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\ to decode the three possible errors in 
shows that this algorithm is modular, 

regular, and naturally suitable for  both and software implementation. An extension 
of this new decoding procedure is used also to decode the 1/2-rate (24,12) Golay code, 
thereby correcting three and detecting four errors. 

1. Introduction 
The Golay code is a very useful code particularly for appli- 

cations in which a parity bit is added to each codeword to 
yield a rate 1/2 code. The (24,12) Golay code is currently 
supported by the DSN. The 24-bit Golay code is also attractive 
for use on the DSN uplink where the spacecraft uses software 
decoding with the on-board computer. This code has been 
used on a number of communication links in the past, includ- 
ing the Voyager imaging system link. 

This decoding problem originated with an investigation of 
the Digital Communication Terminal (DCT) communication 
link performance using the (23,12) Golay code. Coding 
analysts at JPL evaluated the properties of the Golay code, 
achieving a solution to  the relatively simple decoding of the 
(23,12) and (24,12) Golay codes. 

In the present article the BCH decoding algorithm described 
in [SI is extended to  correct all three possible (correctable) 
errors of the code. This new decoding procedure is based on 

the fact that if one of the three errors in the block code of 
23 digits can be canceled first, then the BCH decoding algo- 
rithm can be used to correct the remaining two errors. 

This new Golay decoder is quite simple and similar to the 
Weldon decoding procedure [2] .  One of the advantages of this 
algorithm over previous methods (see [ 1-31 )is that the new de- 
coding algorithm is easily understood and readily implemented. 

II. The (23,12) Binary Golay Code 
It is not difficult to show that g ( x )  = X I *  t x9 t x7 t x6 

t x5 t x t 1 is an irreducible polynomial over CF(2). Thus, 
there exists an element a E GF(2I') such that g(a) = 0. 
Hence, the elements of GF(2l1) are found in the following set: 

GF(2l') = I a o t a l  a t a ,  $ + . .  
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Note also that a is a primitive twenty-third root of unity in 
GF(2I1).  This fact shows that g ( x )  generates a cyclic BCH 
block code of length 23, called the Golay code. 

Polynomial P ( x )  in Eq. ( 6 )  is obtained by dividing I ( x )  by 
g ( x ) ,  i.e., 

The (23,12) Golay code is a perfect or close-packed code in 
the sense that the codewords and their 3-error correction 
spheres exhaust the vector space of 23-bit binary vectors. It is 
shown in [ 5 ]  that the (23,12) Golay code is, besides being a 
cyclic BCH code, a quadratic-residue code. Since the minimum 
distance of the code is d = 7 ,  one has the inequality 2t + 1 < d ,  
where t is the number of errors to  be corrected. Hence the 
(23,12) Golay code allows for the correction o f t  G 3 errors. 

where r ( x )  is a remainder polynomial of degree less than 11. 
Then one sets P ( x )  = r ( x ) .  Thus by Eqs. (6), ( 7 ) ,  and (8) the 
following identities are true: 

q ( x ) g ( x )  = I ( x ) + r ( x )  = I ( x ) + P ( x )  = C ( x )  (9)  

A code generated in this manner is a cyclic BCH code with par- 
ity check polynomialP(x) = r ( x ) .  

I The codewords of a Golay code over GF(2) are expressed 
first as the coefficients of a polynomial. In such a representa- 
tion a codeword is represented by 

111. The Decoder for a (23,12) Golay Code 
A simple BCH decoding algorithm is developed in [5] to 

decode a (23,12) Golay code with only two or less errors. To 
illustrate this method, define 

22 

C ( X )  = C i X i  

i=O 
~ ( x )  = e22x22 + e 2 1 x 2 1  c + e l x  + eo 

~ 

where ci E GF(2) and x is an indeterminant. 

