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Abstract. In this paper we derive a reduced-order approxi-

mation to the vertical and horizontal structure of a simplified

model of the baroclinically unstable Martian atmosphere.

The original model uses the full hydrostatic primitive equa-

tions on a sphere, but has only highly simplified schemes to

represent the detailed physics of the Martian atmosphere, e.g.

forcing towards a plausible zonal mean temperature state us-

ing Newtonian cooling. Three different norms are used to

monitor energy conversion processes in the model and are

then compared. When four vertical modes (the barotropic

and first three baroclinic modes) are retained in the reduced-

order approximation, the correlation norm captures approxi-

mately 90% of the variance, while the kinetic energy and to-

tal energy norms capture approximately 83% and 78% of the

kinetic and total energy respectively. We show that the lead-

ing order Proper Orthogonal Decomposition (POD) modes

represent the dominant travelling waves in the baroclinically-

unstable, winter hemisphere. In part 2 of our study we will

develop a hierarchy of truncated POD-Galerkin expansions

of the model equations using up to four vertical modes.

1 Introduction

Mars is one of the terrestrial planets, having a relatively thin

atmosphere in terms of physical depth, composed primarily

of carbon dioxide with small amounts of other gases, and

covering a solid surface. The inclination of the Martian po-

lar axis to the ecliptic plane (25.2◦ compared to 23.9◦ for

Earth) implies that Mars has seasons like the Earth. Both are

rapidly rotating planets, rotating at about the same speed (the

Martian day is 24 h 39.4 m), so that Coriolis forces will have

similar magnitudes. Much of the water on Mars is believed

to be in the permafrost beneath the surface, leading to low

observed atmospheric concentrations. There is insufficient

water vapour to permit large amounts of latent heat release
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in convective clouds, but absorption of short wave radiation

by suspended dust in the lower and middle atmosphere can

produce significant local heating rates (Gierasch and Goody,

1972; Pollack et al., 1979). This results in a fundamental dif-

ference between the two planetary circulations with the Mar-

tian circulation driven primarily by the heating of the surface

and dust suspended in the atmosphere.

Spacecraft observations, notably those made by the Viking

Landers, have provided evidence for the existence of tran-

sient baroclinic eddies in the atmosphere of Mars. Such

waves have been thought to exist since the work of Hess

(1950), and their occurrence was confirmed by the work of

Barnes (1980, 1981), who showed that the oscillations were

often regular and repeatable, and that, by assuming the waves

were geostrophic and sinusoidal, typically flows were dom-

inated by wavenumbers 3 and 4 with phase speeds between

15–16 ms−1. Barnes et al. (1993) studied the baroclinic wave

activity using the NASA Ames Mars model and found that

zonal wavenumbers 1–4 with periods 2–10 days existed, and

that such oscillations were regular in time. Collins et al.

(1996) found evidence for dominant baroclinic modes at

wavenumbers 1 and 2 in the Oxford Mars General Circu-

lation Model (MGCM), with similar periods to waves de-

tected in the Viking Lander surface pressure data. More

recently Banfield et al. (2004) have shown the presence of

strong wavenumber 1, and to a lesser extent 2 and 3, travel-

ling waves in thermal remote sensing observations from the

Mars Global Surveyor spacecraft.

The autumn, winter and spring circulation of the Martian

atmosphere is dominated by these heat transporting baro-

clinic transients; during the summer only small fluctuations

of pressure, other than internal tides, occur and no travelling

waves are typically observed in either hemisphere.

Flows observed in the Earth’s atmosphere and in labora-

tory models of hydrodynamical systems often provide evi-

dence of behaving as if they have a relatively small num-

ber of degrees of freedom. Selten (1993) introduced a two-

level quasi-geostrophic hemi-spherical model of the Earth’s

atmosphere, formulated in spherical harmonics with vertical
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Empirical Orthogonal Functions (EOFs) to describe the evo-

lution of the circulation. The EOFs were calculated using

either a kinetic energy (KE) or a total energy (TE) norm,

and evolution equations for their amplitudes were derived

by the Galerkin projection of the model equations onto the

EOF basis. He found that the global structure of the system

could only be described in a truncated TE model since the

KE model failed to simulate adequately the energy conver-

sion processes which are fundamental to baroclinic flows.

In a similar study of simplified Earth-like circulations, Sel-

ten (1995) used a T21 spectral barotropic model and showed

that it could be accurately modelled by using just 20 EOFs,

which were computed in spectral space, while Selten (1997)

concluded that an EOF basis is more efficient at describing

large-scale atmospheric dynamics compared to spherical har-

monics. However this was not the case for the baroclinic

model.

The main objective of this paper is to seek a low-

dimensional description of a baroclinically unstable atmo-

sphere, under conditions appropriate to Mars, by deriving a

reduced-order approximation of the vertical and horizontal

structure of the system, retaining only the dominant baro-

clinic and barotropic modes. Then (in Part II of our study)

we shall combine this with a POD-Galerkin expansion of the

model equations. The POD or Proper Orthogonal Decompo-

sition method is a procedure for calculating the eigenvectors

(called the POD modes) of the time-averaged autocorrelation

function of a given time series v(x, t) (Lumley, 1967, 1981).

The resulting eigenvectors are optimal, in the sense of energy

capture. The corresponding eigenvalues are measures of the

variance contained in each mode and describe the relative

energy content of each POD mode.

The vertical modes will be obtained, in Sect. 3, via the

solution of a variational problem for data from a numerical

model and corresponding to a wave number 3 observed dur-

ing winter in the Martian southern hemisphere (SH).

Reducing the system to its essential degrees of freedom

may provide useful insight into the underlying physical pro-

cesses which occur in the original model, revealing the dom-

inant interactions between the various modes and their con-

tributions to atmospheric variability on various timescales.

Dynamical systems methods will then be employed to anal-

yse the resulting bifurcations.

2 The SGCM

The numerical model in question is that of Collins and James

(1995) and is known hereafter as the Simple General Circu-

lation Model (SGCM). The SGCM is an idealised model in

which the adiabatic, hydrostatic primitive equations of mete-

orology, as described by Hoskins and Simmons (1975), are

solved in spherical coordinates using a spectral representa-

tion in the horizontal and finite-difference σ -coordinates in

the vertical, (where σ=p(θ, φ, z, t)/p∗(θ, φ, t), p=pressure,

p∗=surface pressure, θ is latitude, φ longitude, z height and

t time) with simplified physical parameterisations of heat-

ing and friction. The spectral primitive equation model em-

ploys a triangular truncation at total horizontal wavenumber

21 (denoted T21) and has 10 equally spaced σ levels in the

vertical over a pressure range of 0 to 610 Pa. Surface drag

is represented by Rayleigh friction in the lowest layer with

a time-scale of 3 days (denoted τD). Heating is modelled

as Newtonian relaxation toward a zonally symmetric equi-

librium temperature distribution with a time-scale of 2 days

(representing a typical radiative relaxation timescale on Mars

and denoted τE). For simplicity topography was excluded in

the model in order that the baroclinic waves could be isolated

and would not suffer from orographic modulation (although

this is likely to be important for the real waves on Mars).

