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Abstract

We present a new approach for defining groups of populations that are geographically
homogeneous and maximally differentiated from each other. As a by-product, it also leads
to the identification of genetic barriers between these groups. The method is based on a
simulated annealing procedure that aims to maximize the proportion of total genetic
variance due to differences between groups of populations (spatial analysis of molecular
variance; saMova). Monte Carlo simulations were used to study the performance of our
approach and, for comparison, the behaviour of the Monmonier algorithm, a procedure
commonly used to identify zones of sharp genetic changes in a geographical area. Simula-
tions showed that the samova algorithm indeed finds maximally differentiated groups,
which do not always correspond to the simulated group structure in the presence of isola-
tion by distance, especially when data from a single locus are available. In this case, the
Monmonier algorithm seems slightly better at finding predefined genetic barriers, but can
often lead to the definition of groups of populations not differentiated genetically. The
sAaMoVaA algorithm was then applied to a set of European roe deer populations examined for
their mitochondrial DNA (mtDNA) HVRI diversity. The inferred genetic structure seemed
to confirm the hypothesis that some Italian populations were recently reintroduced from a
Balkanic stock, as well as the differentiation of groups of populations possibly due to the
postglacial recolonization of Europe or the action of a specific barrier to gene flow.
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Introduction

Analysis of gene frequencies on a world and continental
scale revealed that geographical distances are an important
factor explaining a large portion of the genetic diversity of
human populations (Barbujani & Sokal 1991; Excoffier
etal. 1991; Cavalli-Sforza et al. 1994; Poloni et al. 1995,
1997). Under isolation-by-distance, genetic differences
are inversely related to the amount of gene flow, which
depends on geographical proximity between populations
(Wright 1943; Morton et al. 1968; Malécot 1973). Migratory
movements are not only a function of geographical dis-
tance, but are also influenced by the presence of particular
ecological or cultural barriers. In the last few years, the
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concept of barriers and their effect on population dif-
ferentiation has been discussed repeatedly in the literature
(Barbujani & Sokal 1990, 1991; Sokal & Oden 1988; Sokal
et al. 1989; Dupanloup de Ceuninck et al. 2000; Rosser ef al.
2000). Several authors have tried to ascertain the impact of
barriers on gene flow when their potential location is
known from other evidence (Sokal & Oden 1988; Sokal
et al. 1989; Dupanloup de Ceuninck et al. 2000). The goal
was to test whether these barriers overlap with zones of
rapid genetic change and to quantitatively evaluate their
effect on the exchange of genes between populations.
Several techniques have been developed to detect the
presence of genetic barriers, i.e. spatial areas where the rate
of change of gene frequencies is particularly high, and to
locate them (Barbujani et al. 1989; Barbujani & Sokal 1990;
Stenico et al. 1998; Simoni et al. 1999). The barriers are
detected using the observed genetic data, and once their
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locations have been defined, they are compared with
physical or cultural barriers. Available methods define
zones of maximum genetic change either along a network
connecting localities (the so-called Monmonier algorithm:
see Monmonier 1973; Stenico et al. 1998; Simoni et al. 1999),
or over interpolated allele-frequency surfaces (the so-
called Wombling method: see Womble 1951; Barbujani et al.
1989).

We propose a new approach which indirectly detects
genetic barriers in a sampling region but is especially
designed to define groups of populations without the need
for interpolation. When the sampling points are not regu-
larly spaced in the region under study, the interpolation
process leading to continuous allele frequency surfaces
can sometimes introduce artefactual discontinuities
(Sokal et al. 1999). In fact, our approach consists of defining
groups of populations that are maximally differentiated
from each other (i.e. those for which the proportion of total
genetic variance due to differences between groups is
maximum). As a by-product, these groups are separated
from each other by a genetic barrier. In contrast to classical
tests of genetic structure, in which groups of populations
are defined a priori on the basis of physical, ecological,
linguistic or cultural characters, our method enables one to
find a group structure based solely on genetic data. Our
approach is similar in spirit to that implemented in the pro-
gram STRUCTURE proposed by Pritchard et al. (2000), which
is a Bayesian clustering approach to assign individuals to
populations. Their model assumes Hardy-Weinberg and
linkage equilibria and attempts to define groups of indi-
viduals that minimize departures from these equilibria. In
our case, a higher hierarchical level is considered: instead
of defining groups of individuals, our goal is to define
groups of populations. Moreover, we assign populations
to groups with the constraint that they must be geographic-
ally adjacent and genetically homogeneous. Our approach
also differs in that it can be applied to both genotypic
and haplotypic data, and it makes no assumptions about
Hardy-Weinberg equilibrium within populations, or about
the linkage equilibrium between loci.

