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ABSTRACT
Highly-optimized placements may lead to irreparable routing con-
gestion due to inadequate models of modern interconnect stacks
and the impact of partial routing obstacles. Additional challenges
in routability-driven placement include scalability to large netlists
and limiting the complexity of software integration. Addressing
these challenges, we develop lookahead routing to give the placer
advance, firsthand knowledge of trouble spots, not distorted by
crude congestion models. We also extend global placement to (i)
spread cells apart in congested areas, and (ii) move cells together
in less-congested areas to ensure short, routable interconnects and
moderate runtime. While previous work adds isolated steps to global
placement, our SIMultaneous PLace-and-Route tool SimPLR in-
tegrates a layer- and via-aware global router into a leading-edge,
force-directed placer. The complexity of integration is mitigated by
careful design of simple yet effective optimizations. On the ISPD
2011 Contest Benchmark Suite, with the official evaluation proto-
col, SimPLR outperforms every contestant on every benchmark.

1. INTRODUCTION
In earlier technology generations, placement and routing algo-

rithms were designed and implemented in separate software tools,
even when the user interface exposed a single optimization to chip
designers. After logic synthesis, a placer generates row- and site-
aligned, non-overlapping locations for cells with small interconnect
length (HPWL)2. A global router then routes all signal nets, with
small total wirelength, subject to track capacity constraints. Yet,
common placement metrics no longer capture key aspects of solu-
tion quality at new technology nodes [2,27]. Wirelength-optimized
placements often lead to routing failures when the placer is not
aware of actual routes [11]. Prior work incorporates routing con-
gestion analysis into global placement (see Section 2), but lacks in
several aspects. First, simplified congestion models do not cap-
ture phenomena salient to modern layouts, e.g., the impact of non-
uniform interconnect stacks and partial routing obstacles on con-
gestion. Second, the placement techniques that best control whites-
pace allocation in response to congestion (min-cut and annealing-
based) are no longer competitive on the largest layouts. Third,
incremental post-placement optimization alone is often insufficient
as it cannot change the structure of global placement.
Challenges in congestion estimation [2]. A successful estimator
must account for up to twelve metal layers with wire widths and
spacings that differ by up to 20×. Blockages and per-layer routing
rules must be modeled as well. Other constraints include via spac-
ing rules and limits on intra-gcell routing congestion. After the
2007/2008 ISPD contests, academic routers NTHU-Route 2.0 [8],
NTUgr [13], FastRoute 4.0 [39], BFG-R [14] started to account for
these issues. More recent routers — PGRIP [38], PGR (SGR) [23],
GLADE [9,20] — have improved solution quality and runtime, and
account for different layer directives.

1M.-C. Kim and J. Hu contributed equally to this work.
2Half-Perimeter WireLength, defined using the net bounding box