2.1 Selecting the governing equations

In selecting the set of governing equations to form the basis

of the POD-Galerkin reduced models which best suits our re-

quirements, we want the equations to describe the flow, but

not be excessively computationally intensive. If the origi-

nal primitive equations are used as the governing equations,

then the computations become too large for simple algo-

rithms, and the retrieval of the eigenvalues and eigenvec-

tors of the autocorrelation matrix (in order to compute the

POD modes) could only be achieved by using sophisticated

and expensive algorithms such as the Iterative Lanzcos Al-

gorithm (ILA). Buizza and Palmer (1995) remark that the

ILA is intended to compute a few of the eigenvalues and cor-

responding eigenvectors of a large symmetric matrix and is

applied to large, sparse, symmetric eigenvalue-problems. Al-

though the highly truncated system which we investigate sat-

isfies this criterion, the adjoint operator must also be coded,

itself a formidable task. An alternative and simpler approach

involves the formulation of the quasi-geostrophic (QG) equa-

tions on a sphere.

2.2 Martian atmospheric behaviour and QG theory

Mars is a rapidly rotating planet, with maximum wind speeds

reachingO(100)ms−1 at a height of 30–50 km above the sur-

face. This suggests that the Rossby number, Ro=U/fL, is

much less than unity for large scales > 1000 km. This is

important since it suggests the QG approximation holds for

atmospheric motions with frequencies <�, the angular fre-

quency of the planet (Andrews et al., 1987). The equations

used will retain the full Coriolis parameter, f=2� sin θ ,

where � is the angular speed of the rotating planet and θ

is the latitude. By including f we consider large-scale, es-

sentially geostrophic motions on a sphere.

If L is the horizontal scale and a the planetary radius, the

restriction to smallL/a permits the QG equations on a sphere

to be used as the governing set of equations for our investi-

gations.
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3 The vertical structures

In this section we discuss how to derive a set of normal

modes to model the vertical structure using data generated

from the numerical model. If a poor vertical scheme is used

then important information concerning physical processes

and energy exchanges may not be captured in the POD-

Galerkin model.

The separable solution approach was used by Flierl (1978)

in an oceanographic context. He showed that linear eigen-

modes in a system with horizontal boundaries are integrated

functions of N2 (the Brunt-Vaïsälä frequency see below). In

a system with homogeneous boundary conditions, a simple

Sturm-Liouville problem has to be solved in order to obtain

the normal modes. In practice it is found that the barotropic

and the first few baroclinic modes are the most significant

(and consistent with the two modes generally represented

by well-calibrated two-layer or two-level quasi-geostrophic

models).

3.1 The QG vertical structure equation

The adiabatic, frictionless Quasi-Geostrophic Potential Vor-

ticity (QGPV) equation in isobaric coordinates takes the form

Dgq

Dt
=
(
∂

∂t
+Vg · ∇h

)(
1

f0
∇2
h8+f0

∂

∂p

(
1

S

∂8

∂p

)
+f

)

= 0, (1)

where Dg/Dt=∂/∂t+Vg · ∇h is the derivative following the

geostrophic flow and q is the QGPV defined by

q =
(

1

f0

∇2
h8+ f0

∂

∂p

(
1

S

∂8

∂p

)
+ f

)
. (2)

The horizontal Laplacian is defined as

∇2
h =

1

a2

(
∂2

∂θ2
+

1

cos2 θ

∂2

∂φ2

)
, (3)

longitude. The geostrophic component of velocity is

Vg=(k∧∇h8)/f where k is the unit vector in the verti-

cal direction, 8(θ, φ, p, t) is the isobaric distribution of the

geopotential and p is pressure. The geostrophic vorticity

term is ξg=∇2
h (8/f0), where f0 is a synoptic scale of motion

for the Coriolis parameter. Finally, the stratification profile is

S=N2/(g2ρ2), where g is the acceleration due to gravity, ρ

is density and

N2 = −
g2ρ

θ0

(
∂θ0

∂p

)
= −

g2P

RT θ0

(
∂θ0

∂p

)
, (4)

is the Brunt-Vaïsälä frequency in isobaric coordinates, where

θ0 is the potential temperature surface from equilibrium; T is

temperature and R is the gas constant for dry air.

Writing 8 in separable form as 8=
∑
i 8̃i(θ, φ, t)Hi(p)

and substituting into Eq. (1), we find that the vertical struc-

ture equation to be solved is

f0
2 d

dp

(
1

S

dHi

dp

)
+ λiHi = 0, (5)

with homogeneous boundary conditions

dH1

dp
|p1

=
dH1

dp
|pn = 0, (6)

where the λis in Eq. (5) form a discrete countable set of

eigenvalues, S is the stratification profile and p1, pn are pres-

sures at the upper and lower boundaries respectively. The

His form a complete orthogonal set and can be orthonor-

malised by setting

1

P

∫ pn

p1

Hi(p)Hj (p)dp = δij , (7)

where P is the pressure difference between the two bound-

aries.

3.2 The Froude number

The Rossby radius of deformation (Rd ) is the characteris-

tic length scale of disturbances in the mid-latitudes (e.g.

James, 1994) and can be interpreted as the horizontal length

scale over which the geopotential height field adjusts whilst

approaching geostrophic equilibrium. In the derivation of

Eq. (5), Rdi=1/
√
λi is the relevant Rossby Radius of de-

formation for each mode. If the Froude number is defined

as F= a2

R2
d

, Eq. (5) therefore provides a spectrum of Froude

numbers {Fi}, where each Froude number Fi corresponds

to a different vertical scaling. Therefore, a2λ0 represents

the Froude number of the barotropic mode, a2λ1 the Froude

number of the first baroclinic mode, and so on. The global

Froude number for the SGCM is taken to be F=a2λ1 since

the vertical length scale of the first baroclinic mode is the

depth of the planetary model. Hence Si will be replaced by

S, with the understanding that i=1.

3.3 Definitions of energy

To derive vertical normal modes which are solutions to the

linearised vorticity equation we assume a separable form for

the streamfunction:

ψ(θ, φ, p, t) =
∞∑

l=0

ψ̃l(θ, φ, t)Hl(p), (8)

so that the total KE of the system on a sphere of radius a

becomes:

KE =
1

2

∫ π

0

∫ 2π

0

∫ pn

p1

(∇hψ · ∇hψ) a2 sin θdpdφdθ

=
1

2

∫ π

0

∫ 2π

0

∞∑

l=0

∣∣∇h(ψ̃l)
∣∣2 a2 sin θdφdθ, (9)

where
∫ pn
p1
HlHmdp=δlm is assumed and p1, pn are the pres-

sures at the upper and lower boundaries respectively.