Below, we provide a description of this approach and
evaluate its power using Monte Carlo simulations. For
comparison purposes, we use the same simulated data to
evaluate the performance of the Monmonier algorithm. We
finally apply these two methods to the case of 18 roe deer
(Capreolus capreolus) populations tested for mitochondrial
HVRI sequence polymorphisms.

Materials and Methods

Monmonier algorithm

The first step in the Monmonier algorithm consists in
connecting the sampled localities using a Delaunay

(A) ; : (B)
Fig.1 Example of a Voronoi diagram (A) and a Delaunay
triangulation (dark line) superimposed on the corresponding
Voronoi diagram (dashed line) (B). Given a set of n points, the
Delaunay triangulation is a set of lines connecting each point to its
nearest neighbours. For the same set of points, the Voronoi
diagram corresponds to the partition of the space into 1 convex
polygons such that every point within a given polygon is closer to
its central point than to the central point of any other polygon.
Delaunay triangulation and Voronoi diagrams are related: edges
of a Voronoi diagram are perpendicular bisectors of branches of a
Delaunay network.

network (Delaunay 1934; Brassel & Reif 1979), a graphical
method for defining adjacent points on a map (see Fig. 1
for an example of such a Delaunay network). Genetic
distances (estimated here as pairwise Fg; distances) are
then computed between all pairs of localities that are
connected by direct edges in the Delaunay network. A
genetic barrier is initiated by tracing a perpendicular line
across the edge with the highest associated genetic
distance. It is then extended progressively across the
adjacent edges associated to the highest genetic distances
until the line reaches the border of the network, or until it
closes a circle around one or more localities. An indirect
output of the Monmonier algorithm is the definition of
distinct groups of populations located on the two sides of
the genetic barrier.

Spatial analysis of molecular variance (SAMOVA):
partitioning the populations into genetically and
geographically homogeneous groups

We start with an initial random partition of the n sampled
populations into K groups (K is here assumed to be known).
We then use a simulated annealing procedure to find
the composition of the K groups and to maximize the F-;
index, which is the proportion of total genetic variance due
to differences between groups of populations (see e.g.
Excoffier ef al. 1992).

Simulated annealing is an optimization technique that is
applicable to a wide variety of problems. It is inspired by
the process through which a metal cools and freezes into a
crystalline structure with minimum energy (the annealing
process). An algorithm mimicking this cooling process
was initially proposed by Metropolis et al. (1953) to find

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581
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the equilibrium configuration of a collection of atoms at a
given temperature. The connection between this algorithm
and mathematical optimization procedures was then
noted by Kirkpatrick et al. (1983), who proposed it as a
general optimization technique for combinatorial and
other problems. An advantage of simulated annealing is its
ability to avoid becoming trapped at a local optimum. The
algorithm uses a random search that not only accepts
changes that decrease (or increase) a particular function
to optimize, but also changes that lead to suboptimal
solutions. It does this with a probability that decreases with
the number of steps already performed in the optimization
process. The underlying assumption is that, as times passes,
we should get closer to a global optimum and be less prone
to accept departure from that optimum. At the beginning
of the process one thus tolerates frequent escapes from
local optimum and accepts suboptimal solutions to
explore the solution space more widely. The algorithm
we call samova can be decomposed into the following
steps.

Preliminary steps

1 A set of Voronoi polygons (Voronoi 1908) is constructed
from the geographical location of the n sampled points
(see Fig. 1).

2 An arbitrary partition of the n populations into K groups
is initially chosen at random (in our case, each group,
except one, is composed of a single population and the
last group contains the populations not assigned to any
other groups).

3 The genetic barrier(s) between the K groups are identi-
fied as edges of Voronoi polygons separating groups of
populations.

4 The Fy index associated to the K groups is computed.

Simulated annealing steps

5 We select an edge at random on a given barrier.

6 The two populations located on both sides of the selected
edge are identified, and one population chosen at ran-
dom is assigned to the group of the other population.

7 The genetic barrier is modified by updating the list of
edges separating the newly defined groups of popula-
tions [the edge selected in step 6 is replaced by the edges
surrounding the population whose group location has
changed (see Fig. 2A)].