Routability-driven placement can pursue several different opti-
mization objectives, such as ensuring 100% routability, even at the
cost of significant routing runtime. Alternatively, one can evaluate
placements by a layer-aware global router with a short time-out,
which nevertheless correlates with the final router (and is poten-
tially based on the same software implementation). This interme-
diate objective is more amenable to optimizations in global place-
ment because its quick evaluation facilitates a tight feedback loop.
In other words, intermediate placements can be evaluated many
times, allowing the global placer to make proper adjustments. As
we show in Section 5, due to the correlation between the fast and
the final router, resulting routability-driven placements may fare
better even with respect to the former, more traditional objective.
This approach also facilitates early estimation of circuit delay and
power in terms of specific route topologies. On the other hand,
biasing the global placer away from HPWL to more sophisticated
routability metrics may adversely affect the global placer’s overall
optimization capabilities. In other words, if HPWL increases too
much, routability metrics will also increase.
In this work, we directly address the challenges of routability-
driven placement. First, we develop lookahead routing, which
invokes a fast high-quality 3-d global router, to quickly estimate
routability. Since the produced routes can be used as a routing solu-
tion, our method can accurately and quickly report both congestion
and routed wirelength. Second, to produce competitive placements
in terms of both routed wirelength and HPWL, we integrate our
lookahead routing into a flat, quadratic global placer, and enhance
placement iterations by gently coercing cell locations and relieve
congestion while preserving interconnect length. In detailed place-
ment, we do not change the objective functions as in [42], but pro-
hibit moves that aggravate routability. In global placement, we tem-
porarily inflate cells in highly-congested regions to reserve whites-
pace during global placement. Traditionally, this has been accom-
plished either by cell bloating [4, 12, 26] during/after global place-
ment, or by whitespace allocation [21, 27, 40] after placement. We
observe that wirelength-driven global placers typically limit area
utilization by a given amount through the entire layout based on tar-
get density. Therefore, in addition to cell bloating, we dynamically
adjust the target density based on total routed wirelength.3 This
technique preserves overall solution quality and allows the placer
to move cells in uncongested regions closer. Third, we develop
a simultaneous place-and-route framework for global placement as
well as a routability-driven detailed placement algorithm.
Our proposed methodology offers several advantages. First, since
we use a global router to estimate congestion, the routes for all nets
are known. Second, by enabling the global placer to directly redis-
tribute whitespace in response to routing congestion, we establish
a more precise feedback loop (compared to add-on techniques pro-
posed previously). Third, by using a variable target density, we are
trading off wirelength for routing demand in congested regions.

3Partitioning-based placers can adjust target density on a per region
basis [4,27]. In force-directed placers, this feature is more difficult
to implement and seems unnecessary.



Our key contributions include:
• A method to control routability within the global placer while

preserving solution quality by dynamically adjusting the global
target density
• An effective cell-bloating technique by dynamically adjust-

ing cell width based on design’s perceived difficulty
• A simultaneous place-and-route framework
• A congestion-aware detailed placement algorithm that moves

cells only when this does not hurt routability
• Empirical results on the ISPD 2011 contest benchmarks that

outperform every competitor on every benchmark with an av-
erage 2.04× improvement (Table 3) and a greater improve-
ment 8.43× (Table 5) with a stronger global router.

The remainder of this paper is structured as follows. In Section 2,
we survey prior art on congestion-driven placement, and review the
baseline algorithms that we use. In Sections 3 and 4, we introduce
several new techniques to improve the routability of placements. In
Section 5, we empirically validate proposed algorithms. Section 6
concludes our work and discusses its impact.

2. PRIOR WORK
We briefly review the baseline place-and-route algorithms used

in our work, then survey prior art on congestion maps and congestion-
driven placement. For further background on placement see [17,
Chapter 4] and for global routing see [17, Chapter 5].
SimPL [19] is a flat, force-directed global placer. It maintains a
lower-bound and an upper-bound placement; the final solution is
generated when the two placements converge.4 The upper-bound
placement is generated by applying lookahead legalization (LAL),
which is based on top-down geometric partitioning and non-linear
scaling. Using this information, the lower-bound placement is gen-
erated by minimizing the quadratic objective

Φq(~x, ~y) =
X
i,j

wi,j

`
(xi − xj)2 + (yi − yj)2

´
(1)

using the Conjugate Gradient method [28]. Here, ~x and ~y are coor-
dinate vectors of the cells’ (x,y) locations, and wi,j represents the
connectivity between cells i and j. Two of top three teams in the
ISPD 2011 contest, including ours, relied on the SimPL algorithm.
FastPlace-DP [24] is a wirelength-driven detailed placer based on
greedy algorithms. It uses (i) cell clustering, (ii) global cell swap-
ping, (iii) vertical cell swapping, and (iv) local reordering to im-
prove wirelength. To determine which cells should be swapped,
FastPlace-DP estimates the reduction in wirelength from swapping
cells i and j by

gain(i, j) =
X

n∈Ni

(Wn −W ′n)−
X

n∈Nj

(Wn −W ′n) (2)

whereNi andNj are the nets connected to cells i and j, andW and
W ′ are the wirelength measurements before and after the swap.
BFG-R [14] is a global router based on Lagrangian relaxation. It
decomposes multi-pin nets into two-pin subnets using MSTs and
then iteratively routes all subnets until no violations are present.
BFG-R prices each (sub)net by summing up the cost of used edges

cost(e) = basee + λ(e)× C(e)× ρ(e) (3)

where basee is the base edge cost, λ(e) is the history cost, C(e) is
current congestion, and ρ(e) is the runtime penalty factor.