Taking H0(p) to be the barotropic mode and Hk(p) to be

the k-th baroclinic mode (for k 6=0), following Selten (1993),
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the contribution to the available potential energy (APE) from

the k-th baroclinic mode is:

APEk

=
∫ π

0

∫ 2π

0

∫ pn

p1

(
f0

2

S

(
dHk

dp

)2
)

k

ψ̃2
k a

2 sin θdpdφdθ

=
∫ π

0

∫ 2π

0

(
f0

2

S

(
dHk

dp

))

k

dHk

dp
]pnp1
ψ̃2
k a

2 sin θdφdθ

−
∫ π

0

∫ 2π

0

∫ pn

p1

d

dp

(
f0

2

S

(
dHk

dp

))

k

Hkψ̃
2
k a

2 sin θdpdφdθ.

(10)

Assuming that dHk
dp

|p1
= dHk

dp
|pn=0, we obtain:

APEk =
∫ π

0

∫ 2π

0

∫ pn

p1

λk
(
Hkψ̃k

)2
a2 sin θdpdφdθ, (11)

where the subscript k refers to the k-th mode.

3.4 The vertical modes

We begin by showing that Eq. (5) can be derived from a vari-

ational principle in which we minimise APE in the vertical

direction. If we assume that 8=8̃(θ, φ, t)H(p), then the

APE integrand is proportional to
f0

2

S
( dH
dp
)
2
, as above. The

variational problem becomes that of seeking stationary solu-

tions to the APE functional:

I [H ] =
∫ pn

p1

f0
2

S

(
dH

dp

)2

dp, (12)

subject to the constraint:

J [H ] =
∫ pn

p1

H 2dp = 1, (13)

together with Eq. (6). The original SGCM has an artificial

“sponge” level at the upper boundary (in order to reduce the

problems of spurious energy reflection) and so the vertical

modes satisfying these constraints are perfectly consistent.

Using standard Calculus of Variations, the Euler-Lagrange

equation becomes:

f 2
0

d

dp

(
1

S

dH

dp

)
= −γH, (14)

where γ is the Lagrange multiplier to be determined (c.f.

Eq. (5) if we identify γ with λ) or

LH = λH, (15)

where L=− d
dp

[
f 2

0

S(p)
d
dp

]
. Since f0 is independent of p we

have an eigenvalue problem, where H is the eigenfunction

corresponding to the eigenvalue λ.

Defining F=f 2
0

S
( dH
dp
)
2

and E= ∂2F

∂H ′2 −λ ∂2H 2

∂H ′2 , where

H ′= dH
dp

, then E= 2f 2

S
>0 implies that I [H ] has a minimum

within the range of integration.

This is mathematically significant since, if total energy

(TE) in the system is invariant, then minimising APE max-

imises KE. The first eigenmode which is derived from

Eq. (15) is the barotropic mode which, by definition, con-

tains no APE but instead captures almost all of the KE of the

system. The remaining modes will then tend to contribute

progressively less to the total KE of the system.

From Sturm-Liouville theory (for example see Mikhlin,

1964), since
f0

2

S
≥0 and

∫ pn
p1
(
f0

2

S
)
−1

dp is bounded, we have

|H |e2 =
∫ pn

p1

f 2
0

S

(
dH

dp

)2

dp = λn, (16)

where |H |e is the energy norm of function H . This is iden-

tical to the vertical component of the APE norm used in

Eq. (10), where

[Hn, Hm]e =
∫ pn

p1

f 2
0

S

(
dHn

dp

)(
dHm

dp

)
dp

= λnδnm, (17)

shows the orthogonality of Hn with respect to the energy

norm. The set {Hn(p)}∞n=1 is complete both in terms of en-

ergy and in the sense of convergence in the mean.

Multiplying both sides of Eq. (14) by H and integrating

by parts we obtain

λ =
∫ pn

p1

f0
2

S
(
dH

dp
)
2

dp/

∫ pn

p1

H 2dp, (18)

where we have used Eq. (6). Therefore all non-zero λ’s are

positive. We note that λ=0 is satisfied if H=1 and corre-

sponds to the purely barotropic mode.

We remark here that, since we are solving an atmospheric

problem, the upper boundary condition should be made more

realistic. Indeed, Lindzen et al. (1968) showed that bounded

atmospheric models could produce spurious free oscillations

and concluded that bounded atmospheres do not properly re-

spond to oscillations which propagate vertically. However,

for the purpose of this present study, the vertical structure

equation is solved with homogeneous boundary conditions.

4 The SGCM data

The SGCM with its simplified parameterisations of heating

and friction and the absence of topography has been used

to examine a baroclinic wave number 3 flow during a con-

tinual seasonal numerical simulation of the southern hemi-

sphere Martian winter (Collins and James, 1995).

4.1 The decomposition

By assuming a decomposition of the streamfunction ψ to

be possible in separable form, the amplitude distribution

ψ̃m(θ, φ) of baroclinic mode m can be calculated for each
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Fig. 1. The buoyancy frequency profile, N2, at 52.6◦ S in the

SGCM.

profile, as a function of θ, φ or profile location. If ψj is the

streamfunction for level j , then

ψj =
N∑

m=1

ψ̃mHm(σj ), (19)

where Hi(σj ) is the i-th vertical mode in layer σj . The spec-

tral primitive equation model has 10 equally spaced σ lev-

els, where σ=p/ps , where ps is the surface pressure, as de-

fined earlier. It is therefore convenient to calculate the normal

modes on these surfaces; σj refers to the j th level (see Ta-

ble 1). N is the number of vertical levels (and hence the total

number of normal modes).

The orthonormality condition of Hi becomes

1

P

N∑

j=1

δσjHi(σj )Hk(σj ) = δik, (20)

where P=
∑N
i=1 σi . Since the difference in σ between two

consecutive sigma surfaces is fixed (see Table 1), δσj is con-

stant, so that

HkH
T
k = NI, (21)

where I is the identity matrix. Thus

ψ̃m =
1

N

N∑

j=1

< Hm(σj ), ψj > . (22)

We are thus able to calculate the KE and APE in each of the

modes.

The N2 profile at latitude 52.61◦ S is shown in Fig. 1,

while the corresponding stratification parameter profile is

shown in Fig. 2. Because the streamfunction has a domi-

nant steady wave 3 in the southern hemisphere latitude band

40◦ S–60◦ S (see Figs. 3 and 4), the stratification was aver-

aged over this interval, because of the significant atmospheric

activity there. The normal modes were optimised over this

chosen band.

Fig. 2. The stratification parameter, S, at 52.6◦ S.

Fig. 3. Southern hemisphere stereographic projection maps of the

SGCM modelled streamfunction data during the southern winter

solstice (LS=90◦). The steady wave 3 streamfunction is shown at

the first 4 days on σ=0.45.

