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A Simplified Method to Calculate Failure Times in Fault-Toleranit
Systems

SHARAD C. SETH AND LESTER LIPSKY

Abstract—A simplified method is presented to calculate moments of failure
time and residual lifetime of a fault-tolerant system. The method is based on
recent results in queueing theory. Its effectiveness is illustrated by considering
a dual repairable system from the literature. '

Index Terms—Failure-time distribution, fault-tolerant systems, mean time
to failure (MTTF), mean residual life (MRL), renewal theory.

I. INTRODUCTION

Fault-tolerant computing systems are commonly modeled as
continuous-time Markov chains for reliability analysis [1], [2].
Systems both with and without repair may be modeled this way for
calculation of reliability, mean time to failure (MTTF), mission time,
mean time to repair, mean residual lifetime (MRL), and other im-
portant measures. The model may also be extended to calculate
performance-related measures for gracefully degrading systems [3].
The purpose of this correspondence is to call to attention recent results
[4], [5] which simplify calculation of MTTF and higher moments
of the time to system failure. The particular case of MTTF was also
obtained by Laprie and is reported in [2]; however, it is argued that
the higher moments are of equal interest, e.g., in calculating MRL
and its variance. With the reported result, it becomes quite feasible
to run parametric studies on these other measures as well. This is il-
lustrated by considering an example from the literature [6]. It is in-
teresting to note that the calculation of MTTF for the example reveals
an unnoticed error (albeit, a minor one) in this classic paper,
suggesting the difficulty of computation by the traditional method.
First thls method will be briefly reviewed to provide a basis for com-
parison.

II. TRADITIONAL METHOD OF CALCULATING MTTF AND
HIGHER MOMENTS

‘Assume that the Markov model has m + 1 states labeled Sy, S,
S2,°-, S where S represents the system failure state. Let p;(7)
be the probability thdt the system is in state S; at time ¢, given the
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initial system state at ¢ = 0. Further, assume that for ; = > AjjAt is
the probability of making a transition from state S; to S; in a small
time interval At. Then, for continuous Markov chains, the pi(t)’sare
solutions of the following vector differential equation!:

p'(1) =—p()Q 1)
Where Q is an (m + 1) X (m + 1) matrix such that
' Qy=-Nj, i#]
and
Qi = Nio+ At + -+ + Nimy).

Let ¢r denote the time to system failure. This represents the time to
first transition to the state So which can, therefore, be made an ab-
sorbing state without affecting the distribution of #;. With this as-
sumption, the matrix O has the form

0 0
T 4¢
where Qg is the (m X m) submatrix of Q corresponding to the op-

erational (“good™) states of the system. Since the rows of Q must sum
to zero, we have

g7 =—Qge” 3)

where e is the m-dimensional vector with all 1’s. Now, by definition,
the moments of ¢ are given by

1= j;w t"po(t)dt,
(Note that MTTF = ¢}.) Also, from (1) and (2),
po(t) = —pG(1)q™ (%)

nzl. 4)

and
Pe(t) = —pc(1)Qc (6)

where p = (po, p;). Under the reasonable assumption that V = Q5!
exists [that is, the system eventually reaches the failure state irre-
spective of the initial probability vector ps(0)], (6) has the solu-
tion

pc(1) = pc(0) exp (—Qct)V )

where pg(0)e” = 1. Equatlon (7) can be substituted in (5) to obtain
Po(?). Then the integral in (4) can be evaluated to yield the nth mo-
ment of ¢;. However, even for a small number of states, the procedure
becomes computationally expensive because of the need to compute
the matrix function exp (—Qgt). Further, for hand computation,
necessary in parametric studies such as [6], this lengthy and tedious
process is prone to errors.

III. A SIMPLIFIED METHOD

The basis for a simplified calculation of moments of z; can be found
in equivalent results obtained recently by Carroll ef al. [4] and by
Neuts [5]. However, as these results appear outside the context of
fault-tolerant computing, we will paraphrase them here in terms well
understood within the field.

Recalling that ¥ denotes Qg', let us define

Y[V = pc(0)VreT. t))
Then it can be shown that

! Vectors, denoted by boldface letters, are assumed to be row vectors; col-
umn vectors will be denoted explicitly as transposes of row vectors.
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1= nhy[Vn]. )

The special case of this formula for MTTF (n = 1) was also derived
by Laprie solving the forward Kolmogorov equations; it appears in
[2].

The MTTF concerns the mean lifetime of a system from its first
startup. What may be of equal importance is the time to failure for
a system given that it has already been operational for an indefinite
(unknown or averaged over) period. This is commonly known as the
mean residual lifetime (MRL) and has been shown to be (see [7, p.
173])

;2
MRL = L -

(10)
2tf
From (9) and (10),
_v
MRL 9 (11)

which is computationally quite efficient.