8 The new F; value (noted F*) associated with the new
partition is computed.

9 The new structure is accepted with probability

if Fop*2Fop

(Fop*=Fop)SA 3 *
cr ~fer if FCT < FCT

p=1
B
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Fig. 2 Modification of the group structure under steps 5 and 6 of
the simulated annealing algorithm. (A) The bold line delineates the
limit between the two groups before the modification. The cross
designates the edge selected at random under step 5. The arrow
designates the population whose group location is to be changed
under step 6. The dashed line(s) define the new barrier(s) between
groups after step 6 has been performed. (A) Normal case leading to
geographically adjacent groups. (B) Case in which the allocation of
one population from group 1 to group 2 leads to the fragmentation
of group 2 into two distinct sets of adjacent populations.

where S is the number of steps performed in the simu-
lated annealing process, and A is an arbitrary constant
controlling the speed of the cooling process. Steps 5-9 are
then repeated 10000 times. The constant A was set to
0.9158 such that the probability p defined above is equal
to 1% if the difference between F and F-;* at the 10 000th
iteration is equal to 0.001. It means that we have a
probability of 1% to accept a slightly worse F - value at the
end of the annealing process. To ensure that the final
configuration of the K groups is not affected by a given
initial configuration, the simulated annealing process is
repeated 100 times, starting each time from a different
initial partition of the n samples into the K groups. The
configuration with the largest associated F - value after the
100 independent simulated annealing processes is retained
as the best grouping of populations.

Step 6 of the above-mentioned process should ensure
that the inferred groups are composed of adjacent popula-
tions: samples that are neighbours (because they are on
both sides of an edge of the Voronoi diagram) and initially
members of different groups are then grouped together.
However, despite this constraint, SAMOVA can sometimes



2574 1. DUPANLOUP, S. SCHNEIDER and L. EXCOFFIER

° ° ° ° ° °

° ° ° ° ° °

° ° ° ° ° °

° ° ° ° ° °
-
I

° ° ° o 0 °
I

° ° ° o 1 e °

Fig. 3 Conditions of the simulations: we simulated 36 samples on
a two-dimensional 6 X6 stepping-stone grid; demes were
arranged in two (or three) groups separated by the lines.

lead to the definition of groups in which all the populations
are not geographically adjacent, as shown in Fig. 2B. It can
thus end with a partition of two distinct sets of geo-
graphically adjacent population belonging to the same

group.

Simulation study

We have performed two series of Monte Carlo simulations
to evaluate the performance of the samova methodology,

but also that of the Monmonier algorithm, whose
performance to detect genetic barriers had never been
assessed to our knowledge. Using a coalescent approach
(Excoffier et al. 2000), we first reconstructed the genealogies
of genes sampled from 36 demes arranged on a two-
dimensional stepping-stone grid. The demes were arranged
in two or three groups as shown in Fig. 3. We studied the
effect of different (but constant) levels of gene flow
between adjacent demes within or between groups (see
Table 1, Table 2 and Table 3 for migration parameters).

Poisson-distributed mutations were then introduced
onto the realized genealogical trees, assuming either
finite-sites mutational models, for the simulations of DNA
sequences (200 bp), or the stepwise-mutation model (SMM)
for the simulation of microsatellite data at 5, 10 or 20
unlinked microsatellite loci. The size of the samples was
always set to 20 haploid individuals, and the mutation
parameter value 8 = 2Nl was set to 0.4 for the simulation
of DNA sequences and 0 was set to 1 per locus for the
simulation of microsatellite data. These values were
chosen such as to approximately reflect the mutation rates
at work in mammals. The haploid deme size N was always
set to 1000.

We also undertook a series of simulations based on a
finite-islands model with 36 demes arranged into two

Table 1 Results of the simulation study under the stepping-stone model (one locus, 200 bp DNA sequence)