4.2 Eigenvalues and eigenmodes

Figure 4 shows the decomposition of the SGCM streamfunc-

tion into its purely barotropic and nine baroclinic compo-

nents. Shown in Fig. 4a are the barotropic and first three

baroclinic components during the first day. The barotropic

component can be viewed as an equal-weighted averaged

flow over the vertical levels, which reveals a steady wave

flow between 40◦ S–60◦ S. The first and second baroclinic

components contain modulated wave three profiles in the
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(a)

(b)

Fig. 4. Decomposition of the SGCM streamfunction data into its purely barotropic and nine baroclinic components. The figure illustrates the

instantaneous fields of (a) the purely barotropic and first three baroclinic components and (b) baroclinic components 4 to 9.
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Fig. 5. Froude numbers calculated from the vertical structure equa-

tion for the stability profile shown in Fig. 1.

SH, whereas the third component possesses a baroclinic

wavenumber 3 structure, centred at a latitude of 30◦ S and

surrounded by a more complicated flow. Figure 4b shows

the instantaneous baroclinic components 4 to 9. Baroclinic

modes 4 to 7 contain wavenumber 3 structures, centred at

a latitude of 50◦ S, while baroclinic modes 8 and 9 have

wavenumber 2 structures at a latitude of 45◦ S.

The eigenvalues λk , computed from Eq. (5), can be ex-

pressed as an increasing sequence (see Table 1) or shown

graphically (see Fig. 5).

Figure 6 shows the corresponding eigenmodes, identified

as the purely barotropic mode (corresponding to λ0=0) and

the nine baroclinic modes (b)–(j). Table 1 also gives the val-

ues of the Rossby radius of deformation for each eigenmode

and the corresponding values of Froude number. For any

k>0, Hk has one more zero in the interval (σ1, σ10) than does

Hk−1.

The purely barotropic mode takes the value unity at all

vertical levels, while the first two baroclinic modes have a

dominant baroclinic structure near the top of the model. The

vertical structures become progressively more complicated

for the higher order modes, particularly near the ground level.

4.3 Energy distributions

Figure 7 shows the relative contributions to KE, APE and

TE from each of the 10 eigenmodes. The purely barotropic

eigenmode represents 89% of the total KE, whereas the first

and second baroclinic eigenmodes supplement KE by just

6.1% and 2.5%, respectively. The remaining modes con-

tribute progressively less to the total KE except for baroclinic

modes 8 and 9 which contain 0.19% and 0.20% of KE, re-

spectively.

Most of the APE of the system is to be found in the first

three baroclinic modes, accounting for 97.1% of the total

APE. The barotropic mode accommodates no APE, but in

100
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Fig. 6. Eigenmodes of the vertical structure equation for the stabil-

ity profile shown in Fig. 1.
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Fig. 7. Contributions to KE and PE from the barotropic (number 1)

and baroclinic (remaining, numbers 2–9) modes.

the experiment analysed here, the first, second and third baro-

clinic eigenfunctions represent 48.1%, 43.9% and 5.1%, re-

spectively of the total APE. Baroclinic modes 8 and 9 contain

0.89% and 0.64% of the total APE, respectively.

If modes 8 and 9 are neglected, the contribution of each

successive mode to the TE is also a decreasing function

of mode number, m. Additional numerical experiments in
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Table 1. Table of Froude numbers of the associated vertical eigenmodes for the SGCM case.

Mode Eigenvalue Rossby radius of deformation Froude number

Barotropic λ0 = 0 Rd0 = ∞ 0.0

Baroclinic 1 λ1 = 7.06 × 10−7 km−2 Rd1 = 1190.1 km 8.14

Baroclinic 2 λ2 = 2.44 × 10−6 km−2 Rd2 = 640.2 km 28.1

Baroclinic 3 λ3 = 6.21 × 10−6 km−2 Rd3 = 401.3 km 71.5

Baroclinic 4 λ4 = 1.29 × 10−5 km−2 Rd4 = 278.4 km 148.8

Baroclinic 5 λ5 = 2.29 × 10−5 km−2 Rd5 = 208.9 km 263.7

Baroclinic 6 λ6 = 3.64 × 10−5 km−2 Rd6 = 165.7 km 419.4

Baroclinic 7 λ7 = 5.37 × 10−5 km−2 Rd7 = 136.5 km 618.4

Baroclinic 8 λ8 = 7.72 × 10−5 km−2 Rd8 = 113.8 km 889.4

Baroclinic 9 λ9 = 1.21 × 10−4 km−2 Rd9 = 90.9 km 1390.9

which the T21 spectral data were reduced to a T5 trunca-

tion also showed significant KE and APE contributions to be

present in modes 8 and 9. Such modes may be an artifact of

the vertical truncation level as well as consequences of the

severe reduction in the vertical length scales. On the other

hand, in the full Mars General Circulation Model (MGCM),

and apparently in the Mars Global Surveyor/Thermal Emis-

sion Spectrometer (MGS/TES) observational analysis by

Banfield et al. (2004), there are waves of different period

(and sometimes wavenumber) that are trapped in very shal-

low layers near the surface. Also, since the data are derived

from a primitive equation model, it is possible that activity

with smaller vertical scales may not show up in the first few

modes of a QG decomposition.

5 Various norms

We now address the question of which norm should be used

to monitor energy conversion processes within the model,

what emphasis each norm places on certain spatial and tem-

poral structures within the data and how many patterns are

required to reproduce the most “significant” dynamics of the

model. In particular we shall investigate whether standard

EOFs, which describe deviations from the mean state, should

be used or whether the basis should describe the total state

vector (and so include norms which maximise energy extrac-

tions).

We take as our basic state for the SGCM example, the

steady state of the 2-D zonally symmetric version of the

SGCM, obtained by suppressing the waves, after 400 sols

(i.e. 400 Martian days), to ensure that the state has equili-

brated (see also Collins, 1993). From the previous section,

we see that it is necessary to retain the barotropic and at least

the first two baroclinic modes in the vertical structure for our

POD-Galerkin dimensional-reduction analysis. Appendix C

describes the details of how PODs are calculated in practice

in spectral space.

5.1 Projection of streamfunction or vorticity.

The question naturally arises regarding the choice between

streamfunction and vorticity for the calculation of the POD

modes (Selten, 1995). If vorticity is chosen, then the POD

modes need to be optimised to describe the vorticity rather

than the streamfunction, with the result that small-scale mo-

tions are emphasised (the inner product in this case defines

enstrophy). We are, however, interested in large-scale circu-

lations and so we shall use the streamfunction. It is important

to note that the corresponding vorticity and planetary vortic-

ity fields would not be described by the same set of PODs,

and any resulting truncated POD model would not conserve

both KE and enstrophy simultaneously. Furthermore, if forc-

ing and dissipative terms are added, then neither KE nor en-

strophy are conserved.

5.2 The KE and TE norms

The standard correlation norm gives

R8 = λ8, (23)

where the covariance matrix R is defined by

Rij=(Vi−V̄i)(Vj−V̄j ) with overbar denoting the time

average. The POD modes, therefore, describe deviations

from the mean state. Following Selten (1993), we can

construct a set of basis functions which describe the total

state vector, by replacing R by C, where Cij=ViVj . The

mean state is now retained in the POD expansion to allow for

dynamical interactions between the mean background flow

and the anomalous POD modes. The POD modes obtained

using R optimise the variance whereas those obtained using

C optimise the energy.

