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ABSTRACT

A simulated shape recognition system using feature

extraction was built as an aid for designing robot vision

systems. The simulation allows the user to study the effects

of image resolution and feature selection on the performance

of a vision system that tries to identify unknown 2-D

objects. Performance issues that can be studied include

identification accuracy and recognition speed as functions

of resolution and the size and makeup of the feature set.

Two approaches to feature selection were studied as was a

nearest neighbor classification algorithm based on

Mahalanobis distances. Using a pool of ten objects and

twelve features, the system was tested by performing studies

of hypothetical visual recognition tasks.

Key Words: robot vision, feature extraction, simulation,

nearest neighbor algorithm, Mahalanobis distance.
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CHAPTER 1

INTRODUCTION

The patterns we encounter fall into two categories:

abstract and concrete. Examples of abstract items include

ideas and arguments, and the recognition of such patterns is

beyond the scope of this study. Examples of concrete items

include characters, symbols, pictures, biomedical images,

three-dimensional physical objects, speech waveforms and

electrocardiograms CB0W84]. In the last couple of decades,

extensive interest has focused on two types of concrete

pattern recognition problems: optical character recognition

and robot vision [BERT86]. This thesis focuses on the robot

vision area.

Many robot vision (digital image processing) systems

also have been developed. Overviews of these systems are

presented in numerous papers CSUET863 [ZIMM833 CVANG86] . Robot

vision systems consist of a computer, an image memory bank

that is different from the computer RAM and connected to the

computer bus, an interface that connects the camera with the

image memory bank, and a sensor controller, which provides

the camera with the necessary synchronization signals.

In recent years, the power of digital image processing

also has been brought to the IBM PC and compatible

computers. Imaging Technology's PCVISION Frame Grabber

[PCVI86] is one of these commercially available frame

grabbers. A software package is supplied with the PCVISION



Frame Grabber that enables the user to perform low level

digital image processing functions. Among them are image

averaging, image subtraction, convolution and edge enhancing

algorithms.

For a robot vision system to be capable of complex

automated assembly and inspection operations, it must be

able to perform in real time. The system's aim is to sort

randomly oriented objects on production lines at speeds of

about 10 objects/sec. As a result, some of the functions,

such as edge detection and feature calculations, are

performed by dedicated hardware [CAGN863.

Although robot vision systems are being applied

increasingly to manufacturing tasks, the installation of a

complete vision system is still expensive. Companies are

often reluctant to make such a major investment unless they

are sure that the system can do the job.

This thesis describes a simulated shape recognition

system that can be used to do feasibility studies of the

suitability of robot vision systems. There is no need to go

through all the steps in building a vision system just for a

feasibility study because a simulated system can provide

useful data for determining whether to invest in an actual

vision system.

For instance, if one wants to differentiate a bolt, a

nut and a washer on an assembly line, the first step is to

image these objects electronically. This step and some of



the following steps can be simulated by directly feeding the

digitized and edge extracted objects into a computer.

Using a real robot vision system, one often needs to

image objects at random orientations and locations for a

teaching set. This can become tedious and time consuming,

but on a simulated system, the
"picture"

in computer memory

can be easily rotated, translated and scaled in a matter of

seconds.

By doing simulation, the following questions can be

answered before one seriously considers the installation of

a real vision system:

(a) What is the minimum required camera resolution,

64x64, 128x128 or . . . ? It is easy to digitize an object

mathematically at various grid sizes. The results will

provide data to help in selecting the right kind of

electronic camera.

(b) What is the minimum number of features that need to

be examined to recognize a set of objects and what are those

features?

(c) What features take a long time to calculate? Can

these features be implemented in hardware?

Our objective was to provide a simple but complete

simulated shape recognition system to help decide on

appropriate resolution requirements and useful feature sets

for a robot vision system in a given domain. We have tested

our system by examining several 2-D geometrical shapes.



This system has a simulated shape digitizer, procedures

to select and calculate feature values, and algorithms to

perform classification. Reference objects will undergo

controlled distortions to provide a range of feature values.

The average value and its standard deviation for each

feature of each type of object are then stored for future

comparison.

Chapter 2 of this thesis gives an overview of the

concepts and various components of a robot vision system.

Prior work also is reviewed.

Chapter 3 discusses the ways we have implemented our

simulated system. Some of our own ideas are presented here

and several flow charts are included to show the details of

our system.

Chapter 4 discusses the results of our work. Digitized

images with and without distortions are plotted. Feature

values and their standard deviations for various objects are

tabulated. Mahalanobis distances between object pairs are

shown. The algorithms for selecting an effective feature

subset are also presented. Finally, identification and

confidence levels are examined on several unknown objects.

Chapter 5 concludes our work and also suggests how to

improve our system.



CHAPTER 2

BACKGROUND

2.1. Overview

In robot vision, one can divide an entire task into

three phases: data acquisition, data processing and decision

classification, as shown in Figure 2.1 [B0W84] . In the data

acquisition phase, light intensity is measured by a sensor

and converted to a digital format suitable for computer

processing. The measured data then are used as the input to

the data processing phase and are grouped into a set of

characteristic features as output. The classification phase

is implemented in the form of a set of decision functions.

