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Abstract Approximate Bayes computations (ABC) are
used for parameter inference when the likelihood function
of the model is expensive to evaluate but relatively cheap to
sample from. In particle ABC, an ensemble of particles in
the product space of model outputs and parameters is propa-
gated in such away that its outputmarginal approaches a delta
function at the data and its parametermarginal approaches the
posterior distribution. Inspired by Simulated Annealing, we
present a new class of particle algorithms for ABC, based on
a sequence of Metropolis kernels, associated with a decreas-
ing sequence of tolerances w.r.t. the data. Unlike other algo-
rithms, our class of algorithms is not based on importance
sampling. Hence, it does not suffer from a loss of effective
sample size due to re-sampling.We prove convergence under
a condition on the speed at which the tolerance is decreased.
Furthermore, we present a scheme that adapts the tolerance
and the jump distribution in parameter space according to
some mean-fields of the ensemble, which preserves the sta-
tistical independence of the particles, in the limit of infinite
sample size. This adaptive scheme aims at converging as
close as possible to the correct result with as few system
updates as possible via minimizing the entropy production
of the process. The performance of this new class of algo-
rithms is compared against two other recent algorithms on
two toy examples as well as on a real-world example from
genetics.
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1 Introduction

One way of implementing parameter inference in the Baye-
sian framework is to generate parameter samples from the
posterior distribution

f post (θθθ |y) = f (y|θθθ) f (θθθ)

f (y)
, (1)

where f (θθθ) denotes the prior distribution encoding our
knowledge about the parameter vector θθθ before the experi-
ment, f (y|θθθ) is the likelihood function, that is, the probability
density of outputs given the parameter vector θθθ , evaluated at
the measurement vector (data) y, and f (y) is the correspond-
ing prior density of the data. Numerical methods such as the
Metropolis algorithm Metropolis et al. (1953) require many
evaluations of the likelihood function to generate such a sam-
ple. However, for complex stochastic models, the likelihood
function is often prohibitively expensive to evaluate. There-
fore, in recent years, algorithms have been suggested that
generate samples from (1) by sampling model outputs from
the likelihood and comparing them with the data rather than
evaluating the likelihood.

As far as we know, the origin of these algorithms is to be
found in population genetics. Tavaré et al. (1997) replaced
the output of a genetic model by a summary statistic and
adopted a rejection technique to generate samples from the
posterior. Weiss and Haeseler (1998) extended this method
sampling a vector of summary statistics and introducing a tol-
erance for its distance from the observed summary statistics.
Thus, their algorithmgenerates samples fromanapproximate
posterior. Algorithms that generate samples from an approx-
imate posterior via sampling outputs from the likelihood are
nowadays called Approximate Bayes Computations (ABC).
Marjoram et al. (2003) usedMarkov chains to produce sam-
ples from an approximate posterior. Their algorithm com-
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bines a random walk in parameter space with drawing from
the likelihood and an acceptance/rejection step that accounts
for the prior and only accepts moves into an ε ball around
the target y. However, a small static tolerance leads to a high
rejection rate. Therefore, Toni et al. (2009) suggested using
a decreasing sequence of tolerances and letting an ensemble
of particles of constant size N evolve towards an approx-
imate posterior. Their algorithm consists of an iteration of
importance sampling steps, where each iteration consists of
drawing a new ensemble from the old one with weights and
subsequent re-sampling. This re-sampling leads to a loss of
effective sample size at each iteration step. There are several
adaptive versions of ensemble (or particle) ABC algorithms.
Beaumont et al. (2009) use the empirical variances of the
ensemble to adapt the jump distribution in parameter space.
Del Moral et al. (2012) and Lenormand and Jabot (2013)
use the particles’ distance from the target to adapt the tol-
erance. Recent variants of the algorithm of Del Moral et al
appeared in Lee (2012) and Sedki et al. (2013). All of the
mentioned algorithms generate samples from the probabil-
ity distribution proportional to f (θθθ) f (x|θθθ)χ(ε − ρ(x, y)),
where ρ is some metric on the output space and χ denotes
the Heaviside function whose value is unity if its argument
is non-negative and 0 otherwise. The effect of kernels differ-
ent from the Heaviside function has been considered, e.g. in
Wilkinson (2013). For a recent review on ABC algorithms,
the reader is referred to Marin et al. (2012).

In this paper, we present a new class of (adaptive) ensem-
ble algorithms that are of orderO(N ) and do not suffer from
a loss of effective sample size. The idea is to start with an
ensemble of particles drawn from an arbitrary distribution
(e.g. the prior) in the product space of parameters and out-
puts and apply a sequence of Markov kernels, (Pεk ), each of
which having

Z−1(εk) f (θθθ) f (x|θθθ)e−ρ(x,y)/εk

as equilibrium distribution. The key question is then how fast
we should decrease εk in order to have a fast convergence and
at the same time not to acquire an additional bias due to a too
fast convergence. This problem is reminiscent of Simulated
Annealing, which is one of our sources of inspiration. We
will give a convergence proof for a schedule that satisfies

εk ≥ const k−α/n,

where n is the dimension of the output space and α > 0
is defined in (4). Furthermore, we will present an adaptive
schedule that attempts convergence to the correct posterior
while minimizing the required simulations from the likeli-
hood. Both the jump distribution in parameter space and the
tolerance ε are adapted using mean fields of the ensemble.

The adaptation of ε we suggest is motivated from non-
equilibrium thermodynamics, where this control parameter
is naturally interpreted as a temperature. We adapt ε accord-

ing to the particles’ distance to the target (energy) in such
a way that the entropy production in the system, which is
a measure for the waste of computation, is minimized. A
first order approximation of the entropy production is calcu-
lated using the so-called endoreversibility assumption, which
states that the system undergoes only reversible changes, and
which is approximately satisfied if either the mixing in para-
meter space is fast enoughor annealing is slowenough.Under
this assumption the only source of entropy production is the
flow of energy (or rather heat) from the system to the envi-
ronment, the latter being defined by the control parameter
ε that is used for the transitions and can be interpreted as
the temperature of a heat reservoir the system is in contact
with. In cases where the influence of the prior on the pos-
terior is strong, we actively control this prior influence with
a second control parameter, which allows us to extend the
scope of the endoreversibility assumption. Necessary and
sufficient conditions for the minimization of entropy pro-
duction, for endoreversible processes, have been derived in
Spirkl and Ries (1995). For sufficiently slow processes, for
which a linearity assumption holds, the condition is a con-
stant entropy production rate Salamon et al. (1980), which
has been applied to Simulated Annealing, e.g. in Ruppeiner
et al. (1991). In cases where the prior influence on the pos-
terior is small, we go beyond the linearity assumption and
suggest a scheme with non-constant entropy production rate.

The tolerance ε that can be achieved in reasonable time is
limited by the dimension of the output space. This deficiency
is inherent to all ABC algorithms simply because drawing
an output from an ε-ball around y scales like εn . Methods to
reduce this bias are investigated elsewhere (see, e.g. Fearn-
head and Prangle 2012; Leuenberger and Wegmann 2010).

The paper is organized as follows: In Sect. 2.1, we explain
the main idea behind our class of algorithms. In Sect. 2.2, the
explicit scheme together with a convergence proof is given.
The adaptive scheme is developed in Sect. 2.3. Section 3
contains an application to two toy models, for which the
posterior is available analytically, as well as a comparison
with two recent adaptive ABC algorithms (Del Moral et al.
2012; Lenormand and Jabot 2013). Section 4 contains an
application in genetics. Conclusions are drawn in Sect. 5.