4The wirelength gap between the upper-bound and lower-bound
solutions is useful to formulate convergence criteria.

Congestion Maps. To estimate congestion, prior approaches can
be divided into three main categories: (i) static congestion estima-
tion, (ii) probabilistic congestion estimation, and (iii) global rout-
ing estimation. Traditionally, the first two options have been the
most popular, but the last option has recently been gaining accep-
tance thanks to advanced global routers designed to handle greater
layout complexity. Empirical evidence suggests that constructive
methods (generating routes) are faster and more accurate than prob-
abilistic methods [37]. Table 1 summarizes these approaches.
Congestion-driven Placement. Known placement optimizations
can be classified as (i) performed during global placement, (ii)
external optimizations applied to intermediate solutions, (iii) per-
formed during detailed placement, and (iv) post-placement pro-
cessing (see Table 2). During global placement, the two most pop-
ular optimizations are to (i) relocate movable cells, or (ii) relocate
them after bloating. These changes require modifying the placer,
potentially including the optimization function. When working
with quadratic, mincut and annealing-based placers, the generic
ideas above must be adapted case by case. Additional optimiza-
tions can be applied to intermediate placement solutions, and then
passed on to the next step of the design flow. During detailed place-
ment, the most common approach is to modify the objective func-
tion of cell-swapping to account for congestion. After placement,
the solution undergoes a series of changes to improve routability.

GENERAL APPROACH SPECIFIC TECHNIQUES

using Rent’s Rule [41]
net bounding box w/ weighting [6]

STATIC building Steiner trees [27]
pin density [4]
counting nets in each region [35]
(uniform) wire density [30]

PROBABILISTIC pseudo-constructive wirelength [18]
probabilistic pattern routing [36]

CONSTRUCTIVE

generating routes using A*-search on a
collapsed (2-d) routing grid [37]
using FastRoute [39] within
an integrated framework [11]

Table 1: Prior congestion-estimation techniques.

3. SIMULTANEOUS PLACE-AND-ROUTE
In this section, we introduce a methodology for simultaneous

place-and-route and discuss its components (see Figure 1). Given
a placement instance, the baseline global placer quickly produces
a tentative solution. Then, we apply lookahead routing (LAR) by
calling our global router to estimate routing congestion and wire-
length. We use this information during global placement by means
of cell bloating and dynamically adjusting the target density. After
several iterations of global placement, where the placer “heals” the
placement for wirelength, lookahead routing is invoked again, and
such iterations continue until overflow stops improving. Congestion-
aware detailed placement is performed to recover whitespace and
improve routed wirelength while maintaining routability.

We achieve an initial placement solution once the wirelength gap
between the upper-bound and lower-bound solutions is within 25%
of the 10th iteration’s total wirelength (see Section 2). After cell
bloating, we run four iterations of lookahead legalization. Our dis-
junctive convergence criterion checks for three conditions: (i) the
overflow has improved less than 3% after two consecutive rounds
of LAR, (ii) the total overflow is less than 1% of the total edge
capacity, or (iii) the global placement timeout of 60 iterations.



GENERAL APPROACH SPECIFIC TECHNIQUES

relocating the movable objects
DURING [15, 30, 31]
GLOBAL cell bloating or cell inflation [4, 12]

PLACEMENT growing or shrinking
placement regions [25]

INTERMEDIATE local placement refinement [11]
linear placement based on Steiner

DURING length in small windows [16, 27]
DETAILED incorporating congestion into

PLACEMENT the objective function [42]
cell swapping based on only
congestion and overlap [11]
whitespace injection
or reallocation [21, 27, 40]
simulated annealing [10, 32]

AFTER linear programming [22]
PLACEMENT network flows [33, 34]

shifting modules by expanding
global routing grid tiles [42]
using pin density and congestion
map to spread and bloat cells [26]

Table 2: Prior congestion-driven placement techniques.