In the following sections, we will discuss each phase in

great detail.

PHASE 1 > PHASE 2 > PHASE 3

DATA ACQUISITION

sensor detection

digitization

DATA PROCESSING

segmentation

edge extraction

CLASSIFICATION

nearest neighbor

feature-

extraction

Figure 2.1. Three phases in a robot vision system.



2.2. Data Acquisition

An automatic visual inspection or robot vision system

consists of the following subsystems: the part handling

system, the optics and the sensor, the illumination, and the

computer system. Each of them is briefly described below.

2.2.1. Visual Input Devices

A variety of devices have been used for visual input to

robot vision systems. The most popular ones are solid-state

array cameras, linear arrays and laser scanners

CRAPA883 CMUND833 [AGIN803 .

Solid-state array cameras include CCD (charge-coupled

device) and CID (charge-injection device) cameras which

contain area arrays of photosensitive elements. Uniformity

of response between elements of the array was a problem in

earlier devices, but high quality cameras available today

have much improved uniformity.

Linear arrays are used where the scene to be scanned is

in continuous linear motion, as for example on a constantly

moving conveyor. The camera scans a line across the

conveyor, and the motion of the part produces the orthogonal

direction of the scan. Cost reduction can be achieved by

using a linear array instead of an area array.

Laser scanners generally use an arrangement of rotating

mirrors, which moves the laser beam across the material

perpendicular to the direction of motion. Strategically

placed photodetectors measure reflected, scattered, and



transmitted light from various angles. These systems are

capable of extremely fast operation, but there are quite

expensive.

2.2.2. Other Hardware

In addition to visual input devices, there is other

required hardware [SUET863, depending on the task. For

instance, when dealing with parts inspection, there should

be a part handling system, which consists of a feeding

system for the transportation of the parts to the sensor and

a separation system for sorting the inspected objects.

Proper illumination is also important. The goal is to

provide high contrast images to allow the objects of

interest to be isolated from the background by simple

thresholding.

Also, a computer is needed for data acquisition and

further processing.

2.3. Data Processing

When data acqusition is completed, some processing of

data is needed. First of all, the object of interest should

be isolated. This step is called segmentation. Secondly, the

edges of the object are detected to simplify data

processing. This step is called edge extraction.

2.3.1. Segmentation

After a digitized image is captured, the objects of

interest are separated from their surroundings. Several



methods exist for segmenting an image CSUET863. The easiest

way is called global thresholding, in which the objects are

separated from the background by means of a fixed gray level

or threshold value. This thesis is restricted to examine

only binary images. If the gray level exceeds a threshold

value, then that pixel is "on", otherwise it is "off".

If a frame contains more than one objects, connectivity

analysis [ROSE663 CAGIN803 is needed to break an image into

its connected components. For instance, if a wrench and a

nut are in an image, this analysis will indicate that there

are two separate objects so that each can be analyzed. This

analysis also detects any holes in an object. For this

thesis, segmentation was not necessary because the images

that were processed were already segmented.

2.3.2. Edge Detection

Edge extraction CSHI0863 CBOIE873 CCAEL873 CPAVI753 is

probably the most important step in image pattern

recognition. The purpose is to reduce the amount of data

points for the classification phase.

Edges are regions in which abrupt changes of brightness

occur. The edges in an image, then, can be extracted by

detecting these changes. A gradient operator [CHEN863, which

yields high values in the regions with rapidly changing

brightness, usually is used to detect edges. Dedicated

hardware for edge extraction is becoming widely available in

commercial robot vision systems [SUET86]. For this thesis,
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the edge extraction is by-passed, since our mathematically

generated shapes constitute only the edges.

2.4. Classification

Two major pattern recognition approaches, template

matching and feature extraction, are discussed in this

section, although only the latter was implemented in our

system. Also two techniques for selecting a proper feature

subset, and algorithms for doing nearest neighbor pattern

classification CAGIN803 CCASH863 CGLEN873 are discussed.

2.4.1. Template Matching

Direct image-matching, frequently called "mask

matching"

or "template
matching"

[AGIN803 , is a pixel-by-

pixel comparison of one image (usually a
"live"

image) with

another (a stored image to be used as a reference or model).

A fundamental limitation of template-matching systems

is that the two images to be compared must be in perfect

alignment for the comparison to be meaningful. If the

position of the object to be inspected is not precisely

known beforehand, some adjustments must be made. A brute-

force technique to accomplish this is to compare images many

times, shifting one image with respect to the other between

comparisons, to find the amount of shift that maximizes the

correlation (minimizes the difference) between the images.

This technique is widely used in recognizing printed

characters. As a result, commercial optical character

9



recognition (OCR) machines CTECH863 often require that

"skew" is within 2 degrees, where skew is the angular

deviation from the proper orientation of a character.

Faster methods for template matching exist [HUTT873.

One method is to search only a single row or column of the

image before shifting and scaling, selecting the translation

that yields the smallest difference in the single row or

column, and then calculating the difference between the two

entire images.

If one image is rotated with respect to the other, it

is possible to perform a rotation in software before

matching. However, rotation is much more time consuming than

shifting.

To increase speed, one also can match an image with

multiple templates [LI863, provided that each template has

its own processor and the matching can be done in parallel.