The inner product, defining the energy matrix M, satisfies

< V,VT >= VTMV, (24)

so that the eigenvalue problem becomes

< V,VT > MTU = λU. (25)
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Since M is a diagonal matrix, MT=M and we obtain

CMpU = λU, (26)

where the diagonal energy matrix Mp depends upon

< ψ,ψ >p =
1

2

∫ 2π

0

∫ π

0

(
∇pψ · ∇pψ

)
a2 sin θdθdφ, (27)

for p=0, 1, 2, ..., and the basis U describes the total state

vector.

5.3 Formation of the spectral energy matrix

The equality given in Eq. (9) for the KE yields:

KE =
1

2

∫ π

0

∫ 2π

0

∑

k

[
∇hψ̃k · ∇hψ̃k

]
a2 sin θdθdφ

= −
1

2

∑

k

∫ π

0

∫ 2π

0

[
ψ̃k · ∇2

hψ̃k

]
a2 sin θdθdφ

=
∑

mnk

n(n+ 1)ψ̃2
mnk, (28)

while Eq. (10) for the APE yields, for the TE:

TE = KE +
1

2

∑

k

∫ π

0

∫ 2π

0

λkψ̃
2
k a

2 sin θdθdφ

= KE +
∑

mnk

λkψ̃
2
mnk

=
∑

mnk

(n(n+ 1)+ λk) ψ̃
2
mnk, (29)

where ψ̃k is the k-th baroclinic component in grid space and

ψ̃mnk is the coefficient at point (m, n) on the spectral grid of

the k-th baroclinic component. Since these expressions must

satisfy the inner product condition of Eq. (24), the spectral

energy matrices take the form of the diagonal matrix dis-

cussed in Appendix D.

5.4 Comparisons between the SGCM Eigenspectra

Figures 8 and 9 show the eigenspectra (suitably normalised

so that their sums equal unity) of the mean and perturbation

fields computed using the correlation (labelled as I), KE (la-

belled as II) and TE (labelled as III) norms. From Fig. 8 we

see that the first eigenvalue of the zonal flow dominates the

spectra and captures 99.92% of the variance, 99.61% of the

KE and 99.60% of the TE. The rate of decay of the eigen-

spectrum with respect to the correlation norm is faster for the

zonal flow than with respect to the other two norms.

Figure 9 shows that the two leading eigenvalues of the per-

turbation flow represent 84% of the variance (in I), 79% of

KE (in II) and 73% of TE (in III) if the correlation, KE or

TE norms are used. Figure 9 shows that the first four wave

modes appear in pairs. The dominance of these eigenmodes

suggests that this flow in the original SGCM model could be

governed by two wave pairs.

Table 2 gives an indication of how many eigenmodes

would be required to capture 90% and 95% of the variance,

KE and TE of the wave flow. Also given are the percentage of

variance, KE and TE captured by 4, 10 and 50 eigenmodes.

Only 5 correlation modes are required to capture 90% of the

variance whereas 13 KE or 26 TE eigenvectors are needed if

90% of the KE or TE is to be retained. If an additional 5%

of the variance, KE or TE is sought then an extra 9, 25 or

30, respectively of correlation, KE and TE eigenvectors are

required.

A sudden decrease from large to small eigenvalues with in-

creasing EOF index (as in the correlation norm), offers a nat-

ural criterion for selecting how many patterns are required

to describe the flow. Figure 9, for example, shows a sud-

den decrease by a factor of 100 exists beyond wave pattern

2. Therefore only two modes would suffice to describe the

model dynamics to a first approximation (see also Kantz and

Schreiber, 1997).

5.5 SGCM POD modes

Figure 10 illustrates the horizontal structure of the barotropic

components of the various POD eigenmodes computed with

the correlation norm. Here modes 1 and 2 represent a steady

wavenumber 3 in the southern hemisphere, which are π
2

out

of phase. Modes 3 and 4 correspond to a steady wavenumber

2 and mode 5 depicts a mean zonal flow. Also evident is a

wavenumber 6 structure in modes 6, 8 and 10. Figure 10

illustrates that modes 1 and 2, 3 and 4 form conjugate pairs.

However, the choice of norm affects the ordering of these

modes.

Figures 11–16 show the barotropic and baroclinic compo-

nents of the SGCM POD wave modes with respect to the

three different norms.

Modes 1 and 2 form a conjugate pair for each of the

norms and so denote a travelling wavenumber 3 in the lon-

gitudinal direction. The structure of mode 1 is unaffected

by the choice of norm (see Figs. 11, 13 and 15) and con-

tains a strong wavenumber 3 component centred at a latitude

of about 45◦ S. The barotropic components are almost sinu-

soidal in longitude. The first baroclinic components com-

prise two parallel wavenumber 3 structures, centred at lati-

tudes of 45◦ S and 15◦ S, respectively, displaced by 50◦ in

longitude. There are additional wavenumber 3 patterns, cen-

tred at 20◦ N in the northern hemisphere (NH). The second

baroclinic mode also contains similar parallel wavenumber

3 patterns, centred at latitudes of 45◦ S and 25◦ S, displaced

by 25◦ in longitude with a strong wavenumber 3 structure

at 20◦ N. The third baroclinic mode is almost symmetrical

about the equator but tilted in the SH. A sinusoidal wavenum-

ber 3 pattern exists at 20◦ N, together with two wavenumber

3 patterns at latitudes of 15◦ S and 50◦ S, where the latter

wave pattern is displaced by 50◦ in longitude.

Mode 3, in Figs. 11, 13 and 15, contains a strong

wavenumber 2 pattern in each vertical component. With the

correlation or the KE norm, the barotropic component ap-

pears to be nearly sinusoidal but somewhat distorted with the

TE norm. Similarly, the first and second baroclinic compo-

nents of the correlation and KE modes contain a latitudinally
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Fig. 8. (a) The logarithmic eigenspectra zonal profiles using the (I) correlation, (II) KE and (III) TE norms. (b) The cumulative variance (I),

KE (II) and TE (III) capture of the zonal field using the correlation (I), KE (II) and TE (III) norms, respectively.

stretched wavenumber 2 pattern, together with a small wave

3 structure centred at a latitude of 20◦ N, which is displaced

by 100◦ in longitude. However in the TE case, this mode con-

tains a severely modulated wave 2 structure, centred at 25◦ in

the SH. The third baroclinic components produce very simi-

lar structures in both the correlation and KE norms: both are

centred at latitudes of ±45◦, with a thin band of distortion

about the equator (giving rise, very nearly, to a wave 3 on

the equator). The TE norm, however, produces a sinusoidal

wavenumber 6 pattern at 25◦ S. Clearly, correlation modes 3

and 4 form a conjugate pair, whereas it is modes 3 and 5 in

the energy norms. The correlation mode 5 describes a depar-

ture from the mean flow, suggesting that the choice of norm

significantly effects the ordering of the modes.
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Fig. 9. As Fig. 8, but for the departure fields.

Table 2. POD modal truncation against variance/energy capture in the departure flow.