2 A new class of ABC algorithms

2.1 Basic idea

Our aim is to sample from the posterior distribution (1), with-
out evaluating the likelihood function. The basic idea behind
ABC is to rewrite (1) as the marginalization

f post (θθθ |y) ∝
∫

f (x|θθθ) f (θθθ)δ(x − y)dx (2)
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and sample from the joint density f (x|θθθ) f (θθθ)δ(x−y) in the
(θθθ, x)-space,�×X , whichmeans to sample a parameter vec-
tor from theprior and an associatedoutput from the likelihood
and accept the particle iff the drawn output happens to coin-
cidewith the data. If the output space has a high cardinality or
is continuous, sampling from f (x|θθθ) f (θθθ)δ(x − y) becomes
inefficient or impossible, respectively. In these cases, we
approximate it by the following family of distributions

πε(θθθ, x) = 1

Z(ε)
f (x|θθθ) f (θθθ)e−ρ(x,y)/ε, (3)

where ρ(x, y) measures how close x is to the observation y.
For simplicity, we set X = R

n and

ρ(x, y) = 1

α

n∑
i=1

|xi − yi |α , (4)

for some α > 0, but our results could easily be extended
to more general manifolds equipped with distance measures
obeying suitable regularity conditions. This might become
necessary if summary statistics are used to map the output
space to some smaller-dimensionalmanifold (see, e.g. Fearn-
head and Prangle 2012; Tavaré et al. 1997; Weiss and Hae-
seler 1998).

Under the assumption that f (x|θθθ) is uniformly bounded
and, as a function of x, continuous at y, πε converges weakly
to f (x|θθθ) f (θθθ)δ(x−y)dθθθdx, for ε ↘ 0.Our idea is to choose
a family of Markov transition kernels (Pε) on the space � ×
X , which have πε as stationary distribution and apply them
recursively on members of a sample drawn from an arbitrary
initial distribution, for a decreasing sequence of ε’s. If ε is
decreased sufficiently slowly, we expect to end up with an
approximate sample from the posterior distribution. This is
analogous to the Simulated Annealing algorithm, although
in Simulated Annealing the limiting distribution is usually
concentrated on a finite set. Still, we will strongly rely on
ideas developed in the context of Simulated Annealing. The
transition kernels (Pε) that we will use in Sects. 2.2 and 2.3.2
are defined by the transition densities

qε((θθθ
′, x′), (θθθ, x)) = k(θθθ ′, θθθ) f (x|θθθ)

×min

(
1,

f (θθθ)e−ρ(x,y)/ε

f (θθθ ′)e−ρ(x′,y)/ε

)
, (5)

combined with a multiple of a Dirac delta distribution at
(θθθ ′, x′) such that Pε((θθθ

′, x′),� × X) = 1. Here, k is a sym-
metric transition density on� and the last term is aMetropo-
lis acceptance/rejection factor. It is straightforward to check
that πε is the equilibrium distribution for Pε .

The main question now is how fast ε should be decreased.
Obviously, an arbitrarily slow decrease of ε allows to stay
arbitrarily close to equilibrium at all times after, possibly, an
initial burn-in period, which guarantees convergence. How-
ever, this is clearly inefficient. On the other hand, a too fast

decrease may result in slow convergence (because the accep-
tance probability decreases for decreasing ε) or convergence
to a biased result. A bias can occur, e.g. if the prior within
the last factor in Eq. (5) decides too seldom whether a pro-
posal point in � × X is accepted or not. In the extreme case
of a constant ε = 0, the acceptance term in (5) becomes
χ(ρ(x′, y) − ρ(x, y)), where χ denotes the Heaviside func-
tion. Thus, (θθθ, x) is accepted iff ρ(x, y) ≤ ρ(x ′, y). Hence
in this case, the prior has no influence, which clearly leads to
convergence to a biased result. For this reason, in Sect. 2.3.3,
we will introduce a second control parameter to control the
influence of the prior and replace (5) by (36).

In the next subsection we will present an explicit schedule
(εk) that ensures convergence to an unbiased result. A poten-
tially better performance can be achieved when the state of
the system is used to adapt the tolerance ε and the jump
distribution k. This idea will be developed in Sect. 2.3.

2.2 An explicit scheme with convergence proof

In this subsection, we use a time discrete description. That is,
we start with a sample from an arbitrary distribution μ0 and
then recursively make transitions of the whole sample with
the kernel Pεk , for an explicitly given decreasing sequence
εk ↘ 0. In this way, we generate samples distributed accord-
ing to

μk+1 = μk Pεk+1 =
∫

Pεk+1(θθθ, x; .)dμk(θθθ, x). (6)

We expect that for a suitable choice of (εk),μk will converge
weakly to f (x|θθθ) f (θθθ)δ(x−y)dθθθdx, and thus in particular the
marginal will converge weakly to the posterior distribution
(1).

In order to ease the notation we set z = (θθθT , xT )T and
write, for the joint prior,

f (z) := f (x|θθθ) f (θθθ).

Furthermore, w.l.o.g. we will assume y = 0 and replace
ρ(x, y) by ρ(x). For our main result, we make the following
assumptions about the parameter space � and the functions
k(θθθ ′, θθθ), f (θθθ) and f (x|θθθ) thereon:

(A1) ∃c1 > 1 such that c−1
1 ≤ f (θθθ)/ f (θθθ ′) ≤ c1, for all

θθθ,θθθ ′ ∈ �.
(A2) ∃c2 > 0 such that k(θθθ ′, θθθ) ≥ c2 f (θθθ), for all

θθθ,θθθ ′ ∈ �.
(A3) f (x|θθθ) is continuously differentiable w.r.t. x for all θθθ ,

and the function and all partial derivatives are bounded
uniformly in x and θθθ .

These conditions essentially restrict the parameter space
to be compact. We will in fact prove stronger than weak-
convergence results, namely convergence in total variation
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of the distributions of (θθθ, ε
−1/α
k x), with α > 0 as defined in

(4). The densities of these scaled distributions are

μ̂k(θθθ, x) := ε
n/α
k μk(θθθ, ε

1/α
k x)

and

π̂ε(θθθ, x) := εn/απε(θθθ, ε1/αx)

= 1

C(ε1/α)
f (ε1/αx|θθθ) f (θθθ) exp(−ρ(x)),

where

C(ε1/α) =
∫

f (ε1/αx|θθθ) f (θθθ) exp(−ρ(x))dz,

and the transition densities for the scaled variables are

q̂ε1/α (z, z′) = εn/αqε((θθθ, ε1/αx), (θθθ ′, ε1/αx′)).

Theorem 2.1 If the assumptions (A1) – (A3) above are sat-
isfied and if

εk ↘ 0, εk ≥ const k−α/n, (7)

for an arbitrary constant (where n denotes the dimension of
X andα is defined by (4)), then, for any absolutely continuous
initial distribution μ̂0, the distribution μ̂k converges in total
variation to π̂0(z) ∝ f post (θθθ |y) exp(−ρ(x)), for k → ∞.

Proof We will apply corollary (2.34) in Föllmer (1988). We
start by introducing some notation. Let

π̂k = π̂εk , P̂k = P̂εk , P̂s:t = P̂s P̂s+1 . . . P̂t ,

where P̂ε is defined by the transition density q̂ε .
By assumption (A3) and dominated convergence,

π̂k(θθθ, x) → π̂0(θθθ, x) = f (0|θθθ) f (θθθ) exp(−ρ(x))∫
f (0|θθθ) f (θθθ)dθθθ

∫
exp(−ρ(x))dx

pointwise and thus by Scheffé’s theorem also in L1-norm,
that is in total variation. In order to deduce

||μ̂0 P̂0:t − π̂0||T V → 0,

we have to verify conditions (2.31) and (2.33) in Föllmer
(1988). These conditions are∏
k

c(P̂k) = 0, (8)

where

c(P̂k) = sup
z,z′

||P̂k(z, .) − P̂k(z′, .)||T V ,

and∑
k

||π̂k+1 − π̂k ||T V < ∞. (9)

Replacing ε1/α by ε, we may set, without loss of general-
ity, α = 1. To get an upper bound for c(P̂ε) we use

c(P̂ε) = sup
z′,z′′

(
1 −

∫
min(q̂ε(z′, z), q̂ε(z′′, z))dz

)
.

By (A1) and (A2), for any z′,

q̂ε(z′, z) ≥ εn
c2
c1

f (θθθ) f (εx|θθθ) exp(−ρ(x)) .

Hence we obtain∫
min(q̂ε(z′, z), q̂ε(z′′, z))dz ≥ εn

c2
c1
C(ε).

Because C(ε) → C(0) > 0 as ε → 0, it follows that, for ε

sufficiently small,

c(P̂ε) ≤ 1 − c2
c1

C(0)

2
εn , (10)

and (8) holds for the choice (7).
In order to show (9), we start with

|π̂ε(z) − π̂ε′(z)| ≤ | f (εx|θθθ) − f (ε′x|θθθ)| f (θθθ) exp(−ρ(x))
C(ε)

+ π̂ε′(z)
|C(ε′) − C(ε)|

C(ε)
.