2.4.2. Feature Extraction

Along with template matching, there is another major

pattern recognition approach, called feature extraction

[BOW843CSHET863. The objective of feature extraction is to

reduce the dimensionality of the measurement space (pixels

in a raw image) to a feature space suitable for the

application of pattern classification algorithms. During the

process of feature extraction, only the features necessary

for the recognition process are retained, so that

10



classification can be implemented on a vastly reduced

feature space.

In an N-feature space, an object is represented as an

N-dimensional vector, the vector components being the

different feature values. Examples of features commonly used

in current commercial vision systems are area, perimeter,

centroid (the center of gravity), length of the minimum and

maximum radius (Rmin, Rmax) from the centroid to the

perimeter, the angles of the minimum and maximum radius,

first and second invariant moments, and the length and width

of the bounding box, which is the smallest rectangle that

completely encloses the object.

Two dimensional moments have been used with success for

a number of image processing tasks. In the robotics field,

moments are used for motion tracking and for object

orientation calculations [GOSH833, scene matching [WONG783

and character recognition [CASH873 CHU623 .

For a 2-D pattern, the moment of order (p+q) is defined

as

M = ff *xP y<3 f(x,y) dx dy (2.1)

where p, q = 0, 1,2, ....

For a discrete image, the moments can be approximated

by

MPq "

X I x? ^ f(x'y) <2.2>
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where m and n are the horizontal and vertical dimensions,

respectively, of the image, and f(x,y) is the intensity

(gray level) at a point (x,y) in the image. f(x,y) can be

either 1 or 0 for a binary image. f(x,y) also may have 0 to

2" gray levels, where n is the number of bits per pixel.

These
"raw'

moments are information preserving; the

original image can be reconstructed acceptably using a

finite, but sufficiently large, set of moments computed from

the image [TEAG803.

The central moments of an image can be computed using

m n

f*pq = 1 I (x-x)p (y-y")q f(x,y) (2.3)

where

mio _ moi
x =

, y =

moo moo

are the coordinates of the centroid of the image. The

central moments are invariant with respect to translation of

an image.

Another set of moments may be derived from the central

moments, which are also invariant with respect to the scale

of an image. Denoted by i , these normalized central

moments are given by

Mpq

"pq "
(Rav/R0)p+q ^ f(x,y)

(2A)

12



where Rav is the average distance from the centroid to all

"on"

pixels. Ro is a constant used to scale the magnitude of

''pq's to a suitable level. Ro was set to 2 in the current

study. Note that 17 is also invariant with respect to the
pq

value of f(x,y).

Hu [HU623 went one step further and developed a set of

seven moments that were invariant to translation, scale

change and rotation. These moments are usually called

"moment
invariants"

[ZAKA873CCAGN863 .

Moment invariants were chosen as part of the features

for this thesis, since the calculations are straightforward.

In addition, dedicated hardware has already been developed

for computing moment invariants [WU863. Table 2.1 lists the

formulas for the seven lowest order invariant moments.

13



Index

1

Formula

lT^20+\2)

(T,20"r'02)2

+ 4T)2H

(tl30+T)l2)2

+ (T>21 +
,'03)2

(,|30-3?"l2,(,'30+ ,Il2n(,l30 + " 3 ^2 l +% 3
>
'
]

+ (3T'l2-Tl03)(Tl21 +
Tl03)[3(T,30+Tll2)2

" ( ^2 l +% 3
>
'
]

(T'2O-Tl02)[(Tl30 +Tll2)2-(Tl21+T'o3)2]+4T)ll(Tl30+r'l2)(n21+T)03)

(3Tl2ri03)(T30+1l2)t(T'30 +T'l2)2-3(Tl21+Tl03)21

+ (3t1l2-Tl30) (121+Tl0 3) [3(n30 + ,12)2-(T>21+Tl03)2]

Table 2.1. Formulas for the 7 Lowest Order

Invariant Moments
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2.4.3. Selection of a Feature Subset

The only guaranteed technique for choosing the best

subset of N features from a set of M features is to try all

possible combinations. This is computationally impractical

for large numbers of features, so heuristic techniques are

required. Mucciardi and Gose [MUCC713 compared several

techniques on feature selection. Two of those techniques,

which are easy to implement, are described here.

The first technique is to arbitrarily choose the first

feature and to determine which two classes are most often

confused in a multi-class problem. The feature that (when

used alone) is the best discriminator between these two

classes is the next addition to the set. The procedure is

iterative.

The second technique is based on the idea that a

feature that is very similar to another already in use adds

very little additional discriminatory information. According

to this technique, the second feature selected is the one

least correlated with the first, which is arbitrarily

selected. Subsequent features are those that have the

minimum average correlation coefficients with those already

chosen.

The above techniques, with slight modifications, were

implemented in our system.

15



2.4.4. Nearest Neighbor Classification Algorithm

Given several reference object classes and an unknown

object, the problem is to determine to which object class

the unknown belongs. Objects may be thought of as points in

an N-dimensional feature space, where N is the number of

features. The nearest neighbor technique computes the

distance from the unknown point to each of the reference

points and chooses the object class closest to the unknown.

