 + eft (E8)V _x4-t- bxbyq-_tby_=O

Division of equation (E8) by D and simplification of the

result gives the following equation:

4 12Z s 4b4qy) _ _s_)2q_ . _ ,jr 2 bsq2)___ky_:b_w
V w+--b_4-- V- _--t-k= b_.Oz_ + 2G b_bxby _, by2= 0

(E9)

Equation (E9) can be represented by

Qs(w) =0 (El0)

where Q_ is defined as the operator

5" 12Z_ _ b4 _r2b_ ' 2k _rs b_ --- _r252
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By use of the Galerkin method and by use of the expression

for w given in equation (E4), the following set of equations

analogous to equations (E5) are obtained

[-/ 2 2a_\2 12Z2m4a4 a2 a("]
a,,.,l[m +n _) + _a2\ 2

kxm2b_--kvn2b4J+

32k_a 3_ _ mnpq
7r p=l_"J"_"j apqq=l(m:--p2) (n2--qe) : 0 (Ell)

where m=l, 2, 3, . . . , n=l, 2, 3, . . . , and p and _ take

only those values such that m ±p and n ±q are odd numbers.

As in the case of the solution of Donnell's equation, the

stability determinant representing equations (Ell) can be

factored into an even and an odd subdeterminant. The

even one is

all a13 a22 a31 a33

re=l, n=l

m=l, n=3

m=2, n=2

m=3, n=l

m=3, n=3

4
N,, 0 _ 0

4
0 N13 5 0

4 4 4

9 5 N22 --_

4

0 0 5 N31

36
0 0 _ -- 0

25

0

0

36

25

0

N3_

=0 (El2)

The stability determinant (equation (El2)) obtained from

the modified equation is identical with the simplified stability

determinant (equation (E7)) obtained by use of Donnell's

equation. This identity holds for the odd as well as the even

determinants.

Although the stability determinants obtained by use of

the two equations are identical and yield identical buclding

loads, the determinant in equation (E7) consists of the
/ a2\:

coefficients of ": ":
atj(z +3 b_) ' whereas the determinant in

equation (E12) consists of the coefficients of a,j. Accord-

ingly, although the buckling loads found by the two methods

are bhe same, the buckle patterns are different. Of the two

buckle patterns the one found by the use of the modified

equation is believed to be correct. This conclusion has been

verified for the limiting case of a flat plate (Z=0).
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