By (A3) and the intermediate value theorem, we obtain that

| f (εx|θθθ) − f (ε′x|θθθ)| ≤ const ||x||1|ε − ε′|
and, moreover, that C(ε) is differentiable with

|C ′(ε)| ≤ const
∫

||x||1 exp(−ρ(x))dx,

where const is the bound for the partial derivatives of f (.|θθθ).
Hence we find that

||π̂ε − π̂ε′ ||T V ≤ const

C(ε)

∫
||x||1 exp(−ρ(x))dx |ε − ε′|.

Therefore (9) holds for any sequence (εk) which converges
monotonically to zero. ��
Remark Convergence of inhomogeneousMarkov chains has
been proved in much more general settings than in Föllmer
(1988), see e.g. Douc et al. (2004), or Proposition A.1 in
Beskos et al. (2012). Using these techniques, it should be
possible to relax the assumptions (A1)–(A2).

2.3 An adaptive scheme

2.3.1 Heuristics

As stated in Sect. 2.1, we construct an ensemble of particles
which evolve according to a family of Markov transition ker-
nels (Pε) with a control parameter ε = εe(t) that decreases
to zero (the reason for the notation εe(t) will become clear
later). In contrast to the algorithms in Del Moral et al. (2012)
and Lenormand and Jabot (2013), we do not use importance
sampling to force the distribution of the ensemble to agree
with the target distribution (3) at certain time points. This has
the advantage that the effective sample size of the ensemble
does not decrease over time, but the disadvantage that we
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loose control over the transient distribution of the stochastic
process defined by the algorithm. However, as Theorem 2.1
suggests, this distribution remains close to an equilibrium
(3) at all times, if either the value of the control parameter
εe(t) is lowered sufficiently slowly or if mixing in parame-
ter space is sufficiently fast. In this section, we shall design
an algorithm that adapts εe(t) based on the average distance
of the particles from the target y = 0 in such a way that
the computational effort, that is the number of draws from
the likelihood, is minimized. There is therefore a mean field
interaction between particles.

The design of the algorithm will rely on the assumption
that the distribution of the Markov chain is at all times t
close to an equilibriumdistributionπε(t), butwith a parameter
ε(t) which is somewhat higher than the value εe(t) used for
the transition. How quickly we let εe(t) go to zero as the
algorithmproceeds is our decision, and it determines together
with the jump distribution k(θθθ,θθθ ′) in parameter space the
function ε(t).We have no analytical expression for ε(t), but it
is in a one-to-one correspondencewith the expected distance,
U (t), from the target, that we can estimate.

Since the intuition behind our adaptive algorithm stems
from non-equilibrium thermodynamics, it might be helpful
to imagine a gas, which is in contact with a heat bath whose
temperature εe(t) can be controlled. The value of ε(t) is then
the temperature of the gas at time t , which is measured con-
tinuously and influences how quickly εe(t) is lowered. The
superscript e stands for “environment” or “equilibrium”,
because it defines the equilibrium state the system would
relax to if cooling suddenly stopped, that is if εe(t) would
be kept constant after some time t0. However, if the tem-
perature εe(t) is continuously lowered, then the gas will at
any time t be warmer than the environment. In the physics
community, a system which is always described by an equi-
librium distribution even if it is externally driven, i.e. never
at equilibrium with its environment, is called endoreversible
(see Rubin 1979). The system is then described by the Gibbs
state πε(t), and the distance of a particle to the target is inter-
preted as the particle’s energy.

The question is then how εe(t) should be controlled,
depending on the distribution of the system given by ε(t)
or U (t), so as to waste as little computation as possible. In
physics’ terms, the cooling of the systemby lowering the tem-
perature of the environment creates a flow of entropy from
the system to the environment. It can be split into two parts.
One part is the (path-independent) reduction of the system’s
entropy. This is thewell invested part of the computing effort,
as it measures the information difference between prior and
posterior. The other part is the entropy production, which is
a measure for the wasted computing effort. We argue there-
fore that we have to choose the cooling or annealing schedule
εe(t) such that this entropy production is minimized. Using
variational calculus (Spirkl and Ries 1995), this approach

leaves uswith a family of annealing schedules, parameterized
by a tuning parameter v, which governs the annealing speed
and expresses the optimal εe(t) in function of the expected
distance U (t) from the target.

In mathematical terms, entropy production equals the
Shannon entropy of the probability distribution of the
process, on the space of paths, relative to the time-inverted
stochastic process (Seifert 2005). It can be seen as a mea-
sure for the information loss due to rejections: With a fast
cooling schedule, a typical path is likely to encounter many
more rejections than a typical path under the time-reversed
(heating) schedule. Thus, the probability distribution of the
stochastic process on the space of all paths is in this case
much more concentrated than the distribution of the reverse
process, which leads to a large relative entropy.

The assumptionof endoreversibility is crucial for our algo-
rithm. If it is violated, there will be additional production of
entropy due to irreversible processes. This entropy produc-
tion is beyond control if only the energy of the system is
measured and is thus to be avoided. Such additional entropy
can even remain in the system indefinitely and lead to a biased
convergence. Whether the assumption of endoreversibility is
justified or not will depend on the values of the two tuning
parameters of the algorithm: The covariance K of the jump
distribution k(θθθ,θθθ ′) in parameter space and the tuning para-
meter v that arises from variational calculus. A small value
of K leads to slow mixing in parameter space, and if it is too
slow compared to the decay rate of ε(t), the endoreversibility
assumption might be violated. We derive our cooling sched-
ule under the assumption that K is constant, but in practice it
is usually advantageous to adapt K to the current distribution
of the chain. We will discuss the adaptive choice of K at the
end of the next subsection.

Similarly, a too large v can lead to a too fast cooling,
compared to the mixing in parameter space, which bears the
risk of violating the endoreversibility assumption. On the
other hand, a too small value of v leads to a large amount
of reversible computations which is not accounted for by the
entropy production. Running the algorithm at equilibrium,
i.e. setting εe(t) = ε(t), does neither lead to a flow of entropy
nor does it generate any entropy andwould thus be considered
optimal by our criterion. Because v has the dimension of an
inverse time, measured in units of N computer updates of
single particles, its optimal value is expected to depend not
too much on details of the model.

The problem of choosing a good value of v is pronounced
if the prior, f (θθθ), carries relevant information. Since εe(t) is
by construction of the algorithm smaller than the value ε(t)
implied by the expected distance from the target, the ρ(x, y)-
dependent term in (5) tends to decide more often than the
prior-dependent term whether or not to accept a move. This
may lead to an under-representation of the prior in the final
solution. Thus, if the prior is important, we suggest intro-
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ducing a second pair of “temperatures” εe2(t) and ε2(t), in
order to control the relative information contributed by the
prior. Obviously, in this case, tuning will becomemuch more
sophisticated and we only derive an optimal schedule for rel-
atively slow annealing, in which case the relation between
forces and fluxes (to be defined below) is approximately lin-
ear. The more information the prior contains, however, the
less advantageous a sequential scheme as ours appears com-
pared to a brute-force acceptance/rejection algorithm. There-
fore, we devote the next subsection to the simpler, yet prac-
tically relevant, case of negligible prior information.

2.3.2 The case of negligible prior information

In this subsection we consider the special case where the
prior f (θθθ) doesn’t play much of a role. This is the case if
f (θθθ) ≈ const, in the area where the likelihood function,
evaluated at the data y, is not negligible.

Our system is an inhomogeneous continuous timeMarkov
process (Zt ) on the product space of parameters and model
outputs. Its transitions occur at the random times of a Poisson
process with rate 1, according to the transition kernel (5) with
time dependent parameter εe(t). This means that the density
μ(z, t) of the system at time t satisfies

∂μ(z, t)
∂t

=
∫

μ(z′, t)qεe(t)(z′, z)dz′

−μ(z, t)
∫

qεe(t)(z, z′)dz′, (11)

and for functions h on the product space we have

dE(h(Zt ))

dt
=

∫
(h(z) − h(z′))μ(z′, t)qεe(t)(z′, z)dzdz′ .