Norm 90 % 95 % 4 modes 10 modes 50 modes

Correlation 5 modes 14 modes 89.83 % 93.88 % 98.44 %

KE 13 modes 38 modes 82.68 % 88.94 % 96.01 %

TE 26 modes 56 modes 77.72 % 84.34 % 94.07 %
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(a)

(b)

Fig. 10. Southern hemisphere stereographic projection plots of (a)

the first four SGCM POD modes of the barotropic component and

(b) modes 5, 6, 8 and 10, obtained using the correlation norm.

Table 3. Zonal wavenumbers associated with each of the POD

modes (wavenumber 0 is zonal-mean flow).

Modes Correlation KE TE

1 3 3 3

2 3 3 3

3 2 2 2

4 2 6 6

5 0 2 2

6 6 6 6

7 4 4 4

8 6 4 4

9 4 3 4

10 4 3 4

(a)

(b)

Fig. 11. The barotropic (bt) and three leading baroclinic compo-

nents (bc1, bc2 and bc3) of the SGCM POD modes 1 (a) and 3 (b)

using the correlation norm. In this and following colour figures,

positive values are shaded red and negative, blue, with zero lying in

mid-green.
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(a)

(b)

(c)

Fig. 12. The barotropic (bt) and leading three baroclinic compo-

nents (bc1, bc2 and bc3) of modes 5 (a), 7 (b) and 9 (c) using the

correlation norm.

Mode 7 has a wave 4 structure (see Figs. 12, 14 and 16),

which is almost sinusoidal with the energy norms but more

complicated with the correlation norm. The barotropic com-

(a)

(b)

Fig. 13. The barotropic (bt) and leading three baroclinic compo-

nents (bc1, bc2 and bc3) of modes 1 (a) and 3 (b) using the KE

norm.

ponent for each norm has a wavenumber 4 structure, centred

at 35◦ in the SH. The first baroclinic components contain two

parallel wave 4 structures, centred at 45◦ and 15◦ in the SH,

and displaced by 25◦ in longitude in the correlation norm

case, while for the energy norms, the modes are more regular

in structure. The second baroclinic components also con-

tain two parallel wave 4 structures, but now centred at 50◦

and 25◦ in the SH with a large wavenumber 1 component in

the NH, at 30◦. The third baroclinic component of the KE

and TE mode 7 give structures similar to the first baroclinic

component. Both energy 8 modes contain dominant zonal

wavenumber 4 structures whereas the correlation norm mode

8 contains wavenumber 6 structures.

The correlation norm generates wavenumber 4 patterns in

the barotropic and first baroclinic components of mode 9,

although the second and third baroclinic components con-

tain wave 6 structures at a latitude of 25◦ in the SH. The

barotropic component of KE mode 9 contains two parallel

wavenumber 3 structures centred at 50◦ and 25◦ in the SH,
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(a)

(b)

(c)

Fig. 14. The barotropic (bt) and leading three baroclinic compo-

nents (bc1, bc2 and bc3) of modes 5 (a), 7 (b) and 9 (c) using the

KE norm.

displaced by 50◦ in longitude. However the TE norm has a

wave 4 at 45◦ in the SH. The first baroclinic components of

KE and TE modes 9 are tilted wavenumber 3 patterns, cen-

(a)

(b)

Fig. 15. The barotropic (bt) and leading three baroclinic compo-

nents (bc1, bc2 and bc3) of modes 1 (a) and 3 (b) using the TE

norm.

tred at 35◦ in the SH, with an additional wave 3 at a latitude

of 20◦ in the NH and displaced by 25◦ in longitude. The

energy norms produce wavenumber 3 patterns in the second

baroclinic component, at latitudes of 45◦ in the SH and on

the equator, displaced by 15◦ in longitude. The third baro-

clinic component of the energy modes contain three wave 3

patterns at latitudes of 50◦ and 25◦ in the SH and 20◦ in the

NH.

Thus modes 1 and 2 for each of the norms form a com-

plex conjugate pair and depict a travelling wavenumber three,

whereas modes 3 and 4 for the correlation norm and modes

3 and 5 for the energy norms depict a travelling wavenum-

ber 2 structure. Hence two distinct travelling waves can be

observed from the leading order POD modes. The different

norms also rearrange the ordering of the spatial eigenmodes.
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(a)

(b)

(c)

Fig. 16. The barotropic (bt) and leading three baroclinic compo-

nents (bc1, bc2 and bc3) of modes 5 (a), 7 (b) and 9 (c) using the

TE norm.

5.6 SGCM Principal Components

The Principal Components (PCs) represent the time-varying

amplitudes of the POD eigenvectors at a given time. Specif-

ically if xj is part of the time series of one of the dependent

variables, then

xj =
m∑

i=1

aijVi, (30)

where aij is the PC of the i-th eigenvector Vi in the expan-

sion of xj . When the eigenvectors form an oscillating pair,

the square root of the sum of the squares of the two PCs (in

the L2 norm) represent the amplitude of the oscillation at any

given time.

Figure 17 shows the temporal behaviour of the perturba-

tion spatial eigenmodes for the three different norms over

300 Martian days (sols).

The structures are wave-like, with the two leading PCs be-

ing wavenumber 3 structures, one quarter of a period out of

phase, oscillating with a period close to 0.23 cycles/sol. The

form of these two PCs is virtually unaffected by the choice

of norm. The higher order PCs appear to vary more irregu-

larly in time, particularly PCs 6 to 10 where high frequency

structures can be observed. Recall that the ordering of the

spatial POD modes is affected by the choice of norm, and

so comparisons between the various PCs must take this into

account.

PCs 3-5 display a long time modulation, as well as a short

time variability. The correlation norm PCs 3 and 4, and the

energy norms PCs 3 and 5, form complex conjugate pairs,

and so represent travelling waves. The travelling wavenum-

ber 2 structures oscillate at a rate of about once every 12

days, giving a frequency of about 0.08 cycles/sol. This is

consistent with the frequency values picked out by the power

spectral analysis in Fig. 18a where peaks are clustered about

the 0.08–0.1 cycles/sol frequency band.

The correlation and TE norms extract similar wave pat-

terns in PC 4, as is visible in the clustering of peaks about

0.1 cycles/sol. This is interesting since the spatial patterns

associated with POD mode 4 are very different. The corre-

lation norm mode contains a wavenumber 2 structure, while

the KE and TE norm modes have a wavenumber 6 structure.

However, the wavenumber 6 structure in the KE case has a

very different temporal behaviour to that of the correlation

and TE norms. Its 4th PC has a much higher frequency de-

pendence, small in amplitude and fluctuating about zero with

a cluster of frequencies about 0.5 cycles/sol.

KE and TE PCs 3 and 5 form complex conjugate pairs and

so describe a travelling wave. This is apparent by compar-

ing the power spectra of PC 3 in Fig. 18a with that for PC 5,

shown in Fig. 18b. The energy norms produce structures with

a dominant frequency of about 0.1 cycles/sol, whereas the

correlation POD mode 5, which represents a departure from

the mean flow, has a small amplitude temporal behaviour

with a very low frequency of about 0.006 cycles/sol.