Correct Stronger Weaker

Cases Nm intra Nm inter Method groupst groups} groups§

Two groups

1 1 0.1 M{ 0.192 [-0.003; 0.695] 0.085 0.523 0.394
S** 0.023 0.977 0

2 1 0.01 M 0.573 [0.028; 0.950] 0.702 0.137 0.161
S 0.531 0.469 0

3 10 0.1 M 0.209 [0.012; 0.789] 0.525 0.164 0.311
S 0.383 0.617 0

4 10 0.01 M 0.636 [0.055; 0.965] 0.964 0.007 0.029
S 0.924 0.076 0

5 100 0.1 M 0.209 [0.013; 0.766] 0.623 0.105 0.272
S 0.572 0.428 0

6 100 0.01 M 0.635[0.110; 0.970] 0.974 0.003 0.023
S 0.960 0.040 0

Three groups

7 1 0.1 M 0.229 [0.008; 0.730] 0.028 0.644 0.328
S 0.002 0.998 0

8 10 0.1 M 0.253 [0.043; 0.7671 0.365 0.348 0.287
S 0.134 0.866 0

9 10 0.01 M 0.700 [0.116; 0.963] 0.952 0.029 0.019
S 0.668 0.332 0

*Mean F value associated with the simulated group (minimum and maximum values are given within brackets). tFraction of simulated
groups retrieved of 1000 simulated cases. fFraction of barriers retrieved with a larger F than that associated with the simulated barrier.
§Fraction of groups retrieved with a smaller associated F than that associated with the simulated barrier. {Results obtained using

Monmonier algorithm. **Results obtained using the samova algorithm.

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581
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Table 2 Results of the simulation study under the stepping-stone model. Simulation of 5, 10 or 20 independent microsatellite loci for

different levels of gene flow within and between groups

Nm Nm No. of Correct Stronger Weaker
Cases intra inter loci Method Fep groups groups groups
Two groups
1 1 0.1 5 M 0.182 [-0.011; 0.755] 0.115 0.456 0.429
S 0.040 0.960 0
2 10 M 0.192 [0.018; 0.511] 0.249 0.335 0.416
S 0.098 0.902 0
3 20 M 0.198 [0.038; 0.514] 0.478 0.163 0.359
S 0.211 0.789 0
4 10 0.1 5 M 0.203 [-1 x 104, 0.633] 0.541 0.135 0.324
S 0.416 0.584 0
5 10 M 0.218 [0.025; 0.663] 0.810 0.035 0.155
S 0.763 0.237 0
6 20 M 0.220 [0.078; 0.573] 0.955 0.007 0.038
S 0.941 0.059 0
7 10 0.01 5 M 0.667 [0.059; 0.975] 0.987 0.002 0.011
S 0.977 0.023 0
8 10 M 0.698 [0.175; 0.954] 0.999 0 0.001
S 0.997 0.003 0
9 20 M 0.712[0.341; 0.922] 1.000 0 0
S 1.000 0 0
Footnotes as Table 1.
Table 3 Results of the simulation of group
Correct  Stronger ~ Weaker fission and island model (one locus, 200 bp
Cases Divergence time Method Fq groups  groups groups DNA sequences)
Two groups
1 5N generations M 0.213[0.028,0.796] 0.675 0.071 0.254
S 0.682 0.318 0
2 10N generations M 0.362[0.070,0.908] 0.906 0.016 0.078
S 0.918 0.082 0
3 20N generations M 0.5301[0.086,0.943] 0.989 0.001 0.010
S 0.994 0.006 0

Footnotes as Table 1.

groups supposed to have diverged some T generations
ago. Within these two groups made up of 23 and 13 demes,
respectively, each deme exchanges genes with all other
demes at constant and high rates (Nm = 10). Group separa-
tion time was fixed at either T = 5N, 10N or 20N genera-
tions before present, where N is the size of each deme. We
further assume that after the group fission no further gene
flow occurred between the two groups, and that before
group fission all demes exchanged genes at the same rate
as within group after the fission. In that case, genetic data
were simulated as samples of DNA sequences.

For each set of demographic parameters, we performed
1000 coalescent-based simulations. The Monmonier and
the samova algorithms were applied after each simulation
to attempt to recover the simulated groups of demes.

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581

The molecular distances between pairs of sequences
necessary for the computations of F-; values (in the case of
the samova algorithm) and Fg; distances (in the case of the
Monmonier algorithm) were computed as pairwise differ-
ences for the DNA sequences, and as sums of squared size
differences for microsatellite data (Michalakis & Excoffier
1996).