3.1 Lookahead Routing (LAR)
To improve routability while preserving wirelength, global place-

ment invokes lookahead routing. Unlike previous approaches, where
only congestion information is reported, LAR estimates both in-
terconnect length and routing congestion. Our router implementa-
tion accounts for (i) different wire widths and spacings, (ii) routing
blockages, (iii) pins on different metal layers, and (iv) vias.
Wire widths and spacings at each metal layer are modeled sepa-
rately. The resources consumed by a net are then estimated by

Usage(net) =
X

e∈net

minSpacing(le) +minWidth(le) (4)

where net is the net routed, e is each edge in net, le is the metal
layer that e is on, and minSpacing(le) and minWidth(le) are
the respective minimum spacing and width required for le.

However, congestion estimates produced by this model can be
misleading. For example, suppose two edges e1 and e2 on dif-
ferent metal layers are overflown, where e1 is on Metal1, having
minSpacing(Metal1)+minWidth(Metal1) = 2, and e2 is on
Metal4, havingminSpacing(Metal4)+minWidth(Metal4) =
8. Suppose e1 has two violating nets, yielding an overflow of 4, and
e2 has one violating net, yielding an overflow of 8. These actual
overflows are now misleading, as e1 is considered more congested,
but its overflow is lower than that of e2. Therefore, to accurately
report congestion, we normalize the capacity for every edge e on
metal layer l by

nCap(el) =
Cap(el)

minSpacing(le) +minWidth(le)
(5)

where Cap(el) is the original capacity of edge e on layer l. Note
that when normalizing capacity, we also normalized, where each
segment is defined as one routing segment, regardless of the layer.
Routing blockages are specified as physical locations in the layout
area. Therefore, the routing resources blocked at each edge are pro-
portional to the length of the blockage. However, if two obstacles
overlap, the overlap is only counted once. To properly calculate
capacity, we first take the union of all routing-obstacle shapes on
each edge, and then consider each non-blocked region separately.
For each non-blocked region r, the amount of usable capacity is

Figure 1: Our simultaneous place-and-route (SimPLR) flow.
The baseline components are shown in transparent boxes,
added routability-driven components have light-blue fill.

υ(re) =
dim(re)

dim(e)
(6)

where dim(r) is the length of the non-blocked region on edge e,
and dim(e) is the length of e (i.e., height if e is a vertical edge,
and width if e is a horizontal edge). Then, each edge’s normalized
capacity is

nCap(el) =
X

re∈Re

υ(re)× Cap(el)

minSpacing(le) +minWidth(le)
(7)

The calculation of normalized capacity in the presence of rout-
ing obstacles is demonstrated in Fig. 2. In the example, let the
length of every edge be 50, let the lower left coordinate be (0,0).
Let the original edge capacity be 40, and let the minimum spacing
plus the minimum width of this layer be 4. Since the vertical edge
(50,0)-(50,50) has coordinates (50,40)-(50,50) blocked off, it only
has 50−10

50
= 80% usable capacity. Since there is only one non-

blocked region, the normalized capacity is (80%×40)
4

= 8. Simi-
larly, the horizontal edge (50,50)-(100,50) has no usable capacity,
as it is entirely blocked off, so its normalized capacity is 0.
Elevated pins. The ISPD 2011 contest benchmarks, derived from
industrial ASICs and SoCs designs, include contact pins on multi-
ple metal layers. This poses a challenge for traditional global rout-
ing techniques, where routing is first performed on a 2-d grid and
then projected onto a 3-d grid. Therefore, we pursue a different
strategy. We decompose all multi-pin nets into two-pin subnets,
and perform 3-d maze routing.
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origCap(ev) = origCap(eh)  = 40
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Figure 2: Accounting for routing blockages, where dim(e) =
50 for each edge, two of three routing blockages overlap. On
the left, the lengths of each routing blockage and non-blocked
region are shown. On the right, the normalized capacities are
calculated for each edge. With no blockages, an edge has a
normalized capacity of 10.