(12)

The parameter εe which controls the cooling of the system
is adaptive in the sense that εe(t) depends on the distribution
μ(z, t). In our algorithm, we will represent the system by a
sufficiently large ensemble, E , of particles, {zi = (θθθ i , xi )}Ni=1
which evolve in time. Each system update consists in choos-
ing a randommember of the ensemble and updating it accord-
ing to the transition kernel (5). The parameter εe(t) is then
based on the current empirical distribution of the ensemble
at time t .

As discussed above we will assume the process to satisfy
the endoreversibility assumption

μ(z, t) ≈ πε(t)(z) , (13)

where πε(z) was defined in (3). As we have discussed the
legitimacy of this assumption in the previous subsection, we
take it for granted here. The system’s temperature ε(t) is in
one-to-one correspondence with the system’s energy which
is the system’s expected distance to the target. It will be mea-
sured by the average distance of the particles from the target.

We derive now our algorithm for the choice of the cooling
schedule εe(t) in a sequence of steps. In the first step we
modify the distance by a monotone transformation to get
approximate equality of energy and temperature. We define

u(x) = G(ρ(x)), G(ρ) =
∫

ρ(x)≤ρ

f (θθθ, x)dθθθdx , (14)

and we replace ρ(x) by u(x) in the definitions of πε and qε .
Because G is the cumulative distribution function of ρ(x)
under the prior f (x, θθθ), we obtain, for themean energy under
πε ,

U (ε) :=
∫

u(x)πε(θθθ, x)dθθθdx , (15)

the expression

U (ε) =
∫ ∞
0 G(ρ)e−G(ρ)/εG ′(ρ)dρ∫ ∞

0 e−G(ρ)/εG ′(ρ)dρ

=
∫ 1
0 ue−u/εdu∫ 1
0 e−u/εdu

= ε
1 − e−1/ε(1 + 1/ε)

1 − e−1/ε . (16)

As ε goes to zero, the fraction on the right is 1 + o(εk) for
any k > 0. By the endoreversibility assumption we therefore
have

U (t) :=
∫

u(x)μ(z, t)dz ≈ U (ε(t)) ≈ ε(t) . (17)

Our main result of this section, Eq. (32) below, expresses
the optimal cooling schedule εe(t) as a function ofU (t) and
a tuning parameter v of the algorithm. In order to estimate
U (t)we need first an approximation of the distribution func-
tion G which we construct at the beginning of the algorithm,
based on the prior sample, P , that is drawn to get the initial
ensemble E . If the sample size of P is not large enough or if
we want to run the algorithm for a very long time, we might
want to use a smooth approximation of the empirical distri-
bution of the values ρ(xi ), which, for small ρ, and for α = 2
in (4), behaves as

G(ρ) ≈ const ρn/2 . (18)

In the second step, we approximate U̇ (t) = d
dt U (t), the

so-called thermodynamic flux, as a function of ε(t) and εe(t).
For this, we cannot use directly U (t) ≈ U (ε(t)) because
then the dependence on εe(t) would be lost. Combining the
endoreversibility assumption with the time evolution (12)
gives

U̇ (t) =
∫

(u(x) − u(x′))k(θθθ ′, θθθ) f (x|θθθ)

×min

(
1,

f (θθθ) exp(−u(x)/εe(t))
f (θθθ ′) exp(−u(x′)/εe(t))

)
μ(z′, t)dzdz′
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≈ Z−1(ε(t))
∫

(u(x) − u(x′))k(θθθ ′, θθθ) f (x|θθθ) f (x′|θθθ ′)

×min

(
f (θθθ ′), f (θθθ)

exp(−u(x)/εe(t))
exp(−u(x′)/εe(t))

)

× exp(−u(x′)/ε(t))dzdz′ . (19)

Since ε (and thus also εe) will be much smaller than 1 during
most of the process, we use a Taylor expansion of (19) to
quadratic order in ε and εe. To this end, we write

dz = dθθθd�(u)du∫
f (x, θθθ)dθθθd�(u)

and integrate out the surface integrals w.r.t. the measure
d�(u). This step replaces, in (19),

f (x|θθθ)∫
f (x, θθθ)dθθθd�(u)

by

f (y|θθθ)

f (y)
+ O(u) . (20)

The terms of linear and higher order in u, on the r.h.s. of
(20), lead, upon integration w.r.t. u, to terms of cubic and
higher order in ε and εe. The same holds for the expansion
of f (x′|θθθ ′). Thus, we may replace f (x|θθθ) and f (x|θθθ ′), in
(19), by ( f (y))−1 f (y|θθθ) and ( f (y))−1 f (y|θθθ ′), respectively.
A similar procedure is applied to Z(ε). Under the assumption
that the influence of the prior is negligible, we can further
replace f (θθθ) and f (θθθ ′) by a constant. Thus, the θθθ and θθθ ′
integrals can be factorized and we are left with elementary
integrals in u and u′, with the result that

U̇ (t) ≈ U̇ (ε, εe) ≈ −γ (ε2 − (εe)2) , (21)

with

γ = ( f (y))−2
∫

k(θθθ ′, θθθ) f (y, θθθ) f (y, θθθ ′)dθθθdθθθ ′ . (22)

For later use, we note that from U (t) ≈ ε(t) we obtain

εe(t) ≈
√
U (t)2 + U̇ (t)/γ . (23)

In the third step we approximate the derivative of the
irreversible process entropy or entropy production. To sim-
plify the notation, let us begin with the version in dis-
crete time where we have an initial distribution μ0 and a
sequence of transition kernels Pi corresponding to a sequence
εei of control parameters. The probability of a path n =
(z0, z1, . . . , zn−1) is then

p(n) = μ0(z0)P0(z0, z1) . . . Pn−2(zn−2, zn−1) , (24)

whereas the probability of the same path with respect to the
time-reverse schedule is

pR(n)=μn−1(zn−1)Pn−2(zn−1, zn−2) . . . P0(z1, z0), (25)

where

μn−1(zn−1) =
∫

p(n)dz0 · · · dzn−2

is the distribution of the final state. The irreversible process
entropy is then defined as the relative entropy of pR with
respect to p, see Seifert (2005),

Sirr (n) =
∫

p(n) ln
p(n)

pR(n)
dn . (26)

From this it follows easily that

Sirr (n + 1) = Sirr (n) +
∫

ln

(
μn−1(zn−1)Pn−1(zn−1, zn)

μn(zn)Pn−1(zn, zn−1)

)

×μn−1(zn−1)Pn−1(zn−1, zn)dzn−1dzn . (27)

Passing to a continuous time limit, we therefore obtain, from
(11), that

Ṡirr (t) =
∫

ln

(
qεe(t)(z, z′)
qεe(t)(z′, z)

)
μ(z, t)qεe(t)(z, z′)dzdz′

− d

dt

∫
ln(μ(z, t))μ(z, t)dz

=
∫

ln

(
qεe(t)(z, z′)
qεe(t)(z′, z)

)
μ(z, t)qεe(t)(z, z′)dzdz′

−
∫

ln(μ(z, t))
∂μ(z, t)

∂t
dz

=
∫

ln

(
qεe(t)(z, z′)μ(z, t)
qεe(t)(z′, z)μ(z′, t)

)
μ(z, t)qεe(t)(z, z′)dzdz′ .