Since the temporal evolution of PCs 6 to 10 are far more

complicated and irregular than the leading five PCs, the

power spectra in Fig. 18b reveal a much broader range of

interacting frequencies in their power spectra.

Figure 19 shows the time dependence of the mean-flow

correction modes. We again find that PC 1 is almost insen-
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Fig. 17. Original SGCM departure principal components (PCs) using the correlation (red), the KE (green) and the TE norms (blue) shown

during an interval of 300 Martian days. Note that the range of PC1 and PC2 is five times, and that of PC3–5 is twice, that of the higher order

modes PC6–10.

sitive to the choice of norm, whereas PCs 2 to 10 contain

strikingly different oscillatory behaviour. One reason might

be due to almost all of the TE of the flow being contained

in the zonal mean (in excess of 90%). Since the APE in the

zonal flow accounts for almost 50% of the TE, maximisation

of KE or TE produces significant differences in the spatial

and temporal patterns.

As the leading travelling waves propagate at a frequency

of about 0.23 cycles/sol (i.e. the spatial wave three mode)

and 0.08 cycles/sol (i.e. the spatial wave two mode), it might

then be a reasonable hypothesis that such behaviour could

be emulated with a low-dimensional model. Since the anal-

ysis picks out two frequencies of oscillation, there could be

some degree of weak interaction occurring between the lead-

ing order spatial modes, suggesting how crucial it is to retain

a ‘sufficient’ amount of information regarding the behaviour

of the two travelling spatial wave patterns. Thus for this par-

ticular data set, the highly regular baroclinic wave activity in

the idealised Martian atmosphere is nearly bimodal.

5.7 Energy in the SGCM eigenmodes

We conclude with a discussion of the energy distribution be-

tween the various individual POD modes.

The streamfunction data was decomposed into a basic-

state, mean-flow correction (MFC) and a wave flow. The

zonal flow, defined as basic state + MFC, accounts for

97.85% of the total variance, 90.73% of KE and 93.68% of

TE if the correlation, KE and TE norms respectively are used.

Figure 20a shows histograms of KE as a fraction of TE in

the zonal POD modes using the (I) KE and (II) TE eigen-

vectors. Modes derived using the TE norm extract the APE

of the original system far more efficiently than with the KE

norm. Since Fig. 7 showed that leading zonal mode accounts

for over 90% of the total energy in the system, the amount

of KE and APE captured will almost be equal to the total

KE and APE contained in the truncated system. Figure 20a

shows that 59% of the TE in the first zonal eigenmode is in

the form of KE with the KE norm, indicating that this has in-

efficiently captured the SGCM APE. This is consistent with

the fact that the KE norm optimises KE and not APE. With

respect to the TE norm, 48% of the TE in the leading zonal

mode is in the form of KE and so the original balance be-

tween KE and APE has been retained.

The KE norm also concentrates a large proportion of the

system’s KE into the leading order modes. This contrasts

with the TE eigenmodes which contain a very significant pro-

portion of KE in the higher-order modes (about 80%), and
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Fig. 18. Power spectra profiles of the original SGCM departure PCs where (a) shows the frequencies of PCs 1 to 4 and (b) shows the

frequencies of modes 5 to 10 using the correlation (red), KE (green) and TE (blue) norms.

suggests that the TE eigenvectors have placed most of the

APE in the leading order modes and so have effectively opti-

mised the capture of APE.

Figure 20b shows KE as a fraction of TE in the wave field

POD modes using the (I) KE and (II) TE eigenvectors. The

leading KE modes account for about 70% of TE, but after
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Fig. 19. Original SGCM principal components (PCs) of the mean-flow correction field using the correlation (red), the KE (green) and the

TE norms (blue) during an interval of 300 Martian days.

14 KE eigenvectors there is a steep decay in the KE pro-

file, implying that the low-order TE modes capture most of

the APE. However, the higher-order TE eigenvectors contain

mainly KE, which again indicates that the KE norm places

the majority of its KE into the leading order modes, whereas

the TE norm pushes the APE into the lower-order modes.

These results agree with Selten (1993), who found that, for

the Earth, eigenvectors obtained with different norms behave

differently in terms of how much KE and APE was captured

by each mode. He also showed that the KE norm distributed

the majority of the KE into the leading order modes, whereas

the higher-order eigenvectors were dominated by APE. In

contrast, the TE norm placed most of the APE in the lead-

ing order eigenmodes, leaving a greater fraction of KE in the

higher-order modes.

6 Discussion

The model has been shown to do remarkably well at cap-

turing a signficant fraction of the total energy and/or vari-

ance, using a relatively small number of vertical and hori-

zontal modes. When just four vertical modes (the barotropic

and first three baroclinic modes) are retained in the reduced-

order approximation, the correlation norm captures approx-

imately 90% of the variance, while the kinetic energy and

total energy norms capture approximately 83% and 78% of

the kinetic and total energy respectively.

The degree of dimensional reduction achieved here is no-

table, fromO(104) degrees of freedom in the primitive equa-

tion SGCM to O(50) total modes in the reduced dimension

model. Baroclinic waves on Mars appear to be more regular

than those on Earth (Read and Lewis, 2004) and this may ac-

count for the relative success of the present Martian reduced

order model. Recent investigations of low-order models for

the Earth’s atmosphere suggest that many more modes, at

least 500, are required to account for 90% of the variance in

terrestrial models (Achatz and Branstator, 1999; Achatz and

Opsteegh, 2003a,b), although it might be possible to repro-

duce aspects of low-frequency variability in a low-resolution

quasi-geostrophic model usingO(10) modes (D’Andrea and

Vautard, 2001; D’Andrea, 2002).

In a more realistic model of the Martian atmosphere,

which includes diurnal and seasonal thermal forcing cycles,

topography and planetary boundary layer effects, for exam-

ple, both the vertical and horizontal modal spectra are likely

to be significantly richer in structure (Martinez-Alvarado et

al., in preparation).

In part 2 we will develop a hierarchy of POD-Galerkin

modal truncations, using both two and four vertical modes

with the correlation, kinetic energy and total energy norms,

as a prelude to performing a bifurcation analysis and a com-
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Fig. 20. KE as a fraction of TE contained in (a) the zonal modes

and (b) the wave modes for the (I) KE and (II) TE eigenvectors.

parison with the full SGCM integration.