Results

Simulation study

Stepping-stone model: 1 locus. The average, minimum and
maximum values of the F; indices associated with the
simulated barriers are shown in Table 1. As expected, F-1
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mean values are larger for smaller intergroup migration
rates. They are also slightly larger when the samples are
separated in three groups than in two. Overall, the
Monmonier algorithm performs better than the samova
algorithm for finding the simulated groups, especially
when the amount of gene flow within group is small (cases
1 and 2). We note, however, that when the samova
algorithm does not find the predefined groups, it always
finds groups of populations that are more differentiated
than the simulated groups. This suggests that the samova
algorithm is able to identify maximally differentiated
groups, whereas the Monmonier algorithm is better at
finding genetic barriers between sets of populations. This
different behaviour indeed reflects their conceptual
difference.

The performance of both algorithms is very good only
when there is a very low level of gene flow between groups
(Nm = 0.01) and when gene flow within groups is at least
1000 times larger than gene flow between groups (cases
4 and 6, with >90% success in recovering the correct
groups). When one of these two conditions is not met, the
success rate drops sharply (cases 2 and 5, with success rates
in the range 50-70%). When both conditions are not met
(cases 1 and 3), the performance of both methods is lower,
especially when the level of gene flow within group is rel-
atively low (case 1). When three groups are simulated, the
same conclusions remain valid (cases 7-9 in Table 1).

Stepping-stone model: 5, 10 and 20 microsatellite loci. The results
of the multilocus simulations are given in Table 2. The
mean F; value computed by taking into account the
difference in repeat number between alleles (Michalakis &
Excoffier 1996) is found to be very close to those obtained
from DNA sequences at one locus. We observe, however,
that the mean F.; value increases with the number of
simulated microsatellite loci. As expected, the simulated
groups are identified in a larger number of cases when the
number of loci is increased with both the Monmonier and
the samova algorithms. However, when the level of gene
flow between groups is only 10-fold lower than that within
groups (case 1), the correct groups are found in <50% of
the simulations even with 20 loci. As in the single-locus
case described earlier, good results are obtained only when
the Nm value between group is < 0.01 or lower. Note also
that the Monmonier algorithm quite often finds a genetic
barrier associated with less differentiated groups than
those simulated (cases 1-6) when the Nm value between
groups is > 0.01; this is true even with 20 loci.

Island model with group divergence. Under these simulation
conditions (see Table 3), both the Monmonier and saAMova
algorithms identify the simulated structure in a larger
number of cases than under the stepping-stone model
for roughly similar F; values. In that case, however, the

performance of both the Monmonier and samova algo-
rithms appears very close, with even a slight advantage
to the samova method. Note that = 10N generations of
complete divergence between groups are necessary to
identify groups correctly from a single DNA sequence
locus.

Application to roe deer populations of Europe

The European roe deer (Capreolus capreolus) is widespread
in Europe but its genetic structure has been strongly
affected by two historical events: the recolonization of
Europe from glacial refugia at the end of the Pleistocene
(Randi et al. 1998; Wiehler & Tiedemann 1998; Vernesi et al.
2002) and, in more recent times, habitat fragmentation and
restocking for hunting purposes (Randi et al. 1998; Vernesi
etal. 2002). To investigate in greater detail its genetic
structure, we applied samMova and Monmonier algori-
thms to define groups and find the location of the most
important genetic barriers in the distribution map of 18 roe
deer populations tested for mitochondrial DNA (mtDNA)
HVR1 sequence polymorphisms (Vernesi etal. 2002).
Figure 4 shows the location of the 18 samples considered
and the final allocation of roe deer populations into groups
for the two algorithms. Table 4 gives the composition of
the corresponding groups of populations inferred by
the two algorithms, their associated fixation indices, and
their significance evaluated by permuting the populations
without considering their geographical position (Excoffier
et al. 1992).

The two approaches show the genetic peculiarities
of several Italian populations, but lead to quite different
groups of populations. The samova approach suggests the
association of the Ligurian sample with the samples from
southeastern Europe. This result is in agreement with the
hypothesis that the Ligurian population was reintroduced
in recent times from a Balkanic source (Vernesi et al. 2002).
The samova approach also suggests the existence of two
other groups in central Italy. To explain it, Vernesi et al.
(2002) have proposed the existence of two glacial refugia in
Italy (one in the southern Alps and one in the Siena-Castel
Porziano area), or, alternatively, the presence of a very
efficient barrier to gene flow (the Arno River), which would
have prevented short-range migrations between popula-
tions from these regions.