(28)

Using the endoreversibility assumption and the expression
(5) for qε , we arrive at

Ṡirr (t) =
∫

μ(z, t)qt (z, z′)(u(z′) − u(z))

×
(

1

ε(t)
− 1

εe(t)

)
dzdz′

=
(

1

ε(t)
− 1

εe(t)

)
d

dt

∫
u(z)μ(z, t)dz

= F(t)U̇ (t) , (29)

where

F(t) = ε(t)−1 − εe(t)−1 (30)

is the thermodynamic force, the difference between the
inverse temperatures of the system and the environment.
Because of (17) and (23) F(t) is a function of U (t) and
U̇ (t),

In the fourth step, we determine the necessary and suf-
ficient criterion for minimal entropy production, for fixed
initial and final values of the energy. To this end, we mini-
mize∫ t f

0
F(U (t), U̇ (t))U̇ (t)dt
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Table 1 Algorithm I for the case of a non-informative prior

Input:

1. Algorithms to sample from the prior and the likelihood

2. Ensemble size N and initial value εini t

3. Covariance K of the jump distribution k(θθθ,θθθ ′) = N (θθθ, K )

4. Tuning parameter v. The default value is v = 0.3

Initialization:

1. Repeat, until the ensemble E constructed in (d) contains N particles:

(a) Sample a parameter vector, θθθ , from the prior

(b) Sample an output, x, from the likelihood f (x|θθθ)

(c) Store the particle (θθθ, ρ(x, y)) in the ensemble P

(d) With probability exp[−ρ(x, y)/εini t ] store the particle (θθθ, ρ(x, y)) also in ensemble E

2. Estimate the distribution function G = G(ρ) defined in (14) by smoothing the empirical distribution of ρ(x, y) in the ensemble P ,
and re-calculate all the distances in ensemble E as u = G(ρ(x, y))

3. Initialize U as the average of the redefined distance u in ensemble E

4. Estimate γ defined in (22) using the prior ensemble P

5. Initialize εe solving the quartic equation (32)

6. Initialize K according to (35)

Iteration:

1. Select a random particle, (θθθ, u), from the ensemble E

2. Sample a proposal parameter vector, θθθ∗, from k(θθθ,θθθ∗)
3. Sample a proposal output, x∗, from the likelihood f (x∗|θθθ∗) and calculate its redefined distance u∗ = G(ρ(x∗, y))
4. With probability min

(
1, exp

[−(u∗ − u)/εe
])

update E , i.e. replace particle (θθθ, u) by (θθθ∗, u∗)
5. Update the ensemble average U , the transition temperature εe solving Eq. (32) and, optionally, the jump distribution according to Eq. (35)

6. Stop the algorithm if the acceptance rate drops below a certain value

under the constraints

U (0) = U0 , U (t f ) = U f .

Using standard methods of variational calculus, see Spirkl
and Ries (1995), one obtains the differential equation

U̇
∂F

∂U̇
U̇ = const = v. (31)

From (23) it follows that

∂F

∂U̇
= −∂εe(t)−1

∂U̇
≈ γ 1/2

2(γU (t)2 + U̇ (t))3/2
≈ 1

2γ εe(t)3
.

If we combine this result with (21) we find the optimal cool-
ing schedule, for smallU , to be approximated by the unique
solution of the quartic equation

(U (t)2 − εe(t)2)2

2εe(t)3
= v

γ
(32)

in the interval (0,U (t)). It can be computed efficiently with
Newton’s algorithm. The leading term of the solution εe(U ),
for small U , is

εe(U ) =
( γ

2v

)1/3
U 4/3 + O(U 2) . (33)

This means that the cooling is slowing down when U (t)
gets small. One can derive from this also an explicit cooling

schedule,

εe(t) ∼ t−4/3 , (34)

but this will not be used in our algorithm. It shows however
that the cooling schedule which follows from Theorem 2.1
is different from the adaptive schedule here.

For convenience, the algorithm derived in this subsection
is given as a pseudo-code in Table 1.

The algorithm presented here will not only yield a sam-
ple from an approximation of the posterior, but it will also
provide information about the bias, expressed through the
final value of ε(t). This information, of course, can be used
to reduce the bias, at the cost of sacrificing some effective
sample size, with the help of an importance sampling step.
To this end, we attach the weights exp(−δu(z)/ε), with δ

being a small positive dimensionless parameter, to the final
ensemble and re-sample a new ensemble according to these
weights. The choice of δ is arbitrary and expresses the trade-
off between bias reduction and effective sample size of the
ensemble. The weights were chosen such that the re-sampled
ensemble still represents a distribution of the form (13), with
ε being replaced by ε/(1 + δ). Thus, such a bias correction
step can also be applied, occasionally, during the algorithm,
as long as the ensemble is given enough time to recover from
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the loss of effective sample size between two resampling
steps.

Let us conclude this subsection with comments on the
adaptive choice of the covariance K of the jump distribution
k. To this end, we choose, for k(θθθ,θθθ ′), a symmetric normal
jump distribution, whose covariance is adapted to the empir-
ical covariance of the marginal ofμ(z, t),�(t), according to
eq.

K = β�(t) + s tr(�(t))1, (35)

where s is a small constant preventing (35) from degener-
ating and β is an additional tuning parameter of the algo-
rithm thatmustn’t be chosenmuch smaller than unity in order
that the mixing in parameter space is fast enough compared
to the decay of the mean distance to the target. Note that
our derivation of the optimal cooling schedule was based
on the assumption of a time-constant k(θθθ,θθθ ′). The adapta-
tion (35) makes k(θθθ,θθθ ′) time-dependent, which leads to two
compensatory effects. On the one hand, due to the increased
acceptance probability ensued by this adaptation, the opti-
mal schedule would be given by a time-dependent tuning
parameter v(t) that increases with time. This can be seen
by repeating the exercise in Spirkl and Ries (1995), with an
explicitly time-dependent U̇ = U̇ (U, F, t), and acknowl-
edging the fact that ∂U̇/∂t < 0 if the adaptation (35) leads
to an increase of the acceptance rate, relative to a schedule
without adaptation. On the other hand, typically, adaptation
makes k(θθθ,θθθ ′) sharper over time and, therefore, γ tends to
increase over time. Thus, if we set v/γ = const, v tends to
increase over time. In general, the optimal schedule for εe(t),
if adaptation (35) is employed, cannot be determined easily.
Therefore, the best strategy seems to be to turn on adapta-
tion (35) and check whether the gain of efficiency due to an
increased acceptance rate offsets the loss due to the deviation
from the minimal entropy production path.

At this time, it would be premature to come up with too
many recommendations of how to choose the tuning para-
meters v and β, as we do not yet have enough practical expe-
rience with the algorithm (but see the recommendation given
in the application part of this paper). But wewant to point out
again that a too large v combined with a too small β might
lead to a deviation from assumption (13) and, therefore, a
bias that would be impossible to correct for.

2.3.3 The case with an informative prior

As we have discussed at the beginning of this section, the
transition rate (5) has the disadvantage that a too fast decrease
of ε can lead to convergence to a biased result with under-
represented prior. To account for this bias, and ultimately
control it, we replace (5) by a transition rate with a two-

dimensional control parameter εεε = (ε1, ε2),

qεεε((θθθ
′, x′), (θθθ, x)) = k(θθθ ′, θθθ) f (x|θθθ)

×min

(
1, exp

[
−ρ(x)−ρ(x′)

ε1
−(1+ε2)(ν(θθθ)−ν(θθθ ′))

])
,

(36)

where

ν(θθθ) = − ln ( f (θθθ)) (37)

and ρ(x) = ρ(x, y). Transition rate (36) satisfies the detailed
balance condition

πεεε(θθθ
′, x′)qεεε((θθθ

′, x′), (θθθ, x))=πεεε(θθθ, x)qεεε((θθθ, x), (θθθ ′, x′)),
(38)

for the equilibrium distribution

πεεε(θθθ, x) = Z−1(εεε) f (x|θθθ)e−ρ(x)/ε1−(1+ε2)ν(θθθ) , (39)

with

Z(εεε) =
∫

f (x|θθθ)e−ρ(x)/ε1−(1+ε2)ν(θθθ)dθθθdx . (40)

As before, we distinguish between the parameter εεεe(t)
that is used in the transition at time t , thus controlling the
annealing schedule, and the parameter εεε(t) which describes
the distribution of the process at time t under the endore-
versibility assumption

μ(z, t) ≈ πεεε(t)(z) . (41)

Again our goal is to find a cooling schedule εεεe(t) depending
on εεε(t) such that the entropy production is minimized. In
addition, we want the prior bias, measured by ε2(t), to go to
zero.

Initially, at time t = 0, the distribution is chosen as (39),
with a rather large ε1(0) and ε2(0) = 0. The corresponding
ensemble is generated by adopting a rejection technique. The
first control parameter εe1(0) is set somewhat smaller than
ε1(0) and εe2(0) = 0.