The generator polynomial of a Golay code as discussed 
above is an irreducible polynomial and given by 

to be the  error polynomial. Then  the received codeword  has 
the form 

R ( x )  = C ( x ) t E ( x )  (1 1) 
10 

g ( x )  = n ( X - L Y q  

i= 0 

Suppose that e errors occur in the received codeword R ( x )  
and assume that 2r < d - 1. The decoder begins by dividing 
the received codeword R ( x )  by the generator polynomial 
g ( x ) .  That is, (3) = X I 1  + x 9  t x 7  t x 6  t x s  + x  + 1 

Now let polynomials 

where deg [ S ( x ) ]  < deg [ g ( x ) ]  with deg [ . ]  denoting degree 
of polynomial. Also by Eqs. (7) and (1 I) ,  I ( x )  = c22x22 + C Z l X 2 1  + . . . 

and 

Hence, by Eqs. (12) and (13) the syndrome polynomial S ( x )  
is found to be P ( x )  = C l 0 X l O  + c9x9 + . . . + CIX + co 

be the information and the parity-check polynomials of a code- 
word C ( x ) .  Then the codeword in Eq. (2) is represented by where M ( x )  = q ( x )  + Y ( x ) .  Since LY and 013 are both roots of 

g ( x ) ,  one has 

C ( X )  = I ( x )  t P ( x )  (6) 

To be a (23,12) cyclic BCH Golay codeword, C ( x )  must also 
be a multiple of the generating polynomial g ( x ) .  That is, 

SI 4 E ( & )  = S ( a )  

s3 5 E ( 2 )  = S(d) 

where s1 and s3 are called the syndromes of the code. 
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The error-locator polynomial is defined by Definition 1 .  Let the Hamming norm or weight of a binary 
vector = (x, , x2, . . . , x,)  be designated by llzll. Then the set 

(16) Ti 4 {el l b j l  = i }  (19) a(z) = n (1 - 0 2 )  
p=error-locatdons 

is the set of error vectors of weight i. For two errors, a(z) is given by the polynomial [5] 

Definition 2. In terms of the Hamming norm or the weight, 

u(z) = 1 + S , Z  t (s: t?) z2 
the Hamming distance between two vectorsxand - y is defined 

(I7) by 

d(x,y) 4 IIX -YII (20) 
where s, and s, are the syndromes defined in Eq. (15). 

The above concepts are now used to prove the following 
After reception, the 2-error correcting decoder computes 

by Eq. (15) the syndromes s1 and s,, as well as the error- 
locator polynomial given in Eq. (17). Depending on the num- 
ber of errors, this BCH decoding algorithm (described in [5]) 
satisfies the following scheme: 

theorem: 

Theorem. Let g4 be any error vector of weight 4 and s be 
any code vector of the (23,12) Golay code. Then 

(21) A 
- x = c+g4 = +g, 

u(z) = 

1 ifs, = s, = 0, 
then no error 

where g, is some other code vector and g3 is some error vector 
of weight 3. In other words, adding an error vector of Ham- 
ming weight 4 to  a codeword of a Golay code produces a 
23-bit vector which is equal to some other codeword plus an 1 + S , Z  ifs, = 4, 

then one error (18) error vector of weight 3. 

Proof: First, it is well known that the (23,12) Golay code 
is close-packed. That is, B,, = C, U C, U C, U C, where U de- 
notes set union, C, is the set of Golay code words, B2, is the 
set of all binary vectors of length 23 and then two errors 

Ci = {g I5 = g+_e,c_ECo,e_ETi} f o r i  = 1 , 2 , 3  Note that the roots of a(z) are the inverse locations of the 
r = 2 errors. 

Hence, for any g E C, and g4 E 43, one has 5 = +_e, E 43, 
and 25 @ CIJ. Thus, by the Close-Packed nature of the code 
there exists C1 E co and an error vector e such that 

From Eq. (18), it is evident that if there are no more than 
two errors, the errors can be located by the roots of a(z). 
Suppose a(z) does not have both its roots in the multiplicative 

unity, namely, G = { ai I 0 < i Q 22). Then this decoding pro- 
cedure fails. Since a Golay code is perfect or close-packed, this 
implies that the above BCH decoding scheme in Eq. (18) 
detects more than two errors, namely, three errors. 

subgroup of the field GF(2I1) consisting of the 23 roots of - x = SI + e  (22) 

with 

Itell = Ilx + c1 II Q 3 (23) 