It is worth emphasizing that only for exponential decay rates is the
MRL equal to the MTTF This can be seen by rewriting (10) as-
suming that 62 = 1} — 17 and ¢2 = ¢2/1}:

MRL = —L I+
2y s 2,

=511 + ¢?). (12)

Note that for exponential decay rate, ¢ = 1 and MRL = MTTF.
There are realistic situations for both ¢2> 1 and ¢2 < 1. For instance,
systems in which intrinsically faulty devices may occur (perhaps due
to inadequate acceptance testing by the manufacturer) will have ¢2
much greater than one, giving the behavior that if a device has already
lasted one MTTF, it most surely was not one of the faulty types, and
therefore will last much longer yet. On the other hand, multistage
repair processes are examples where ¢2 is much less than one, for here,
if a long enough time has elapsed, the system must be in one of the
later repair stages and will finish soon.

The matrix ¥ contains considerable information beyond that which
is implied by (9). For instance, since (9) is valid for any initial vector
pc(0), by letting pG(O) =(0,0,---,1;0,---,0),itis seen that (VeT);
=Vii+ Via+ -+ Vi, is the mean time it will take the system to
fail given that it is in state “;” initially. Furthermore, it is known from
renewal theory [4], [5] that the mean time the system will spend in
state ““i” overall before failure is (pgV);. That is, the system will go
from one up state to another, returning to state “i”’ an average of
(pcV)/t; times before failure where t; = 1/(\;; + )\,2 + o4 i)
It follows, then, that the conditional probability of finding the system

62 9

in state “,” given that it has not yet failed and has been operational
for an indefinite period, is
(P (0)V);
(pr)i = : (13)
i 114

Let ¢, be the random variable denoting the time to system failure
given that it has already been operational for an indefinite period.
Then, clearly, MRL is the first moment of ¢,. Computation of the
moments of 7, is almost as easy as those of #.. One need only observe
that p, plays the same role for residual time that p(0) plays for #.
Thus,

pc(0)V2e” Y[V?]
MRL = p,VeT = =
y([V] y[V]
which is identical to (11). In general, the nth moment for residual time
is [compare to (9)]
Yy
v[V]

The formulas for variance and coefficient of variance for both failure
and residual times are given below:

=292 = (YIv])y?

[ —
t" =n!

(14)
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0

Fig. 1. Markov model for failure-time calculations for a duplicated re-
pairable system [6]. Definition of states: |—both system modules up;
2—one module up, the other down, system is operational; 0—system is
down.

. ¢[V31_(¢[V21)2
“=2ym e (15)
%
ST
e
<= o b

IV. EXAMPLE

Arnold [6] analyzes the effect of fault coverage on the reliability
measures of a repairable system. Fig. 1 shows his Markov model for
MTTF calculation for a duplicated repairable system. The parame-
ters used in the figure are
A = failure rate of each module (time to failure and repair
A, = repair rate for a failed module] are exponentially distributed)
p = fault coverages, that is, proportion of faults

from which the system can automatically recover.

The @Q-matrix for the system can be directly written from Fig. 1:

0 1 2
0 0 0 0
2=, “M(L=p) 2\, =2Ap
2 -\ =20 (M +A)
Clearly,
Y= [2)\1 "2)\1‘D]_l
=X M+
_ 1 M+ A 2Ap
MMM =PI N 2\ ] - (162)

Letg=1—pandd= Al/)\z;then
1 +5 26(1 —q)]

NV = (16b)

2(q +9)

Assuming that the system starts in state 1, we have, from (9) (in time
units of 1/Ay),

‘ _ [10] [1+5 260 -g)|[1] _1+36—28q
MXMTTE =279 1 1 ”] 2q +9)
(172

Similarly, the second moment is

2 Arnold appears to have made a computational error in calculating the
MTTF—his numerator has the equivalent of 1 + 8(2 + 3¢). This does not,
however, invalidate his results because he is mainly interested in the cases for
which 8§ « 1; under this condition, both expressions reduce to the same ap-
proximation.
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N2 2[10] [1 +6 2001 - q)rm

4g+06)2| 1 26
=l+66+752—26q(2+35)' (18)
2(q + 6)2
;r;)m (17) and (18), we have the mean residual life (in units of
1):

1+ 65 + 762 — 26q(2 + 36)
200+ ¢)(1 + 36 — 268q)

_ 1+6d

T 26+ q)(1 + 30)

1435

T2 +4q)

This shows that the effect of fault coverage on MRL is very similar
to that on MTTF when both 6 and g are very small. Specifically, the
effect becomes pronounced as the fraction of uncovered faults g ap-
proaches the ratio 6 of failure rate to repair rate. For this simple ex-
ample system, the coefficients of variance (¢, and c,), as calculated
from (15), can be seen to be very close to unity. More interesting
situations occur when failure or repair times are assumed not to be
exponential. A detailed analysis of such systems will appear in a
forthcoming paper under preparation by the authors.

)\| X MRL =

V. CONCLUSION

The procedure described may be generalized to determine the mean
time between arrivals to any state s; in the system by treating s;in
the same way as the failure state; the vector p;(0) would have to be
replaced by the vector of transition probabilities from s; to other states
of the system. It is also possible to calculate the mean time between
arrivals to a group of states basically by collapsing the group of states
into a single “superstate.” A special case of this situation occurs when
MTTF is desired for a system modeled with multiple failure states.
Neuts and Meier [8] consider a generalization of an entirely different
kind. They discuss a duplicated system in which each “module” itself
is described by a Markov process with an absorbing state.
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