The Monmonier algorithm gives a quite different view.
It confirms the genetic peculiarities of the Ligurian sample
and that of the populations in the central Italian region.
However, the association of these populations in the same
group does not lead to a significant F-; value (Table 4, row
1). The Monmonier algorithm also suggests the separation
of western European (including northwest Italy) and east-
ern European samples (see Table 4 and Fig. 4). This result
could be due in part to the differentiation of populations

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581
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that were restricted to the Balkans and the Iberian regions
during the last glacial maximum.

Overall, the F~; values associated with groups defined using
the samMova algorithm are much higher than those defined
using the Monmonier algorithm (Table 4), in agreement with
smaller Fg- values representing the extent of differentiation
between populations within groups. The larger extent of dif-
ferentiation between groups associated with a greater homo-
geneity of populations within groups supports the view that
the grouping found using the samova algorithm is more
reliable than that obtained using the Monmonier algorithm.

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581

Fig. 4 Distribution of the 18 roe deer popu-
lations tested for mtDNA sequences poly-
morphisms (Vernesi et al. 2002) and group
structure defined by samova (samples with
the same symbol belong to the same group)
(A) as well as genetic barriers detected by
Monmonier (B). See also Table 4.

Discussion

The amova approach (Excoffier et al. 1992) has been widely
used for the hierarchical analysis of the genetic diversity
in a set of sampled populations. A physical, ecological,
linguistic or cultural criterion is often used to define a
priori groups of populations on which a test of genetic
structure is applied. Where no obvious criterion exists for
the definition of groups of populations, the investigation
of the genetic structure in a set of populations may be
difficult. The goal of the method we have presented here
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Table 4 Fixation indices corresponding to the groups of populations inferred by Monmonier and samova algorithms for the 18 Capreolus

capreolus populations tested for mitochondrial HVR1 sequences

Method Group composition

FSC FST FCT

Two groups M
. Other populations

. Liguria + Bulgary

. Other populations

. Liguria

. Castelporziano + Siena
. Other populations

S

Three groups M

. Castelporziano + Siena
. Other populations

. Liguria

. Castelporziano + Siena

Four groups M

WN = WN=R WNRLN~=LDN =

. Castelporziano + Siena + Liguria

. Liguria + Bulgary + Slovenia

. Western group (see Fig. 4)
4. Eastern group (see Fig. 4)
S 1. Liguria + Austria + Slovenia + Bulgaria + Slovakia

0.519** 0.594** 0.156NS

0.506** 0.665** 0.323*

0.454** 0.635** 0.331**

0.428** 0.629** 0.351**

0.398** 0.588** 0.316**

0.295** 0.590* 0.418**

2. Castelporziano + Siena + Trento + Asiago

3. Arezzo + Florence + Tarvisio

4. Other populations

*P < 0.01; **P < 0.001.

is to allow one to define the strongest structure of popula-
tions in genetic terms. As a by-product, it also leads to
the identification of genetic barriers between the inferred
groups and represents thus an alternative to other methods
(Monmonier algorithm, wombling) for finding such barriers.

Here, we also present the first evaluation of the behav-
iour of the Monmonier algorithm, which has been applied
several times in a human population genetics context (e.g.
Stenico ef al. 1998; Simoni et al. 1999). Despite its simplicity,
this algorithm allows the identification of the simulated
barriers in a larger number of cases than does the samova
method, but it also leads to the identification of weaker
genetic barriers in an important fraction of the cases. This
spurious behaviour is probably due to the directional and
incremental nature of the algorithm, which makes it very
sensitive to local minima. The local and strong differenti-
ation of some populations may indeed initiate or extend
barriers that do not necessarily lead to maximally differen-
tiated groups on a more global scale. In contrast, the ability
of samova to tolerate suboptimal solutions allows it to
ultimately find a global maximum, and to avoid becoming
trapped at local optimum.

The roe deer example illustrates some other features of
the samova algorithm. The ability of our new method to
define groups in which all the populations are not geo-
graphically adjacent (i.e. the Ligurian sample is associated
with samples from southeastern Europe) can thus allow
one to identify recent reintroduction events, which is
particularly important for conservation genetics purposes.
We further tested this ability by new simulations in which

36 populations tested at 10 microsatellites were arranged
according to the first configuration shown in Fig. 5. In this
configuration, populations on the left and right of the grid
exchange migrants at a large rate, as if on a cylinder. We
show in Table5 that samova recognizes the simulated
genetic structure in > 81% of cases. This result indicates the
strong capacity of saMova to detect a quite complex struc-
ture, which cannot be identified by Monmonier’s algorithm
as it must cluster geographically adjacent localities.