3.2 Congestion-based Cell Bloating
After lookahead routing, we inflate all cells located in congested

regions. The congestion at gcell g, located at (x,y), is

C(g(x, y)) =
Usage(g(x, y))

Cap(g(x, y))
(8)

where nUsage and nCap are respectively the normalized usage
and capacity at g(x, y). The usage at each gcell is defined as

Usage(g(x, y)) = (9)
max(nUsage(e(x± 1, y)), nCap(e(x± 1, y))) +

max(nUsage(e(x, y ± 1)), nCap(e(x, y ± 1)))

and the capacity at each gcell is defined as

Cap(g(x, y)) = nCap (e(x± 1, y))+nCap (e(x, y ± 1)) (10)

where nUsage is the normalized usage for edge e, and nCap is
the normalized capacity for e. Therefore, if C(g(x, y)) > 1, then
g(x, y) is considered congested. If at least one of the neighboring
edges is congested, then the gcell is considered congested.

Then, for every cell in each congested gcell, we apply cell bloat-
ing by setting the cell’s new width to

max(width(cell)+1, 1+θ·Λ(cell)·C(g(x, y))·deg(cell)) (11)

where width is the current width of cell, θ is an adaptive function
(described below), Λ is the number of times the cell has been in
a congested gcell, and deg denotes the cell degree (the number of
cell pins connected to wires).

Our cell bloating approach is inspired by CRISP [26], but dif-
fers in three major ways. First, we apply cell bloating during
global placement, while CRISP bloats cells after placement. We
can therefore perform large-scale changes and, in our experience,
our placer better adjusts to bloated cells, resulting in a smaller wire-
length penalty. Second, we use gcell-centric congestion estima-
tion, while CRISP uses edge-centric congestion estimation with
a pin-density map. Our style of congestion estimation improves
integration with a global router. Pin density has been a popular
estimation technique for designs with relatively few metal layers.
However, with modern 9+ layer interconnect stacks, it primarily
affects the success of detailed routing, which is orthogonal to our
work. Third, while CRISP relies on a constant θ, our θ is a
routing-solution-dependent function (described below), and based
on the design’s estimated difficulty and its routability. The intuition
is that if a design is difficult to place or route, cells in congested re-
gions need additional whitespace. Therefore, cells in those regions
should be more inflated. We define θ(G) as

θ(G) = max (0, α · η(G) · ξ(G) + β) (12)

where G is the set of all gcells, α and β are constants determined
from linear regressions, η(G) indicates how hard a design is (e.g.,
how much available routing capacity there is), which is relatively
insensitive to the routed solution, and ξ(G) indicates the routability
of the design, and is based on lookahead routing. We define η(G)
and ξ(G) as

η(G) =
X
g∈G

Usage(g)

Cap(g)
ξ(G) =

TOF (G)

TCap(G)
(13)

where OF (G) and Cap(G) are the respective total overflow and
total capacity of all gcells in G. In our implementation, we empir-
ically determined the values α = 0.017 and β = −0.01 based on
numerical regression (but not benchmark-specific tuning).

3.3 Dynamic Adjustment of Target Density
Target density (utilization) is one of the most critical parameters

to trade off routability for wirelength in the final placement. How-
ever, finding the best target density for routability-driven place-
ments remains an open problem. Unnecessarily high target den-
sity leads to better HPWL, but may also cause routing failures [1].
Lower target density, on the other hand, may increase the overall
routed wirelength, which would lead to longer detours and con-
sume more routing resources. We set the initial target density as

γinit = Dut + min(max(γ0 −Dut, 0%), ωD) (14)

where Dut is the design utility (given), γ0 is a prediction of a good
target density, and ωD is the target density lower bound. If Dut

is too low (e.g., less than 35%), then the target density should be
higher to encourage cell clustering. Conversely, cells should be
spread apart if Dut is too high. Empirically, we observed that set-
ting γ0 = 50% when ωD = 15% provides a reasonable trade-off
between routability and routed length.