Under the endoreversibility assumption, the distribution
at any time is now characterized by the following two expec-
tations (“extensive thermodynamic quantities”)

U1(t) :=
∫

ρ(x)μ(θθθ, x, t)dθθθdx , (42)

U2(t) :=
∫

ν(θθθ)μ(θθθ, x, t)dθθθdx . (43)

By standard results about exponential families, there is a one-
to-one correspondence between the vectors U and the para-
meters (intensive quantities) εεε. This allows us to describe the
system by the time-dependent vector εεε(t) = εεε(U(t)). We are
however not able to achieve approximate equality of these
two vectors by a simple transformation.
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As in the previous subsection, the entropy production rate
can be expressed as

Ṡirr = F(t)T U̇(t) ,

where the driving forces are now

F(t) =
(

ε1(t)−1 − εe1(t)
−1

ε2(t) − εe2(t)

)
.

In order to find a necessary condition for minimal entropy
production, we need as before to express F(t) as a function
of U(t) and U̇(t) and to compute in particular the matrix of
partial derivatives ∂F

∂U̇
.

In this two-dimensional setting, it seems however infea-
sible to establish a non-linear relationship between F and U̇
as we did in (21) for the one-dimensional setting. Therefore,
we shall make the linearity assumption

U̇ ≈ L(U)F , (44)

which is reasonable as long as F(t) is not too large. Using
the detailed balance condition (38), we find

Li j (U) = Z−1(εεε)

∫
(ui (z)−ui (z′))(u j (z) − u j (z′))k(θθθ,θθθ ′)

× f (x|θθθ) f (x′|θθθ ′) exp[−ρ(x)/ε1 − (1 + ε2)ν(θθθ)]
×χ

(
(ρ(x) − ρ(x′))/ε1

+(1 + ε2)(ν(θθθ) − ν(θθθ ′))
)
dxdx′dθθθdθθθ ′ , (45)

with u1(z) = ρ(x) and u2(z) = ν(θθθ). The U dependence
of the r.h.s. of (45) is through εεε = εεε(U). The matrix L is
symmetric and positive definite (due to the Cauchy-Schwarz
inequality). In the theory of non-equilibrium thermodynam-
ics, the entries of the matrix L are known as the Onsager
coefficients Onsager (1931).

In two dimensions, Eq. (31) becomes the necessary con-
dition for minimal entropy production

U̇T ∂F

∂U̇
U̇ = const = v . (46)

Plugging (44) into (46) we find a necessary criterion for opti-
mality to be given by

U̇T R(U)U̇ = v , (47)

where R(U) := L−1(U) defines a metric on the (U1,U2)-
plane. Equation (47) can also be derived as follows:Under the
linearity assumption (44), and due to the Cauchy–Schwarz
inequality, the entropy production satisfies the inequality

Sirr =
∫ t f

0
U̇(t)T R(U(t))U̇(t)dt ≥ K

t f
, (48)

where K is the length of the process-path in the (U1,U2)-
plane, measured with the metric R(U). The lower bound of
(48) is assumed if the integrand is constant, i.e. if the entropy
production rate is constant (Salamon et al. 1980). Thus, find-
ing the optimal schedule consists in (i) finding the shortest

path in the (U1,U2)-plane and (ii) traveling along this path
such that the entropy production rate is constant. Therefore,
condition (47) completely determines the optimal trajectory,
which is of course a consequence of the linearity assumption
(44).

In order to define our algorithm, we have to continu-
ously estimate the following quantities during run-time: (i)
the ensemble means U(t), (ii) the intensities εεε(t) = εεε(U(t))
that determine our system under assumption (41) and (iii) the
metric L(U(t)). As (i) is trivial, we now discuss (ii) and (iii).

Given a small change, �U, of the ensemble means, the
corresponding change of the intensities, �εεε, is estimated by
means of

�εεε ≈
(

∂U
∂εεε

)−1

�U , (49)

where the Jacobi matrix

∂U
∂εεε

:=
( 1

ε21
Var(ρ) −Cov(ρ, ν)

1
ε21

Cov(ρ, ν) −Var(ν)

)
(50)

is estimated using the empirical covariance matrix of the ρ

and ν components of the ensemble. However, the neglected
higher order corrections will eventually lead to large devia-
tions from the “true” state. Therefore, occasional corrections
have to take place estimating U(εεε) without using the ensem-
ble E . Such an estimate can be calculated using the ensem-
ble P drawn initially from the joint prior f (x, θθθ). Once εεε is
estimated, we need to estimate L(U) in order to determine
the adaptive tuning parameters εεεe. Inspecting equation (45)
reveals that this can be done using the prior sample P as
well as the ensemble E . This estimate relies on assumption
(41). At the end of this subsection we will discuss a way of
improving both estimates,U(εεε) and L(U), for small ε1, when
the effective sample size of P is low.

Since, at the beginning of the algorithm, neither is the
target value for U2, at ε1 = ε2 = 0, known exactly nor
is the metric R(U) = L−1(U) known globally. Therefore,
it appears difficult to come up with an optimal path in the
(U1,U2)-plane. However, it appears reasonable to force the
process to be on a path such that ε2 remains small. Practically,
this can be achieved by applying a counter force, setting

εe2 = −aε2 , (51)

where a is some positive constant. Finally, in order to find
the optimal trajectory, under these restrictions, we need to
choose εe1 such that (47) is satisfied. Using (44), we obtain
the quadratic equation

FT L(U)F = v . (52)

The easiest version of the algorithm presented in this subsec-
tion is summarized in Table 2. In contrast to Algorithm I, a
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Table 2 Algorithm II, for the case of an informative prior

Input:

1. Algorithms to sample from the prior and the likelihood

2. Ensemble size N and initial value εini t

3. Tuning parameters β, s, v and a with default values, β = 2, s = 0.01, v = 0.3 and a = 2

Initialization:

1. Repeat, until the ensemble E in (d) contains N particles:

(a) Sample a parameter vector, θθθ , from the prior

(b) Sample an output, x, from the likelihood f (x|θθθ)

(c) Store the vector (θθθ, ρ(x, y), v(θθθ)) in ensemble P

(d) With probability exp[−ρ(x, y)/εini t ] store the vector (θθθ, ρ(x, y), ν(θθθ)) also in ensemble E

1. Initialize metric L(U) defined in (45), using the prior ensemble P

2. Initialize U as the ensemble E averages

3. Initialize εe2 = 0 and εe1 solving the quadratic Eq. (52)

4. Initialize K according to (35)

Iteration:

1. Select an arbitrary particle, (θθθ, ρ, ν), from the ensemble E

2. Sample a proposal parameter vector, θθθ∗, from k(θθθ,θθθ∗) and a proposal output, x∗, from the likelihood f (x∗|θθθ∗)
3. With probability r = min

(
1, exp

[−(ρ∗ − ρ)/εe1 − (1 + εe2)(ν
∗ − ν)

])
, update E , i.e. replace (θθθ, ρ, ν) by (θθθ∗, ρ∗, ν∗)

4. Whenever a significant fraction (say 10%) of the ensemble has been updated, perform the following mean-field updates:

• Save the old ensemble means Uold and denote the new ones by Unew

• Update the Jacobi matrix (50) via calculation of the empirical covariance matrix of the ρ and ν components of E

• Save the old intensities εεεold and calculate the new ones iterating the following two steps:

(a) Compute the change �εεε = εεεnew − εεεold according to Eq. (49)

(b) If U is close (say within a relative error of 1 %) to the theoretical ensemble averages, U(εεεnew), as calculated from P , set εεε = εεεnew and stop,
otherwise, replace εεεnew → εεεold and U(εεεnew) → Uold and go back to (a)

• Update the metric L(U), according to εεε, using prior ensemble P

• Update εe2 = −aε2 and εe1 solving (52)

• Optionally: update K according to (35)

5. Stop the algorithm if the acceptance rate drops below a certain value

fair amount of updating is required in this case. To save com-
putation time, we recommend not to update all the macro-
scopic quantities after each successful particle update. Doing
so after a significant fraction (say 10 %) of the ensemble has
been updated suffices.

Note that the prior-bias in the final ensemble, as expressed
through ε2(t), can be completely corrected via a weighted
re-sampling, in much the same way as the bias due to a non-
vanishing ε1(t) was reduced in the last subsection.