IV. Decoder for Correcting Three Errors Secondly, it is known that in a Golay code any nonzero 
codeword has a minimum weight of 7. Hence, by hypothesis 
and Eq. (22), one has the equalities For simplicity, let the transmitted error and received code 

be re-expressed, respectively, by the binary vectors: c= (c,, c , ,  
c2, . . . , czZ>, e = (eo, el, e2, . . . , ez2) a n d I =  (r,, r , ,  rz, . . . , 
r22). 
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Also, since 

and 

one has by Eq. (24) the inequalities 

Thus by combining Eqs. (23) and (25), ((ell = IIg311 = 3, and the 
theorem is proved. A geometric view of this proof is shown in 
Fig. 1. 

Remark: The above theorem and its proof generalize to  
any close-packed error correcting code. However, since there is 
only one other nontrivial multiple error correcting perfect 
code, the (11,6) Golay code over GF(3), such generality is 
somewhat academic. 

Suppose the codeword c = (c,,, cl, . . . , cZ2) of the (23,12) 
Golay code is transmitted, and that the error vector e _ =  (eo, 
e,, . . . , eZ2) occurs with weight t < 3, where d = 7 2 2t t 1. 
Also, let the received vector be 

In this terminology, the new decoding method can be described 
as a recursive algorithm, as described below. 

If I is corrupted by an error pattern g of weight t < 2, i.e., 
Il_ell < 2, the BCH decoding method of Eq. (18) can correct all 
patterns of two or fewer errors. On the other hand, if the 
transmitted code c is corrupted by an error pattern e_ of weight 
three, i.e., llell = 3,  then the scheme in Eq. (18) can be extend- 
ed to  correct three errors. 

The first step in the decoding procedure is to  cancel one 
error from 5. The second step is to  correct the remaining two 
errors using the BCH method. To describe this algorithm, let 
!?l = (1, 0, 0, . . . , 0) be the “unit” 23-tuple vector. LI~ has 
only one nonzero component, located at the first position. 
The sum of and LI, is 

If one of the three errors in c i s  located at the first coordinate 
position, then Ilg + /I = 2,  and the BCH decoding method for 
two errors in Eq. (18) can be used to  correct the remaining 
two errors. However, if the first component of g is zero, then, 
by Theorem 1 ,  _c t e_ t E, = c1 t g l ,  where Ik, I1 = 3 and c, E C 
such that c1 # g. In this case the BCH decoding method in 

Eq. (18) again can be used to detect the presence of three 
errors in received code vector 1. 

Let p be the permutation which shifts the contents of the 
register right by one bit. Hence, a shift of E, right by one bit is 
given by p(g,)  = $ = (0, 1, 0, . . . , 0). The sum of 4, gl, and 
5 is given by 

The same decoding procedure that was used on 1, is applied 
now to vector I ~ .  

The procedure used above for the first and second coordi- 
nates of 1 is repeated recursively for at most 12 steps. For each 
step either one can correct all three errors or detect the fact 
that three errors still remain. Thus, if one shifts gl through all 
of the information bits and one error is not canceled by the 
twelfth shift of yl, namely 

it is evident that all three errors exist only in the parity bits 
and therefore the information bits are not in error and can be 
decoded directly. 

The overall decoding of a (23,12) Golay code is summar- 
ized by the following steps: 

Apply the BCH procedure of Eq. (18) to  decode the 
received 23-bit code vector E. If an error vector 
occurs with weight t < 2, i.e., Ilgll < 2,  the error pat- 
tern can be corrected. If Ile_ll = 3 ,  the BCH procedure 
in Eq. (18) fails, but detects that three errors must cor- 
rupt vector E .  

Next, the first received information bit is inverted. 
Then the BCH procedure is applied again to  the receiv- 
ed code I: now modified in the first bit. If ( l e_ ( (  < 2,  the 
above inversion of the first bit corrects this bit. Thus 
the BCH method can now be used to correct the other 
two errors. On the other hand, if the first information 
bit was originally correct, the BCH method detects the 
fact that the three errors still remain in the codeword. 