After lookahead routing and cell bloating, the target density is
updated as

γ = min(
area(Cm)

area(D)− area(Cf )
+ φ, 95%) (15)

where Cm is the set of movable cells, Cf is the set of fixed cells,D
is the design, area returns the total area of input (bloated cells in-
cluded), and φ is a constant that increases every time LAR reports
an increase in routed wirelength. In our implementation, φ is ini-
tially γinit−Dut, and increases by 1% when wirelength increases.

4. CONGESTION-AWARE
DETAILED PLACEMENT

Traditional wirelength-driven detailed placement may pack cells
in regions that are difficult to route. In the context of the FastPlace-
DP algorithm, we modify both global cell swapping and vertical
cell swapping to be congestion-aware (see Algorithm 1) in two
ways: (1) we only allow cell move that do not harm routability,
(2) we encourage cells to move out of congested regions.

The subroutine perform swap(ci, cj , pred) swaps two cells ci
and cj if pred is true.5 For each movable cell ci, we consider its

Algorithm 1 Congestion-aware Detailed Placement
1. Cm = Set of all movable cells

2. Gc = Set of all congested gcells
3. C(i) = Congestion in the position cell i
4. foreach ci ∈ Cm

5. find the optimal region Ri of ci
6. find bswap, the benefit of swap with a cell cj ∈ Ri

7. find bmove, the benefit of move to a space s ∈ Ri

8. if (ci /∈ Gc && cj /∈ Gc)
9. if (bswap ≥ bmove)
10. perform swap(ci, cj , (bswap > 0))
11. else
12. perform swap(ci, s, (bmove > 0))
13. else if (ci ∈ Gc && cj /∈ Gc)
14. perform swap(ci, s, true)
15. else if (ci /∈ Gc && cj ∈ Gc)
16. perform swap(ci, cj , (deg(ci) < deg(cj)))
17. else
18. if (C(ci) > C(cj))
19. perform swap(ci, cj , (deg(ci) > deg(cj)))
20. else
21. perform swap(ci, cj , (deg(ci) < deg(cj)))
22. end foreach

5A single cell can “swap” with an empty location.



BENCHMARK #cells SimPL with FastPlace-DP Best in Contest SimPLR with Ca-DP
(source: IBM Research) RtWL OF Runtime RtWL OF RtWL OF Runtime
SUPERBLUE1 847K 14.32 1354 23.89 14.70 108 14.48 0 51.69
SUPERBLUE2 1.01M 27.10 1191806 37.87 30.77 797898 29.20 740050 108.30
SUPERBLUE4 500K 10.52 45430 7.54 10.86 85538 10.68 18444 24.79
SUPERBLUE5 772K 16.90 272934 23.53 17.29 126186 16.98 121894 51.84
SUPERBLUE10 1.13M 26.18 463858 33.68 25.16 616742 26.69 567780 73.34
SUPERBLUE12 1.29M 19.35 1992246 35.18 22.89 415428 22.58 181350 43.32
SUPERBLUE15 1.12M 17.09 62274 24.21 17.91 125936 17.07 49286 43.33
SUPERBLUE18 483K 10.64 153556 14.36 9.84 31440 10.63 21020 21.38

Average 0.96× 3.81× 0.52× 1.01× 2.04× 1.0× 1.0× 1.0×
Geometric mean 0.96× 2.63× 0.49× 1.01× 1.76× 1.0× 1.0× 1.0×

Table 3: Routed wirelength (RtWL, ×10e6), routing overflow (OF), and runtime (in minutes) on
ISPD 2011 benchmarks. The placements were evaluated by coalesCgrip [5] with a 15-min time-out.