Figure 2.2 illustrates a hypothetical case where the

number of features available for recognition has been

reduced to two. The open shapes indicate feature

measurements made on each of several reference objects. The

solid shapes mark the centroids computed for each object

class. The unknown, designated by the
"X"

in Figure 2.2, is

identified by choosing the class whose centroid is the

closest.

Intuitively, the feature that has a smaller variance

(standard deviation) should contribute more to the decision

process. Therefore, a Mahalanobis distance is suggested, in

which each feature is weighted and the weight is the

reciprocal of standard deviation.

The Mahalanobis distance [CASH863 between an unknown

object and the i-th reference object class is defined as

Vn / U(k) - R. (k) \
z )k = l \ a. (k) /

(2.5)

16
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W
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\

FUTURE 1

Figure 2.2. A nearest neighbor classifier.
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where N is the number of features, U(k) is the k-th feature

value of the unknown object, Ri(k) is the average k-th

feature value for the i-th reference object class and <r. (k)

is the standard deviation of that class. Note that the U(k)

and Ri(k) values are normalized by the variance. In the

present work, a. (k) is set to 0.01 if it is less than 0.01.

We further extend the definition of Mahalanobis

distance to include the distance between two object classes

i and j,

/n / Rj_ (k) - R. (k) \:

' k=l \ o (k) + o . (k) /
\ =\" I 1 (2.6)

Note that during the calculation of Mahalanobis

distance, only the average feature values and their

variances are needed. This leads to less stored data and a

much simplified computation.

Cash and Hatamian [CASH863 studied various

clssif ication techniques. They recommended the use of

Mahalanobis distance for its adequate recognition rate and

easy implementation. This study will use Mahalanobis

distance along with the nearest neighbor algorithm for

classification.

Other approaches, such as the binary decision tree

[AGIN803, has been used for classification. However, we use

only the nearest neighbor algorithm in this study because of

its robust performance and easy implementation.

18



2.5. Simulation by Shape Generation

This study tried to bypass image acquisition,

segmentation and edge detection. Instead, the digitized

edges of a shape were generated mathematically and then

processed directly.

Hooper and Klinger proposed a similar idea [HOOP863

when they advocated that artificial pattern generation was a

useful technique for providing large banks of data that

could be used as test data for pattern recognition

experiments. The generated patterns were distorted under

control in this thesis to yield a wide variety of samples

that were different from, but similar to, the original

pattern .

The distortions included linear stretching in either a

horizontal or vertical direction, rotation and relocation,

blurring and random noise. Figures 2.3 and 2.4 present some

of the examples. Figure 2.3 gives an original image and its

stretched, relocated and noisy-added images. Figure 2.4

shows a curve before and after blurring.

2.6. Summary

In this chapter, we have reviewed the hardware for the

actual robot vision systems. We also have reviewed how to

achieve edge extraction. However; edge extraction was

simulated in our system by mathematically generating "edge-

extracted"

objects.

19



(a) (b)

5-
(c) (d)

Figure 2.3. Examples of various distortion schemes.

(a) original

(b) vertical stretching
(c) rotation and relocation

(d) random noise within pattern
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Figure 2.4. (a) the original digitized curve,

(b) the same curve after blurring by adding 10%
of the cells adjacent to the curve,

(c) the result of blurring by adding 20% of the
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Two major pattern recognition approaches, template

matching and feature extraction were discussed, but only the

latter was considered suitable for our purpose. Invariant

moments are useful and were chosen as part of the features

in the pool.

Reduction the number of features can improve

recognition speed. We thus have studied two techniques to

automatically select useful features. One technique is to

eliminate redundant features and the other technique is to

pick a feature, for a pair of object classes, with high

discrimination ability.

Identification was achieved by using the nearest

neighbor classification algorithm. A Mahalanobis distance

was introduced and discussed. This distance can be

calculated between two object classes or between an unknown

and an object class.
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CHAPTER 3

IMPLEMENTATION

3.1. System Overview

In this chapter, we describe the implementation of

image simulation and digitization, feature extraction, and

unknown identification in our system.

Figure 3.1 shows an overall system data flow diagram.

A new object and many variations can be created any time and

stored in the object file. The digitized image of an unknown

is generated mathematically. The stored feature values and

the standard deviations of objects of interest can be

retrieved when needed.

The task of recognition is restricted to associating an

unknown with one of the selected reference objects. The

unknown is classified by comparing feature values of the

unknown to those of references. Classification is achieved

by the nearest neighbor algorithm.

There are 12 features currently stored in our feature

pool. We have derived two rules for selecting an effective

feature subset. The system automatically does the selection.

Many other flow charts are provided to show the details

of our implementation. Our system hardware and software are

also described.
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reference
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Figure 3.1. System data flow chart.
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3.2. Simulated Digitization

Digitization and edge extraction are two important

processes in robot vision. This thesis describes a system

that simulates the results from these processes and

mathematically generates the digitized edges of a shape. The

shape undergoes a series of translations, rotations,

scaling, and controlled distortions to form a class of

similar images.

In this study, we have limited the system to binary

images.

3.2.1. Shape generation

Here, we discuss how to generate an edge
extracted"

image.

The user first needs to decide the size of an object

and then plot the object on graph paper. The coordinates of

key points of that object then can be obtained. We believe

that any digitized curve can be represented by a series of

line segments, although some line segments may be short.