Repeat step 2 by inverting the second, third, . . . , 
twelfth bits. If the BCH method still detects three 
errors with the received vector changed at the twelfth 
position, then all errors are confined to the parity 
check section. 

Example: The following example illustrates how the decod- 
ing algorithm corrects 3 errors in one received codeword. 
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Encoding 
u ( z )  = 1 t s l z  t s: t - zz  ( I:) 

Let Z(x) and g(x) be the information and generator poly- 
nomials. Then p ( ~ ) ,  the parity polynomial, is found by 
P(x) =I (x)  mod g(x). That is, 

Multiplying both sides by s1 one has 

a’(z) = s1 t s;z t (s; t s3) zz 

Using the Chien search on ~ ‘ ( z ) ,  two roots cannot be 
found. Hence there are three errors. 

g(x) = x l l  tx9 t x ’  +x6 t x 5  t x  t 1 

P(x) = x10 tx9 tx7  tx6 tx5 t x 4  tx3 t 1 

Hence the codeword vector is 

- c = 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1  

Loop 2. Next invert the first bit of the received code- 
word. Use the same procedure as in Loop 1. Two roots still 
cannot be found. 

Loop 3. Same as Loop 2, but invert the second bit. 

Loop 4. After inverting the third bit, the syndrome poly- 
nomial and syndromes are given by 

Channel-Noise 

The three random errors are introduced at the 20th, 18th, 
and 9th bit of the codeword. Then the error pattern is given 
by 

S(x) = X I0  t x 6  t x 5  t x 3  t x z  

= S ( a )  = a’OtoP to15  t d  t 2  

s3 = S ( 2 )  = a8 t a4 
and the received codeword is 

Since $ = d o  t 
s: # s3. Thus one has for the error-locator polynomial 

t d t a2 t a l ,  then s1 # s3 # 0 and - r = 1 0 0 0 0 1 0 1 1 0 1 1  1 0 0 1 1 1 1 1 0 0 1  

Decoding u’(z)  = (a10 t$  t015 t d  td) 

t (a10 t a9 t a8 t a1 + a0)z 
Loop 1 .  First the syndrome S(x) is found from code- 

word R (x) by R (x) mod g(x). That is, 

+ (a10 + 014 + d + 2 +a’) 2 

From the Chien search, it is found that 
+x6 tx5 t x 4  +x3 t 1 

a’(015) = (0110 t a6 + 015 t 2 t 2 )  

t (a10 t a9 t a8 t a1 + op) d 
S(x) = x9 t x 7  tx6 +x5 t x 4  +x3 + 1 

= S ( a )  = a9ta7+016+015ta4td+l 
s1 

t (0110 t 014 t 2 t a1 t o p )  do = 0 

a’(a14) = ( d o  + a6 .t 015 t 2 t 2 )  
= S ( 2 )  = $ + d + a 7 t a 6 t d t 2 + a 1  

s3 

Since s1 # s3 # 0, s: f s3, there are at least two errors. 
Thus. 
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Hence, one has two roots, namely, 0, = as and & = &I4. 
Thus all errors are located. Summarizing, one has 

first error position = 2' 

second error position = 0;' = g3-' = ff 

third error position = P;' = d3-14 = a9 

After correctng the received codeword according to these 
error locations, the successfully decoded codeword is given 
by 

- I? = 10101 101101 11 101 11 11001 

The flowchart of this new algorithm is shown in Fig. 2. In a 
computer simulation, several hundred random codes with 
three or less errors were created and decoded perfectly with an 
average speed of 1.67 seconds per code. These results are 
shown in more detail in Table 1. The above algorithm is ex- 
tended to the 1/2-rate (24,12) Golay code in the next section. 

V. The (24,12) Golay Code 
A (24,12) Golay codeword can be formed by adding an 

even or odd parity-check bit to the (23,12) Golay codeword. 
It is shown easily that such a (24,12) Golay code has the mini- 
mum distance dmin = 8. Thus, the new decoding algorithm for 
the extended (24,12) Golay code can be used to correct three 
or less errors and to detect the presence of four errors. 