Another difference between the two methods is the fact
that the configuration defined for small number (K) of
groups of populations are not necessarily preserved with
larger K-values (compare in Table 4, the composition of the
first group when two, three or four groups are desired).
The goal of samova is indeed to find the strongest group
structure for a given number of groups of populations,
and, unlike the Monmonier algorithm, it does not incre-
mentally add barriers one after the other until the desired
number of groups has been reached.

The genetic structure identified by our new method
seems to confirm the Balkan origin of the Ligurian popula-
tion proposed by Vernesi ef al. (2002). The identification of
two groups of populations in Italy is in agreement with the
hypothesis concerning the existence of two former glacial
refugia in Italy, or alternatively, of the action of a specific
natural barrier to gene flow (possibly the Arno River).
These results obtained from the analysis of a single locus
and from a small number of populations are, however,
preliminary, and would need to be confirmed with a larger
number of (nuclear) markers.

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581
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Configuration1 Configuration2

Fig. 5 Four other conditions of simula-

tions: 36 samples on a two-dimensional
6 x 6 stepping-stone grid arranged in two
groups separated by lines. The spatial
configuration of the barriers are simple

(configuration 2) or complex (configura-
tion 3) and its effect on the behaviour
of samova and Monmonier is tested
(see text). In configuration 1, samples
on the left and right sides of the grid

Configuration3 Configuration4

exchange migrants at a large rate, i.e. are
defined as members of the same group

which is thus divided in two by the
populations of the other group.

Table 5 Effects of the spatial configuration of the groups on the performance of samova and the Monmonier algorithm

Correct Stronger Weaker
Configuration Nm intra Nm inter Method Fer groups groups groups
1 1 0.01 M 0.545 [0.104; 0.926] 0 0.020 0.980
S 0.814 0.186 0
2 1 0.1 M 0.240 [0.015; 0.775] 0.376 0.209 0.415
S 0.225 0.775 0
3 1 0.1 M 0.100 [-0.011; 0.382] 0.018 0.663 0.319
S 0 1.000 0
4 1 0.1 M 0.140 [-0.031; 0.656] 0.217 0.361 0.422
S 0.055 0.945 0

Minimum and maximum values of F are shown within brackets. Data from 10 unlinked microsatellite loci were simulated in 36 samples
of 20 haploid individuals drawn from demes arranged under the stepping-stone models shown in Fig. 5.

Finding the correct number of groups

Our new approach requires the a priori definition of the
number (K) of groups of populations to identify. Because
our method is based on the maximization of the proportion
of total genetic variance due to the differences between
groups (Fp), it is reasonable to think that this proportion
may vary with the parameter K for the same set of popu-
lations. We thus expect that F-; should increase with K
because of the reduction of the proportion Fg of variance
due to differences between populations within each group.
This is because in the classical relationship (1 - Fgp) = (1 -
Fgo)(1 = Fop) the Fgp index should be quite insensitive to K,
but as K increases, the number of populations becomes
smaller, leading to a decrease of Fg- and a corresponding
increase of Fr. In order to see if we can recover the true

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581

number of groups from the data, we simulated the genetic
diversity among 36 populations at 10 microsatellites under
the hypothesis that either 2 or 3 groups exist. In both cases
we applied the samova algorithm searching for 2, 3, 4 or 5
groups. Table 6 details the mean value and the standard
deviations of the F; indices associated with either 2, 3,
4 or 5 groups. We find that the largest mean F; value is
associated with the correct number of simulated groups,
suggesting that F- has some power to retrieve the un-
known number of groups. We note, however, that the
mean F; values inferred for different numbers of groups
are obviously not significantly different from each other,
especially when the difference between groups is weak.
We give also in Table 6 the fraction of simulations for
which the largest F; index is obtained for the correct
number of groups. By using saAMOVA successively on the
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Table 6 Mean F_; values inferred by the samova algorithm when searching for either 2, 3, 4 or 5 groups of populations

Correct Fer Average Average Average Average
no. of Nm Nm simulated Fer For Fer Fer Correct
groups intra inter barrier 2 groups 3 groups 4 groups 5 groups inference*
2 1 0.1 0.192 (0.092) 0.281 (0.075) 0.278 (0.071) 0.276 (0.069) 0.276 (0.067) 0.406