BENCHMARK #cells FastPlace-DP (after SimPLR) Ca-DP (after SimPLR)
(source: IBM Research) HPWL RtWL OF Runtime HPWL ∆RtWL ∆OF Runtime
SUPERBLUE1 847K 277.03 14.45 0 5.37 279.01 0.376 0 9.83
SUPERBLUE2 1.01M 657.03 29.09 782348 19.22 660.09 -0.195 -42298 32.06
SUPERBLUE4 600K 231.78 10.71 22192 2.96 231.44 -0.336 -3748 4.62
SUPERBLUE5 772K 354.23 17.02 139012 5.58 355.05 -0.386 -17118 9.68
SUPERBLUE10 1.13M 586.62 26.48 556678 7.99 592.18 0.113 11102 18.26
SUPERBLUE12 1.29M 376.59 22.7 293516 7.71 377.27 -0.119 -112166 13.33
SUPERBLUE15 1.12M 337.04 17.04 56866 6.60 337.96 0.128 -7580 8.43
SUPERBLUE18 483K 165.09 10.64 23708 2.92 165.75 -0.125 -2688 4.44

Average 1.00× 1.01× 1.18× 0.60× 1.00× 1.00× 1.00× 1.00×
Geometric mean 1.00× 1.01× 1.17× 0.60× 1.00× 1.00× 1.00× 1.00×

Table 4: The impact of congestion-aware detailed placement on HPWL(×10e6), routed wirelength (×10e6), and overflow (OF)
on ISPD 2011 benchmarks. Runtimes are given in minutes. Routing was performed by coalesCgrip [5] with a 15-min time-out.

best swap (with cj) or move (with empty space s). If both actions
result in positive gain, and both are in non-congested regions, then
we revert to wirelength-driven decisions. If ci is in a congested
region and cj is not, then we can improve routability by moving
it to s. If ci is not in a congested region, but ci is and has fewer
pins than cj , we can potentially improve routability in subsequent
moves if we decrease the number of routes that go through the con-
gested region. Similarly, if both cells are in congested regions, then
we only swap them if deg(cj) < deg(ci). This ensures that the
detailed placer does not harm routability.

5. EMPIRICAL VALIDATION
Our implementation is in C++, compiled with g++ 4.4.3, and val-

idated on a 3.00 GHz Intel Core 2 CPU X9650 Linux workstation.
We modified and integrated the (i) SimPL global placer [19], (ii)
BFG-R global router [14], and (iii) FastPlace-DP detailed placer
[24]. Significant changes were made to all three tools, and new
algorithms were added, as described in Sections 3 and 4.
The evaluation of placement solutions was performed by coa-
lesCgrip [5], which was mandated by the ISPD 2011 Routability-
driven Placement Contest. CoalesCgrip was compiled with gcc
4.4.1, as specified by the contest organizers. Its runtime limit was
set to 300 seconds for initial routing and 900 seconds for rip-up and
reroute (RRR), which makes results machine-dependent. There-
fore, we downloaded all placements produced by the top contes-
tants, and reevaluated them on our workstation.

Our implementation of SimPLR uses BFG-R for LAR instead of
coalesCgrip, which was not available in source code. Empirically,
our router accurately predicts the regions of congestion reported
by coalesCgrip while allowing us to implement our proposed in-
terface that minimizes runtime overhead. Since our strong results