There is no loss in generality to assume that the parity of a 
(24,12) Golay codeword is even. That is, the sum of the 24 
bits modulo 2 is equal to  zero. Assume during transmission 
that four errors are added to the codeword. There are two 
cases to  consider. as follows: 

1. If the four errors occur in the first 23 bits, then by the 
theorem in Section IV, the addition of an error vector 
of Hamming weight 4 to a codeword produces a 
23-bit vector which is equal to some other (23,12) 
Golay codeword plus an error vector of weight 3. Thus 
if the new decoding algorithm in Section IV is applied 

to the first 23 bits, an error vector of weight 3 is added 
to the received codeword. As a consequence, the parity 
of the (24,12) codeword also is changed. Hence, by 
checking the parity of the decoded codeword, the 
decoder detects the presence of four errors. 

On the other hand, if three errors occur in the first 23 
bits, and one error occurs in the parity bit, the new 
decoding algorithm corrects the three errors in the first 
23 bits. The parity of the 23-bit decoded codeword 
now differs from the received parity bit. Hence, the 
decoder detects the presence of four errors. 

2. 

The extended decoding algorithm for the (24,12) Golay 
code is summarized as follows: apply the simplified decoding 
algorithm to the first 23 bits. If the number of errors is less 
than 3, the decoding procedure terminates normally. If the 
number of errors is greater than or equal to 3 ,  the parity of the 
decoded codeword is compared with the received parity bit. 
If they are different, the decoder detects four errors. 

The detailed flowchart of the above decoding procedure is 
shown in Fig. 3. Finally, a comparison of the average com- 
puter times to decode the (23,12) and (24,12) Golay codes is 
given in Table 1. The decoding speeds for the (24,12) Golay 
codes are slightly lower due to the possibility of the parity 
bit being in error. 

VI. Conclusion 
An extended BCH algorithm is obtained for correcting 

three errors in a (23,12) Golay code. This procedure is based 
on the fact that if one bit is reversed in a codeword which has 
three errors, this codeword changes to  another codeword 
which still has three errors. Hence, if one of the three errors 
can be canceled first, then the standard BCH decoding pro- 
cedure can be used to  correct the remaining two errors. A 
computer simulation shows that this procedure is very modu- 
lar and naturally suitable for both software and VLSI imple- 
mentation. 

It is shown in the flowchart of Fig. 3 that the above new 
algorithm can be extended to decode the 1/2-rate (24,12) 
Golay code. The decoding algorithm for the (24,12) Golay 
code corrects 3 or less errors and detects the presence of 4 
errors. 
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Table 1.  The computer time needed for decoding 

Number of 
errors 

Average computer 
CPU time, sec 

0 
1 

2  

3 

0.001 

0.173 

0.232 

1.67 
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Y (0, 0. ... , 0 )  

Fig. 1. A geometric view of the proof of Theorem 1. 

RECEIVED CODE 

ALL  ERRORS OCCUR 
Ar CHECK BITS 

I 

ADD "1" AT iTH POSITION 
C'(i)=[C'(i) t 1) MOD 2 

CREATE SYNDROME S(x) 
S(x)  C'(x) MOD g(x) 

1 

.';> s1 = s3 = 07 YES (NO ERROR) 

ERROR LOCATION = Q k  

O Y E S  , ~ , ERROR LOCATIONS 
.-ROOT l,,-ROOT 2 

ROOT 1, ROOT 2 
A Y E S  

ROOT 1, ROOT 2 

ERROR LOCATIONS , .-ROOT l,,-ROOT 2 

ERROR = 3 
i = i + l  * CORRECT C'(x)  

Fig. 2. Flowchart of the decoding algorithm. 
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INPUT THE (24.12) GOLAY CODE: 

USE THE SIMPLIFIED (23.12) GOLAY CODE 
DECODING ALGORITHM TO FIRST 23 BITS 

t 
NO IS E R R O R S =  3? I 

YES 

I I 

I CHECK THE PARITY OF THE DECODED 
CODEWORD P' e- IS P' = P? 

l FOUR ERRORS DETECTED IN THE 
(24.12) GOLAY CODEWORD I 

1-  
END 

Fig. 3. The decoding flowchart of the (24,12) Golay code. 
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