10 0.1 0.218 (0.098) 0.224 (0.093) 0.220 (0.091) 0.216 (0.089) 0.211 (0.086) 0.775

10 0.01 0.698 (0.134) 0.698 (0.134) 0.692 (0.135) 0.682 (0.135) 0.672 (0.136) 0.989
3 1 0.1 0.233 (0.082) 0.320 (0.084) 0.322 (0.079) 0.299 (0.075) 0.322 (0.071) 0.083

10 0.1 0.271 (0.085) 0.307 (0.101) 0.308 (0.098) 0.298 (0.094) 0.286 (0.088) 0.288

10 0.01 0.747 (0.098) 0.691 (0.100) 0.753 (0.095) 0.749 (0.096) 0.743 (0.098) 0.701

Standard deviations of F~; are shown within parentheses. Data from 10 unlinked microsatellite loci were simulated in 36 samples of 20
haploid individuals drawn from demes arranged under the stepping-stone model shown in Fig. 3. Either 2 or 3 groups were simulated, as
reported above. *Fraction of simulations with the larger F-; index corresponding to the correct number of simulated groups.

same datasets with different K, and using the F-; index as
a test statistic, we were able to identify the correct number
of groups from 8.3 to 98.9% of the cases. We note that the
identification of the correct number of groups depends
critically on the degree of differentiation between groups
and the absence of isolation-by-distance within groups,
and should increase with the number of available loci.
However, further work is clearly needed to infer the
correct number of groups as the F index does not seem
particularly efficient in that respect.

Isolation by distance as a nuisance parameter

Simulations show that our new approach always allows
one to identify the simulated group structure or another
configuration associated with a larger F-; index. The non-
identification of weaker configurations seems to indicate
that our simulated annealing strategy is suitable for
maximizing the proportion of total genetic variance due
to differences between groups of populations. Under a
stepping-stone model of population and group differ-
entiation, our new method performs less well than the
Monmonier algorithm for the identification of the correct
group structure, particularly when only one locus is used
(Table 1). However, the reverse situation is observed when
we simulate a fission of population into groups that do not
exchange migrants (Table 3). This difference in behaviour
reflects the conceptual difference of these two methods:
the Monmonier algorithm is better at finding genetic
barriers between sets of populations, whereas the samova
algorithm finds maximally differentiated groups.

This difference could be due to the presence of a pattern
of isolation-by-distance in the simulations performed
under a stepping-stone model. Our simulations show
indeed that under a stepping-stone model the ability of
our method to identify the true structure is strongly
dependent on the amount of migrants exchanged between

populations within groups. In cases 2, 4 and 6 of Table 1
(for a Nm intergroup value of 0.01) the samova approach
identifies the correct groups in 53.1% (Nm intragroup = 1),
92.4% (Nm intragroup = 10) and 96.0% (Nm intragroup =
100), respectively. This result shows that when the effect
of isolation-by-distance within group is suppressed by
increasing the amount of gene flow (with Nm intragroup
>> 1), the behaviour of saMova is much more satisfactory.
This result is in keeping with a former study on the use the
Fcr index to measure the genetic differentiation associated
with cultural barriers (Dupanloup de Ceuninck et al. 2000).
Monte-Carlo simulations indeed showed that this statistic
could reveal significant differences between groups of
populations in the absence of any genetic boundary, but
in the presence of isolation-by-distance (Dupanloup de
Ceuninck et al. 2000).

Additional simulations with a different spatial configu-
ration of the groups of populations (Fig. 5, Table 5) indicate
that the capacity of saMova to detect the simulated group
structure is strongly dependent on this configuration.
Groups with complex spatial structure are more difficult to
identify as they also imply a stronger level of isolation-by-
distance and the isolation of some populations.

The sensitivity of saMova to isolation-by-distance is
more pronounced when only one locus is used, as it per-
forms much better when more loci are analysed (compare,
for example, case 3 in Table 1 with cases 4, 5 and 6 in
Table 2). With one locus, the stochasticity of the coalescent
process is very large, apparently leading to important
genetic differences other than those intended under the
simulations. From these results and the more general
observation that the genetic diversity observed at a single
locus represents just one realization of an evolutionary
process with a large stochastic component, the application
of our method to single locus data should be interpreted
with caution, and its application to multilocus data should
be preferred, whenever possible.

© 2002 Blackwell Science Ltd, Molecular Ecology, 11, 2571-2581
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