For instance, a triangle is represented by the

coordinates of its three vertices. A line segment is defined

by two points. Then a linear equation y=ax+b can be

determined, and the projections of this line segment on a

given grid can be calculated. The projections often will not

fall precisely on individual pixels, but the nearest pixels

to the projections will be turned "on". The mathematics here

is straightforward, and we wrote an effective procedure to
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perform this digitization task. An example is shown in

Figure 3.2.

As shown in Figure 3.3, for a triangle with three

vertices (2,0), (3,1) and (-1,5). four points need to be

specified, (2,0), (3,1), (-1,5) and (2,0), to indicate that

it is a closed curve. Note that the first and the last

points are the same.

Our system was designed in such a way that it

automatically digitizes three line segments, (2,0) to (3,1),

(3,1) to (-1,5) and (-1,5) to (2,0).

We also wrote a procedure for generating a digitized

circle, which is defined by a center coordinate and a

radius, based on Bresenham's circle algorithm [BRES773.

The following shapes will be examined by our system:

?, ?, A, ^3, O, , Jo], O, <2>, <&,
in which, (q\ simulates a washer, [OJ and Sq\ represent

nuts, and others are simple geometrical shapes.

3.2.2. Effect of Grid Size

One typical goal for a user of our system would be to

study the effect of camera resolution. This can be simulated

by changing the grid size. This system was designed such

that digitization can be performed at three grid sizes,

i.e., 16x16, 32x32, and 64x64. The user needs to input only

the key points of a shape in any of the above sizes, and the
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Figure 3.2. Digitization of a line segment.
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Figure 3.3. A triangle represented by three vertices.
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system will scale up (or down) the coordinates of those key

points accordingly and then perform digitization.

Objects are often easy to classify at a higher

resolution. However, this benefit may diminish rapidly

beyond a certain limit. This simulation can help the user to

determine a proper cost-effective resolution by allowing him

to experiment with different resolutions and object sizes.

3.2.3. Translation, Rotation and Scaling

When the pictures of an object are taken at various

locations, orientations and camera-to-object distances, the

results of digitization are all different. Therefore, this

system provides translation, rotation and scaling operations

to perform these simulation tasks. By performing various

transformations, a series of similar feature values will be

generated, which, along with those from original and other

controlled distortions, are considered to belong to the

same class. An average value and standard deviation for that

class then can be determined.

3.2.4. Controlled Distortion

Distortion operations are used to simulate device

inaccuracy. For instance, a circle may be distorted slightly

to become an ellipse, and the edges may be noisy. In this

system, an object can be shortened along the x direction

before it is digitized.

Blurring is simulated by using a random number

generator. During the calculation of intercepted points
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between a shape and a grid, a small (e.g., -2 to 2 for a

grid size of 64x64) random number is added to the calculated

coordinates so that an
"on"

pixel may be shifted a few

positions in the x and/or y directions.

The extent of x-axis compression (or elongation) and

pixel relocation in our system are controlled by two

parameters that are temporarily set at 5% and i2/64,

respectively, in our controlled distortion. Comparisons

between the feature values of undistorted and distorted

shapes also give us some idea of the effect of distortion on

various feature values. For instance, if feature values

change a lot with single axis compression, we may have to

select an acquisition device that has a smaller

compress ion /elongation distortion.

This system is aimed at simulating a real robot vision

system. For a real vision system, the extent of distortions

can be determined experimentally. The parameters used by our

system for controlling distortions then can be re-set

easily.

3.3. Classification by Feature Extraction

We intend to identify randomly oriented but well

separated objects on a conveyor belt. Based on the arguments

given in Section 2.4.1 and 2.4.2, the feature extraction

method is more suited than the template matching method for

recognizing randomly oriented objects. As a result, the
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method of feature extraction is used in this study for

classification.

There are twelve features in our current feature pool.

In this section, we show how these feature values are

computed. Two rules to select an effective subset of

features are also discussed.

3.3.1. Feature Pool

Our system is limited to simulating robotic visual

inspection and classification tasks. It is assumed that the

objects to be inspected are isolated and randomly oriented.

In addition, the object may not be at an exact position

under the camera. As a result, the selected features should

be independent of position, orientation, and size.

As an aside, we understand that size-dependent

features can be useful. By using these features, for

example, printed upper case characters can be differentiated

easily from lower case ones. Our intent in using size-

independent features is that someday we hope this system

can be used to examine hand written characters of which the

sizes often vary. As a result, the size independent features

are especially useful for hand written characters.

Orientation dependent features are also useful in the

assembly of machine parts, since parts often need to be

properly aligned. The reason not to use orientation

dependent features is to avoid time consuming rotation

related computations.
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This system can be modified easily to include size

and/or orintation dependent features by simply adding such

features to the feature pool. The following are the features

used in our system. This list could be expanded easily if

desired.

F^a.ur._JL (Rmax/Rav),

where Rmax is the longest distance ("radius") from

centroid to any
"on"

pixel and Rav is the average

distance from centroid to all
"on"

pixels. Note that

Rmax may be off by a lot if there is random noise.