In the remainder of this subsection, we outline two alter-
native ways of estimating εεε(U) and L(U), using the informa-
tion gathered during the course of the algorithm. They can be
used when ε1 gets very small and the prior sample P yields
poor estimates. Both methods, however, will depend on the
assumption (41) being satisfied. One way is to simply correct
the ensemble E withweights proportional to e−ρ(x)/ε1−ε2ν(θθθ),
in order to get a new prior sample, which has a better resolu-
tionwhere ε1 is small. Theotherway is to populate, during the
course of the algorithm, a transition matrix, Q, of attempted

moves (Andresen et al. 1988). That is, we partition an area of
interest in the (U1,U2)-plane (which will contain the small
distances ρ) into nU1nU2 bins and increment the matrix ele-
ment Qi j

i ′ j ′ , whenever a particle in binU1,i ′ ×U2, j ′ attempts
tomove into binU1,i ×U2, j . In order to get the correct transi-
tionmatrix the diagonal entries Qi ′ j ′

i ′ j ′ must be incremented
whenever a particle from bin U1,i ′ ×U2, j ′ attempts to jump
outside the area of interest. Furthermore, the columns of Q
must be normalized so that their sums equals unity. Under
assumption (41) it holds that

Qi j
i ′ j ′

=
∫
ρ(x)∈U1,i ,ρ(x′)∈U1,i ′ ,ν(θθθ)∈U2, j ,ν(θθθ ′)∈U2, j ′

k(θθθ,θθθ ′) f (x|θθθ) f (x′|θθθ ′)dxdx′dθθθdθθθ ′
∫
ρ(x′)∈U1,i ′ ,ν(θθθ ′)∈U2, j ′

f (x′|θθθ ′)dx′dθθθ ′ .

The eigenvector, g, corresponding to the largest eigenvalue,
1, of Q, is a discretization of the likelihood function on the
(U1,U2)-plane:

gi ′ j ′ =
∫
ρ(x′)∈U1,i ′ ,ρ(θθθ ′)∈U2, j ′

f (x′|θθθ ′)dx′dθθθ ′
∫

f (x|θθθ)dxdθθθ
. (53)
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This holds true even if k is adaptedduring the algorithm.At
a later stage of the algorithm, when the prior sample becomes
insufficient but Q is sufficiently well populated to estimate
(53), the latter can be used to estimate both U(εεε) and L(U),
for small values of ε1. Furthermore, if k is not adapted, the
matrix Q can be used directly to estimate L(U), without the
need of calculating the jump density matrix K .

Of course, a similar matrix of attempted moves can also
be used in the one-dimensional setting, Sect. 2.3.2, to replace
prior sample P at a later stage of the algorithm.

3 Toy examples

In this section, we apply our adaptive scheme to two exam-
ples. The prior of the first one has almost no influence on the
posterior, in the second this influence is large. As a shorthand
for our adaptive scheme we use the acronym SABC, which
merges SA, for Simulated Annealing, with ABC.

SABC is compared against the sequential Monte Carlo
samplers (SMC) from del Del Moral et al. (2012) and adap-
tive population Monte Carlo (APMC) from Lenormand and
Jabot (2013). For the latter two the implementations in the
R-package “EasyABC” Jabot et al. (2013) were used.

For SMC and APMC the same tuning parameters were
used for both examples. The population size N for all algo-
rithms was 1,000. The parameter α of APMC was set to
0.5 following the recommendation of Lenormand and Jabot
(2013). The tuning parameters for SMC are the same del Del
Moral et al. (2012) used for the first toy example (α = 0.95,
M = 1, NT = 500).

In real applications the computational costs are often dom-
inated by sampling from the likelihood. Therefore, the num-
ber of samples drawn from the likelihood was used as mea-
sure of the computational effort.

3.1 Example 1

The first example is a traditional example of the ABC litera-
ture (e.g. Del Moral et al. 2012; Lenormand and Jabot 2013).
The prior is uniformly distributed on the interval [−10, 10],
and the likelihood is given by the sum of two normal distri-
butions with very different standard deviations:

f (x |θ) ∝ exp

[
− (x − θ)2

2

]
+ 1

σ
exp

[
− (x − θ)2

2σ 2

]
, (54)

with σ = 0.1. Thus, the posterior for y = 0 is given by

f (θ |y) ∝ 1[−10,10]
(
exp

[
−θ2

2

]
+ 1

σ
exp

[
− θ2

2σ 2

])
. (55)

As the prior has almost no influence on the posterior, the
non-linear algorithm from Table 1, with one final bias cor-
rection, has been employed. Furthermore, k(θθθ,θθθ ′) has been

continuously adapted according to (35). Since the prior has a
much bigger variance than the posterior, this turns out to be
beneficial, for the convergence of the algorithm. The optimal
choice for the dimensionless parameter β, defined in (35),
is expected to depend little on details of the model. For our
examples we choose β = 2, which is large enough to ensure
a fast enough mixing in parameter space compared to the
decay of the mean distance to the target. The tuning parame-
ter v/γ governs the annealing speed. As this example is so
simple, its choice is not very critical. With the choice β = 2
a violation of the endoreversibility assumption is not to be
expected, even for high annealing speeds. A slowing down of
the convergence due to a trappingof particles is observedonly
at very high values of v/γ . We choose the value v/γ = 3.

Figure 1 shows the results for all three samplers after,
approximately, 10,000 and 40,000 simulations from the like-
lihood. It is clearly visible that SMC has not yet converged,
while the results of APMC and SABC look much better.
After 40,000 likelihood samples, the histogram of SABC
looks slightly smoother than the one of APMC. As APMC
is an importance sampling algorithm, the sample generated
after 40,000 simulations is an exact sample from a closer
approximation of the posterior than the sample generated
after 10,000 simulations. Therefore, we attribute the slight
deterioration of the histogram to the loss of effective sample
size (ESS) due to resampling. ESS was calculated, for all
algorithms, with the formula

ESS = 1∑N
i=1 ŵ2

i

, (56)

where the ŵi denote the normalized weights given to the
particles, at the final importance sampling step. For APMC,
this means that we optimistically assume that, before the last
resampling is made, the ensemble has completely recovered
from the loss of ESS. For SABC, the loss of ESS after 10,000
simulations is due to the final bias correction step. The para-
meter δ, used for thefinal bias correction as described towards
the end of Sect. 2.3.2, was chosen such that the ESS of SABC
andAPMC are comparable. The ESS, for APMC and SABC,
are summarized in Table 3.

3.2 Example 2

In contrast to the first example, the prior in the second exam-
ple has a large influence on the posterior. The prior shall be
given as the normal distribution

f (θ) = 1√
2π

exp

[
−θ2

2

]
,

and the likelihood as the normal distribution

f (x |θ) = 1√
2π

exp

[
− (x − θ)2

2

]
.
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Fig. 1 Histograms of an ensemble of 1,000 particles for Example 1 generated with SMC, APMC and SABC. The solid curve is the exact posterior
density. Note that “simulations” refers to single draws from the likelihood

Table 3 Comparison of effective sample sizes of the APMC and the
SABC algorithm for example 1, after 10,000 and 40,000 likelihood
simulations

APMC SABC

10,000 simulations 306 240

40,000 simulations 323 1,000

Thus, the posterior is given as

f (θ |y) = 1√
π
exp

[
−(θ − y/2)2

]
.

To investigate if the algorithms can handle severe prior-data
conflicts, we set y = 3.

In this example it is important for SABC to properly con-
trol ε2(t) while annealing ε1(t) as prior and likelihood “pull
from opposite directions”. Therefore, we employ the linear
algorithm as described in Table 2, with one final bias correc-
tion. The tuning parameter v, which now has the interpreta-
tion of an entropy production rate,was chosen to be 0.3. Forβ
we chose the same value as in the previous example, namely
β = 2. In this example, continuously adapting k(θθθ,θθθ ′) has a
negligible effect on the convergence speed.

The results are shown in Fig. 2. Again, the results from
SMC have not yet converged and are heavily biased towards
the prior.APMCseems to converge slightly faster thenSABC
(compared at 10,000 simulations). However, the quality of
the APMC sample decreases for more simulations, which is

attributed to the loss of ESS. As SABC is avoiding resam-
pling, this effect is not observed. Effective sample sizes, for
APMC and SABC are summarized in Table 4. After 10,000
simulations, we chose the bias-correcting parameter δ such
that the ESS of SABC and APMC are similar. After 40,000
simulations, the loss of ESS for SABC is due solely to the
correction of the prior bias, expressed through the final value
of ε2.