are achieved without running coalesCgrip during global placement,
SimPLR does not seem to require the knowledge of a specific down-
stream router. Though using different routers in one flow may not
be ideal, this is not uncommon in multivendor industry flows, and
our results indicate that such configurations can be successful.
Progress of global placement is illustrated in Figure 4 for the
SimPL (with target density 50%) and SimPLR algorithms. Before
the first invocation of lookahead routing (LAR) in SimPLR, the two
progress identically since the initial target density (γinit) of Sim-
PLR is computed by Equation 14 to be 50%. The first invocation
of LAR with subsequent cell bloating does not significantly impact
wirelength, due to Λ = 0 in Equation 11. Lookahead legalization
produces higher HPWL after the second LAR, but the impact on
quadratic placement is small, and the disruption in roughly legal-
ized placement is quickly healed. SimPLR invokes LAR 3-6 times
per benchmark, which takes 27-58% of total runtime, averaging at
47.88%, and currently runs 2× slower than SimPL. Yet, SimPLR
was among the two fastest placers at the ISPD 2011 contest.
Congestion-aware detailed placement (Ca-DP) is evaluated in
Table 4. We report the (i) recovered HPWL, (ii) recovered routed
length, and (iii) total overflow improvement using Ca-DP, versus
FastPlace-DP [24]. Ca-DP barely changes HPWL and routed wire-
length, but improves overflow by 1.18×.
Routability is reported in Table 3 and Figure 3: SimPLR con-
sistently reduces total overflow across all benchmarks and makes
SUPERBLUE1 fully routable. On the remaining benchmarks, com-
pared to baseline wirelength-driven placer SimPL, we improve total
overflow by 3.81× on average. Compared to the top results from
the ISPD 2011 Contest, we produce the smallest overflow on all
benchmarks, for an average 2.04× reduction. These results are fur-
ther improved in Table 5 as discussed in conclusions.



Figure 3: Congestion maps for SUPERBLUE15 for the best-reported placement at the ISPD 2011 contest (left) and
SimPLR (right). Isolated red regions indicate peak congestion, dark-blue rectangles show unused routing resources.

6. CONCLUSIONS
Tight integration of major CAD tools is sometimes frowned upon

in the industry because it may sharply increase software complex-
ity, introduce subtle discrepancies and complicate software main-
tenance. However, such integration is highly sought in place-and-
route, where high-performance global placers often generate hard-
to-route solutions, creating unnecessary complications for down-
stream tools. The strategy pursued in our work is to give the placer
advance, firsthand access to tentative net routes and resulting actual
congestion maps (rather than crude estimates), as well as the ability
to respond early and often. We believe that our proposed integra-
tion of global routing into global placement, based on lookahead
routing of upper-bound placements in the SimPL algorithm, offers
a particularly promising and “clean” path to effective simultaneous
place-and-route. By communicating through a lightweight inter-
face, the placer and the router quickly exchange multiple updates
to cell locations and net routes, while maintaining the software in-
frastructure separated. Despite this software separation, the evolu-
tions of routes and cell placements are coupled and occur simulta-
neously. Empirical data show that our techniques improve routabil-
ity, reducing total overflow compared to top results from the ISPD
2011 contest, which represent prior art and several competing new
techniques developed by our colleagues across the world.

The ISPD 2011 experimental protocol evaluated placements with
only very short routing runs of coalesCgrip. To illustrate the full
potential of SimPLR, we performed additional experiments, where
coalesCgrip was given 12 and 24 hours. The results reported in Ta-
ble 5 were obtained on a 2.53 GHz Intel Xeon CPU E5540 Linux
workstation. While none of the IBM-released benchmarks could
be completed without overflows at the ISPD 2011 contest, we have
now completed half of them. Our results6 show that the advantage
of SimPLR solutions grows significantly when the evaluating router
is used at its full strength. Thus, modern place-and-route leaves
room for improvement in both gate locations and wire routes, but
such improvements are best achieved in cooperation. Such opti-
mizations use physical resources more efficiently, enable smaller
dies, and decrease IC manufacturing cost [26].

6The placement solutions produced by SimPLR on ISPD 2011
benchmarks, as well as resulting routes, are available on demand.

Given that SimPLR internally invokes a full-fledged router with
a limited number of iterations (BFG-R) that produces a valid rout-
ing solution, better optimized results can be requested at the cost of
greater runtime. Runtime can be improved by making LAR more
incremental. This SimPLR framework can target specific nets and
facilitates several further extensions, especially in timing optimiza-
tion, where the placer’s early and direct access to actual routes can
improve the accuracy of delay estimation.
Acknowledgments. We are grateful to Chris Chu and Natarajan
Viswanathan for giving us access to FastPlace-DP.
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invocation of lookahead routing is marked with a circle. The second invocation of LAR and subsequent cell
bloating visibly disrupt the quality of roughly legalized placements, with a smaller impact on quadratic placement.
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