This problem can be lessened by taking the average

distance for the 5% most remote
"on"

pixels, instead of

a single most remote
"on"

pixel, as Rmax.

Fjejanr_!5L_2. (Rmin/Rav),

where Rmin is the shortest distance from centroid to

any
"on"

pixel. To lessen the effects of noise, one may

also take Rmin as the average distance for the nearest

5%
"on"

pixels from centroid.

Feature 3 fraction of
"on"

pixels in cicular shell 1 as

shown in Figure 3.4. The radius for the outermost

circle is Rmax. A
"shell"

is defined as the area

between two neighboring circles.

Feature 4 fraction of
"on"

pixels in shell 2.

Feature 5 fraction of
"on"

pixels in shell 3.

As an example, Figure 3.4 shows the digitized edges of

two rectangles with four circles drawn using the centroid as

the center and Rmax, 0.75xRmax, 0.5xRmax, and 0.25xRmax as
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Figure 3.4. Example for the computation of features

3, 4 and 5.
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the radii. The total number of
"on"

pixels for both

rectangles is 72. The fraction of
"on"

pixels in shell 1 is

0.39 (28/72), which is the value of feature 3. Similarly,

the values of feature 4 and 5 are 0.39 (28/72) and 0.11

(8/72), respectively. Note that the fraction of
"on"

pixels

in the innermost shell is not included, since it is

redundant to the other 3 shells.

Features 3 to 5 are proposed because it is obvious that

their values are independent of orientation, size and

position. They can be considered as discrete density

funtions, where the digitized image is divided here into

four disjoint circular shells. It is reasonable to assume

that the number of shells can be increased if a grid size

greater than 64x64 is used.

Features 6 to 12 the 7 invariant moments derived by Hu

[HU623 are the choices and the formulas for computing

invariant moments are shown in Table 2.1.

Currently, there are a total of twelve features in our

feature pool. Table 3.1 gives a summary of the features.

34



Feature number Formula for computing feature value

1 Rmax / Rav

2 Rmin / Rav

3 Fraction of
"on"

pixels in shell 1 (Fig. 3. 4)

4 Fraction of
"on"

pixels in shell 2 (Fig. 3. 4)

5 Fraction of
"on"

pixels in shell 3 (Fig. 3. 4)

6 1st invariant moment (Table 2.1)

7 2nd invariant moment (Table 2.1)

8 3rd invariant moment (Table 2.1)

9 4th invariant moment (Table 2.1)

10 5th invariant moment (Table 2.1)

11 6th invariant moment (Table 2.1)

12 7th invariant moment (Table 2.1)

Table 3.1. Features in our feature pool.

3.3.2. Feature Selection

For the recognition of some given objects, one may not

need all the features in the feature pool. The problem is to

develop a systematic way to select an optimum subset of

features that can achieve both adequate discrimination and

high speed recognition. We have derived two selection rules

from the algorithms described in section 2.4.3, and both

were used in the system.
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By.le_JL. Choose the feature with good discrimination

ability when the feature is used alone.

As shown in Figure 3.5a, the discrimination ability of

feature k for object classes i and j is defined as

('i (k) - F . (k)l

DA (k) =
_\_I I L- (3.1)

J
o . (k) + a . (k)
i 1

where F*(k) is the k-th feature value for object class i,

and ^(k) is the corresponding standard deviation. In the

present study, a. (k) or a. (k) is set to 0.01 if it is less

than 0. 01.

Comparing with Equation (2.6), the above definition is,

in fact, a one-feature Mahalanobis distance. For a given

feature, when the ranges of feature values of two object

classes touch each other as shown in Figure 3.5b, the

discrimination ability for that feature will be unity.

Conceptually, one may say that a feature is statistically

"likely"

to differentiate two objects if its corresponding

discrimination ability is greater than unity.

In order to be more specific, let us assume that the

distribution of feature values of an object in various

states is a bell shaped normal function CDUDA73] . One then

can calculate the probability of occurences of a feature

value falling within a specific range CFREU843. The results

are shown in Table 3.2.
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(a)

<b>

F.(k) 0\<k)

object i

Fj(k) + Cj(k>

object j

DAj(k) > 1,

object i object

DA*.<k) = 1-

-v feature k

-> feature k

Figure 3.5. Discrimination abilities of feature k for

object classes i and j.
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Range Probability

mean feature value +/- 1 o 68.27%

mean feature value +/- 2 a 95.45%

mean feature value +/- 3 o 99.73%

Table 3.2. Probability of occurence for a feature value

to be within a range.

Armed with the information in Table 3.2, one can

further calculate the probability of successful

discrimination by feature k for object classes i and j at

given Dtj(k) values. The results are shown in the table

below.

DtJ(k) value Successful discrimination

1 70.79%*

2 95.50%

3 99.73%

* 70.79% = (0.6827 + 0. 5*( 1-0. 6827 ) )2, where probability of

object i occurs inside one standard deviation from its mean

= 0.6827, and probabilty of object i occurs outside one

standard deviation from its mean but away from object j

= 0.5*(l-0.6827).

Table 3.3. Successful discrimination at

some Dij(k) values.
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In order to better explain our method, a hypothetical

example is given in Table 3.4 which includes 3 objects and 3

features.