4 Real-world example: tuberculosis bacteria

Tanaka et al. (2006) analyzed genotype data of tuberculo-
sis bacteria with a stochastic model to infer death, birth and
mutation rates by means of ABC. In the 473 analyzed tuber-
culosis bacteria cultures, 326distinct genotypeswhere found.
Cultures with the same genotype form a cluster. The data in
Table 5 describe how many clusters with a certain number
of cultures were found. For example one cluster consisting
of 30 cultures with the same genotype was observed, two
clusters with five cultures each, and so forth.

This data contains only information on the rates relative to
each other, because no time information is available. There-
fore, only birth, death, and mutation events are simulated
until the population reaches a (arbitrarily defined) size of
10,000 living bacteria (see Tanaka et al. 2006 for details).
Therefrom a random sample without replacement of size 473
is taken. We used the parametrization proposed by Fearn-
head and Prangle (2012) which reduces the inference to

123



1230 Stat Comput (2015) 25:1217–1232

−1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

10,304 simulations

de
ns

ity
SMC

−1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

40,152 simulations

de
ns

ity

SMC

−1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

10,000 simulations

de
ns

ity

APMC

−1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

40,000 simulations

de
ns

ity
APMC

−1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

10,000 simulations

de
ns

ity

SABC

−1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

40,000 simulations

de
ns

ity

SABC

Fig. 2 Histograms of an ensemble of 1,000 particles for Example 2 generated with SMC, APMC and SABC. The solid curve is the exact posterior
density

Table 4 Comparison of effective sample sizes of the APMC and the
SABC algorithm for Example 2, after 10,000 and 40,000 likelihood
simulations

APMC SABC

10,000 simulations 404 408

40,000 simulations 322 982

a two dimensional problem with a = P(birth|event) and
d = P(death|event). The probability that an event is a muta-
tion is given by 1 − a − d. Also the same flat prior is used
π(a, d) ∝ 1a>d10<a+d≤1.

The data are summarized by two statistics as described
by Tanaka et al. (2006): the number of distinct genotypes
g in the sample and a measure of gene diversity H =
1 − ∑g

i=1 (ni/473)2, where ni is the number of bacteria in
the i th cluster. The distance between simulated and observed
data is measured as |g∗ − g|/473 + |H∗ − H |, where the
asterisks indicate the statistics of the simulated data.

Because of the flat prior the non-linear version of the
SABC, Table 1, was used, with a final re-sampling step, with
δ = 0.2. As in the previous examples, we chose β = 2
and tuned v/γ . A high convergence speed is achieved with
v/γ = 7butwe found that the algorithm is remarkably robust
w.r.t. the choice of this tuning parameter.

We compared the performance of our algorithm with the
adaptive population Monte Carlo (APMC) from Lenormand
and Jabot (2013), which we ran with the same sample size

N = 200 and with the choice of the tuning parameter
α = 0.5, as recommended in Lenormand and Jabot (2013).
Similarly to the results from the previous section, we found
that, for short simulation times, APMC shows a slightly bet-
ter performance than SABC due to a faster convergence, but,
for longer simulation times, APMC suffers from a deteri-
oration of the sample due to a loss of ESS, which is not
observed with SABC. Figure 3 shows the results after 3,800
iterations (approximately 2,000 simulations from the likeli-
hood). The result of SABC is in excellent agreement with the
result reported in Fearnhead and Prangle (2012), whereas the
final sample from APMC shows some signs of deterioration,
which is attributed to the loss of ESS, in each iteration step.
The time-course of the ESS, for APMC, is shown in Fig. 3.
The jump to an ESS of about 80, before the last resampling
step, is based on the (presumably unrealistic) assumption that
each population update leads to a complete recovery of the
ESS. For SABC, the final ESS is 129 and due to the final
resampling step.

5 Conclusions

We have presented a framework of particle algorithms for
ABC that is inspired bySimulatedAnnealing. Itsmain advan-
tage compared to the sequential ABC algorithms the authors
are aware of is the fact that it is not based on importance sam-
pling. Therefore, the effective sample size of our algorithms
does not decrease over time. As the interactions between the
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Table 5 Tuberculosis genotype data

Number of cultures per cluster 30 23 15 10 8 5 4 3 2 1

Number of clusters 1 1 1 1 1 2 4 13 20 282

Fig. 3 Top row final ensemble
of 200 particles after a total of
3,800 updates (approximately
2,000 simulations from the
likelihood, the rest were jumps
into forbidden parameter
regions), for SABC (left) and
APMC (right). Bottom row
time-course of εe(t), for SABC
(left) and time-course of the
ESS, for APMC (right). The
final ESS, for SABC, is 129 and
due to a single resampling step
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particles in the adaptive algorithm are ofmean-field type, the
statistical independence of the particles is preserved (see, e.g.
Burkholder et al. 1991).

The cost for this gain of efficiency is the fact that our
system is necessarily out of equilibrium. That is, in addition
to the bias due to non-zero equilibrium tolerances εe1 and εe2,
we have a bias due to our system being out of equilibrium
(i.e. ε1 being larger than εe1). There is a trade-off between
these two kinds of bias reflected in the choice of the tuning
parameter v. Choosing a larger v might result in a smaller
εe1, for a given computation time, but in a larger bias of the
second kind. Choosing v too large, in combination with too
slow mixing in parameter space, expressed through a too
small β, might lead to a third kind of bias, a violation of the
endoreversibility assumption (13) or (41). This kind of bias
is impossible to correct for and has to be avoided by a careful
choice of tuning parameters.

In Sect. 2.2 we proved convergence to the correct poste-
rior, for cooling that is slower than a certain inverse power of

time. In Sect. 2.3 we presented an adaptive cooling scheme
that is designed to achieve convergence to the correct poste-
rior with a minimum of computational effort. Therefore, the
control variable εe1 is adjusted according to the particles’ dis-
tance to the target in such a way that the entropy production
in the system, which is a measure for the waste of computa-
tion, is minimized. If the prior is important, a second control
variable is used to control its influence. Using this adaptive
scheme, tuning essentially reduces to the choice of β, related
to the mixing speed in parameter space, and v, related to the
annealing speed.

In our scheme the characteristic function χ(ε − ρ(x, y)),
which is often used in ABC calculations, is replaced by the
Boltzmann factor exp(−ρ(x, y)/ε). With this replacement,
moves are not only accepted if they end up in an ε-ball around
the target but they are more likely accepted if they move
closer to the target.

Finally, our algorithm is of the order O(N ), with some
overhead due to occasionalmean-field updates needed for the
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update of the tolerance(s) and the jump distribution. Impor-
tance sampling algorithms are typically of the orderO(N 2),
due to the weighting step, but see the algorithm by DelMoral
et al. (2012), which scales likeO(N ). However, all the algo-
rithms mentioned in this article scale like O(N ) with the
number of simulations from the likelihood, which is usually
the most costly step. Like all sequential ABC algorithms, our
scheme is well suited for parallelization.

The overhead, in our scheme, is significantly larger if the
prior is informative. Furthermore, in this case, we can only
derive an optimal schedule for relatively slow annealing (lin-
earity assumption). For strongly informative priors, a simple
ABC rejection algorithm should be considered as an alterna-
tive to a sequential schedule.

The biggest disadvantage inherent to all ABC algorithms
is that the tolerance leads to a bias that grows with the dimen-
sion of the output space n. Therefore, it is important to use
summary statistics to reduce the output dimension or employ
local approximations of the likelihood, for ABC to be useful
for problems with large output dimensions (see, e.g. Fearn-
head and Prangle 2012; Leuenberger and Wegmann 2010).

Drawing the initial sample for our adaptive algorithm gen-
erates, as a side product, a larger sample from the joint prior.
In our adaptive scheme we use this prior information, for
the redefinition of the metric (14) or to estimate the sample
average U(εεε) and the metric L(U). Note that, at the same
time, this information can be used to establish appropriate
summary statistics, as described in Fearnhead and Prangle
(2012).

An implementation of SABC will soon be available on
CRAN (www.r-project.org).
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