Appendix A The numerical scheme

We solved Eq. (5) numerically using finite differences for

a given profile of the stratification parameter S(σ ), derived

from the SGCM:

∂

∂σ

f0
2

Si

∂

∂σ
Hi ∼

f0
2

Si+1(δσi+1)
2
(Hi+1 −Hi)

−
f0

2

Si(δσi)
2
(Hi −Hi−1). (A1)

Taking δσi=K for some constant K∈R, results in the verti-

cal modal problem being solved over equally-spaced sigma

levels (see Sect. 4), so that

f0
2

SiK2
Hi−1 −

f0
2

K2
(

1

Si
+

1

Si+1
)Hi

+
f0

2

Si+1K2
Hi+1 + λHi = 0. (A2)

This yields an eigenvalue problem CHk=λkHk , where

C is a symmetric, tridiagonal matrix and vector

Hk=(Hk(σ1), ..., Hk(σN )), where we chose N=10 as

in the SGCM experiments of Collins and James (1995). The

boundary conditions were chosen to be dH/dσ=0 at σ=σ1

and σ=σN (and were implicitly satisfied in Eq. (A1) by

specifying S1=SN+1=∞).

The numerical code for Eq. (A2) was verified by setting

the stratification parameter S(σ) to be constant in the verti-

cal structure equation; as expected, sine and cosine functions

were obtained as the eigenfunctions Hi .

In the SGCM, we took the following: p=p0+p′ is pres-

sure where p0=610Pa is the basic term and p′ is the per-

turbation; T=T0+T ′ where T0=200 K; R=191.2 JKg−1 K−1

is the gas constant for dry air; �=7.08822×10−5 s−1 is the

rotational rate of Mars; a=3.394×106 m is the radius of the

planet.

Appendix B The spectral grid

Since the streamfunction data lies on a jagged T21 spectral

grid, it is useful to explain the ordering of the spectral coeffi-

cients on such a grid.

The order of data storage is by level, beginning at the top

level where σ=0.05. For each level there are odd and even

complex coefficients (odd for a cosine and even for a sine co-

efficient), with an equal number of odd and even coefficients.

If n is the total wavenumber and m the zonal wavenumber

(so that there are n−|m| zeros between the north and south

poles), the ordering of the coefficients is similar to that shown

in Fig. 5.1 for the T 5 and T 4 truncations. The coefficients

are read in order of increasing nwith increasingm, beginning

with the even and then the odd coefficients (for full details

see Blackburn, 1985).

Specifically, if Amn is the spectral coefficient at position

(n,m) on a spectral grid, then the coefficients are read in the

following order:

EVEN A0
0, A

0
2, A

0
4, ..., A

1
1, A

1
3, ..., A

2
2, A

2
4, ..., A

NN−1
NN−1,

ODD A0
1, A

0
3, A

0
5, ..., A

1
2, A

1
4, ..., A

2
3, A

2
5, ..., A

NN−1
NN−1,

where NN is the highest total wavenumber retained in the

spectral series.

DEi are the diagonal matrices for the even spectral entries

of the i-th baroclinic component (recall i=0 is the barotropic

and i=1, 2, 3 are the first three baroclinic modes), while DOi
are the analagous blocks for the odd entries.

The diagonal blocks of the even spectral entries for the KE

and TE matrices are

KE DEi = diag [n1(n1 + 1),
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Fig. B1. The spectral grids for a jagged (a) T5 and (b) T4 triangular

truncations. Coefficients are read in order of increasing n (total

wavenumber) with increasing m (zonal wavenumber) for the even

then the odd coefficients.

n2(n2 + 1), ... , ns(ns + 1)] ,

TE DEi = diag
[
n1(n1 + 1)+ λ̄i,

n2(n2 + 1)+ λ̄i, ... , ns(ns + 1)+ λ̄i
]
,

where ni is total wavenumber of the i-th even spectral co-

efficient, the subscript s={n(m+1)+max(m, n)+ 1}/2, and

coefficients are read in order of increasing n with increasing

m as shown in Fig. B1.

Finally λ̄i corresponds to the i-th Froude number obtained

from the vertical structure equation in Sect. 3 above.

Appendix C Calculation of PODs in spectral space

Although POD modes are usually calculated in physical grid

space, we have found it to be more computational efficient to

perform this calculation in spectral space (see e.g. Schubert,

1985; Selten, 1995). Both methods are related via a linear

transformation. Because the data is truncated spectrally at

T21, the POD modes also retain all wavenumbers up to a to-

tal wavenumber 21. In grid space, a covariance matrix of at

least (48×24)2 would be required for a T21 spectral resolu-

tion (the SGCM actually transforms to a 64×32 real space

grid, using fast transform techniques, oversampling in order

to limit wave aliasing from nonlinear products during inte-

gration; using this grid data directly would imply a covari-

ance matrix of size 9,437,184), whereas a T21 data set can

be fully resolved with 242 real odd and even spectral data

points, yielding a spectral covariance matrix of size 484,484

for the same resolution. We used the NAG routine F02ABF

to calculate the eigenvalues and eigenvectors of the resulting

real symmetric matrix. The computational speed of this cal-

culation scales like l3 (where l is the order of the matrix), so

that the spectral problem runs approximately (4.23)3 times

faster than an equivalent grid space formulation.

If the covariance of the streamfunction is defined as

C(θ, φ, θ ′, φ′) = r2
√

sin θ sin θ ′
(
ψ(θ, φ)ψ(θ ′, φ′)

)
, (C1)

where the overbar denotes a time average, then the eigen-

value problem on a sphere becomes:

1

2π2

∫ 2π

0

∫ π

0

C(θ, φ, θ ′, φ′)ϒi(θ
′, φ′)dθ ′dφ′

= λiϒi(θ, φ), (C2)

where 8i(θ, φ)=ϒi(θ, φ)/
√

sin θ is the i-th POD mode.

Expanding both the streamfunctionψ(θ, φ, t) and the spa-

tial eigenmodes8i(θ, φ) as a jagged T21 spectral truncation,

we have:

ψ(θ, φ, t) =
20∑

m=0

Nm∑

n=m
ψmnPmne

imφ,

8i(θ, φ) =
20∑

m=0

Nm∑

n=m
VmniPmne

imφ, (C3)

whereψmn and Vmni are the spectral coefficients. Pmn(µ) are

the associated Legendre polynomials of the first kind of de-

gree l and order m and where µ is the sine of the geographic

latitude, which form an orthonormal set over (−π/2, π/2).
Nm=21 if m is even and Nm=20 if m is odd. Substitution of

Eq. (C3) into Eq. (C2) yields

20∑

m=0

Nm∑

n=m
ψm′n′ψmnVmni = λiVm′n′i, (C4)

where Vmni is the spectral coefficient of the the i-th POD

mode Vi at the spectral grid point (m, n).

Appendix D Symmetrising the eigenvector problem

Since the correlation matrix is now no longer symmetric, we

need to diagonalise CM in Eq. (26) by introducing a symmet-

ric matrix D=M
1
2 CM

1
2 (where M

1
2 M

1
2 =M), with the same

eigenvalues as CM. We now solve

DE′ = λE′, (D1)

where E′=M
1
2 E, since M

1
2 CM

1
2 M

1
2 U=λM

1
2 U. Having

found the POD modes, we used E=M− 1
2 E′ to recover

Euclidean spectral space, followed by a Fast Fourier Trans-

form to transform the spatial modes back to physical grid

space. Direct comparisons can then be made between the

qualitative structures of each of the modes obtained from the

various norms.
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