Feature 1 Oi Oa Oa

d 0 1.5 0.3

0* 1.5 0 1. 1

Oa 0.3 1. 1 0

Feature 2 0i 0s

Ox 0 2.5 0.8

Oa 2.5 0 1.3

Oa 0.8 1.3 0

Feature 3 Ox Oa Oa

Ox 0 0.7 3.0

0* 0.7 0 1.5

Oa 3.0 1.5 0

Table 3.4. Discrimination abilities by each feature

among 3 object classes.

Based on Table 3.4, for differentiating Oa. from Oa,

feature 2 is the best choice; for Ox and Oa, feature 3 is

the best; and for Oa and Oa, feature 3 is the best. As a
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result, features 2 and 3 should be chosen as a subset for

classification. Note that the user can always include

additional features to the selected feature sub-set for

improved accuracy, but with a compromise in speed.

In our current study, if the best feature provides a

discrimination ability less than 2, then the next best one

also will be selected. For the object pair 2 and 3 in Table

3.4, both features 3 and 2 are selected since neither of the

features has a discrimination ability greater than 2.

What if, for a pair of objects, no feature with

discrimination ability greater than unity can be found? In

such a case, it is always difficult to discriminate between

the object pair. It is thus advised to look for a better

feature outside the current feature pool.

Rule 2 If two features are redundant for given reference

objects, one of them is deleted.

An example is illustrated in Figure 3.6, where 5

objects are plotted in a 2-dimensional feature space and all

objects fall onto a straight line. This means that

F(k)-Fj(k) is proportional to F*.( 1)-Fj( 1) for any object

pair,ij. This also means that if an object pair can be

discriminated by feature k, it also can be discriminated by

feature 1. As a result, one of these features can be

eliminated because of the redundancy.

Then, which feature should be deleted? To make that

decision, we chose to compute the sum of discrimination
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Figure 3.6. Objects in a 2-dimensional feature space.
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n n n. n

abilities,^ Dj(k) andtL D*.j(l), which represent the
' V(j<i) * 3<j<i)

overall discrimination abilities by feature k and 1,

respectively. The feature with a smaller sum will be

deleted.

As a summary,

Overall discrimination ability by feature k

= DA(k)

n
= I
i

n

I

j (j < i)
D.j(k) (3.2)

We have explained the fact that 2 features are

considered redundant if the objects fall on a straight line

in the 2-dimensional feature space. But, how can a computer

tell if the objects are on the same line? This can be easily

achieved by the method of linear regression. All the points

are fitted to a straight line and the correlation

coefficient, r , are computed by the following equation

[FREU843:

r =

n ( Ixy) ( x) ( s y )

yjn ( XX2) - ( X
x)2

->Jn( XV2) -
(y)2

(3.3)

where n is the number of points (or objects) and x is the

sum of all x coordinates. The definitions for xy, Sxy, ix2

ry2are obvious.

The correlation coefficient is a determination of how

closely the data points fits a straight line. At r =1, the
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points fall exactly onto a straight line. At r = 0, the

points can not be approximated at all by a straight line.

In this section, we first defined the discrimination

ability by a feature for any object pair. With this

definition, it became easier to explain the redundancy of

feature pairs.

However, in the implementation of our system, we first

examine all feature pairs for redundancy and one feature is

deleted in a redundant feature pair. Presently, one feature

is deleted if r > 0.95. As a rule,

delete feature k if r > 0. 95 & DA( 1) > DA(k),

delete feature 1 if r > 0.95 & DA(k) > DA(1). (3.4)

After redundancy is removed, we then use the

discrimination ability to select the most discriminating

feature for each object pair.

The system deals with one feature or one feature pair

at a time. It avoids handling a large number of features

simultaneously. Our approach saves time, and the results are

good.

3.3.3. Classification

With the selected feature subset, the Mahalanobis

distance between an unknown and each chosen reference object

class then can be computed. The nearest neighbor algorithm
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along with the Mahalanobis distances are used for

classification.

3.4. Flow Charts of Implementation

In the beginning of this chapter, we presented a flow

chart to show the overall picture of our system. The chart

is shown in Figure 3.1. Here, we present five additional

flow charts to describe the details of our system

implementation.

3.4.1. Hierarchical Process Diagram

Our system was designed to be menu driven. One of three

main paths can be selected by the user at one time. They are

(1) create and store objects, (2) select reference objects

to be compared and then select a feature subset, and (3)

identify unknown objects.

A flow chart of the main menu is shown in Figure 3.7.

The details of each path are discussed in the succeeding

sections.

3.4.2. Create and Store Objects

This is an interactive system, in which the coordinates

of key points for an object are provided by the user

whenever the system prompts for them. The coordinates come

from hand drawn objects on graph paper.

Figure 3.8 shows the flow chart for getting input,

creating the digitized edges, plotting the shape, computing
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Figure 3.7. Hierarchical process diagram.
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Figure 3.8. Create and store objects.
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feature values and their standard deviations, and saving the

information in a disk file. The user only needs to provide

coordinates at one grid size, and the system will examine

the object at several different grid sizes to study the

effects of camera resolution.

3.4.3. Select Reference Objects

Figure 3.9 gives the sequence in the selection of

reference objects for comparison with the unknown. First of

all, the user opens the object file on a disk and retrieves

the information about all saved objects. The system first

displays a list of object names from which the user can

select. It then displays the image of the object selected

for the user to confirm. After all the reference objects are

chosen, only their feature values and standard deviations

are used in the next step, which is to select an effective

feature subset.

3.4.4. Select a Feature Subset

The subset of features is automatically selected by the

system according to the rules explained in Section 3.3.2.

As shown in Figure 3.10, the system provides information on

(a) the correlation coefficient of all feature pairs, and

(b) discrimination ability of every feature for all object

pairs.

Later, only the selected features are used for

classification in order to improve recognition speed.
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Figure 3.9. Select reference objects.
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Figure 3.10. Select features
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3.4.5. Identify Unknown Objects

Figure 3.11 shows the path for identifying unknown

objects. The information to plot the unknown object will be

prompted by the system. The system then displays an image of

the unknown object on the monitor for the user's

confirmation.

The system then computes the values of selected

features for the unknown object. These values are used to

calculate the Mahalanobis distance to each reference object

class in the selected feature space. The unknown then can be

identified based on the nearest neighbor classification

algorithm.

Along with each identification, it is helpful to define

a confidence level, which is shown below;

Confidence level is high if Da > 3 and Dx < 2,

Confidence level is low if Da < 1 or Dx > 3,

Condidence level is average otherwise. (3.4)

where Dx is the Mahalanobis distance from unknown to the

nearest reference object class and Da is the distance from

unknown to the next nearest reference object class. In

addition, if an unknown is identified with a reference

object class that has a short Mahalanobis distance ( < 1 )

to another reference object class, then the confidence level

is always set at low to warn the user about the possibility

of mis-identification. However, this should not let happen

in a useful robotic vision system.
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Figure 3.11. Identify unknown objects.
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Without involving rigorous mathematical derivations and

based on the probabilities shown in Table 3.2, one sees that

the probability of mistakenly finding the unknown to be the

second nearest object is no more than 0.27% when Da > 3. The

additional condition for a high confidence level, Dx < 2,

assures that the unknown is in the neighborhood of the

nearest reference object.

One also sees that the probability of mistakenly

finding the unknown to be the second nearest reference

object can be as high as 68.27% when Da < 1 and that the

probability of correctly finding the unknown to be its

nearest neighbor is less than 0.27% when Dx > 3.

Now, we are fully prepared to identify unknown objects.

In some cases, the system can identify an unknown with high

confidence. In other cases, the system makes identification

by its best judgement, but also informs user that the

confidence level is low or average.

3.5. System Hardware and Software

The system runs on a super Turbo (10 MHz) IBM-XT

compatible computer with 640K RAM, a 30 MB Seagate, hard disk

and a 360K floppy drive. Our simulated shape recognition

program and related data files were installed on the hard

disk for fast access. A Seikosha dot matrix printer is used

to print text and images.

MS/DOS 3.20 by IBM Corp. and Microsoft, Inc., is the

operating system, and Turbo PASCAL is the implementation
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language. The Turbo PASCAL compiler, version 4, was used,

and the line compile option was chosen.

A large memory, ~110K, was needed to edit our program,

which could not be handled by the Turbo PASCAL editor. As a

result, a word processing program, Microsoft WORD version

3.0, was selected to do editing. WORD was also used to

produce this thesis manuscript.

3.6. Summary

In this chapter, the discussion includes mathematcally

generating images and also ways of implementing controlled

distortions.

There are currently 12 features used by the system. For

a given object domain, the system can automatically choose

an effective feature subset for improved recognition speed.

Classification was done by the nearest neighbor

algorithm and the Mahalanobis distance was adopted.

Five flow charts were presented to show the

architecture of the system and the details of the

imp 1ementat ion .

The system hardware was described. The operating

system, the compiler, and the editor were also discussed.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, we will discuss the variables

manipulated in testing our system and also the system's

performance. We have included 12 features, 10 different

objects, 4 types of distortion, and 3 grid sizes to

demonstrate various aspects of our work.

The objects, both with and without distortions, were

digitized mathematically. This was done to simulate image

sensing, digitization, and edge extraction processes in an

actual robot vision system.

Feature values and their standard deviations were

computed for all 12 features and 10 object classes.

Mahalanobis distances in the 12-dimensional feature space

between 10 object classes also were computed.

The effect of resolution is discussed by showing

results at 3 different grid sizes. Results also are shown to

explain the algorithms for selecting an effective feature

subset in a given object space. Our method avoids handling

many features simutaneously.

First, features were examined pairwise to determine

their redundancy, which was measured by the corresponding

correlation coefficient. Discrimination abilities of a

feature for all object pairs also were computed

quantitatively. The feature subset was formed by removing
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redundancy and then selecting the most discriminating

features from the remaining ones.

Finally, an unknown at its randomly distorted state was

identified with one of the reference objects based on the

nearest neighbor classification algorithm.

4.1. Graphic Representation of Edge-Extracted Objects

Image sensing, digitization and edge-extraction

processes usully are done by hardware in an actual robot

vision system. In this study, we tried to simulate the end

results of these processes by mathematically generating the

edge-extracted images.

Ten geometric objects were included for demonstration.

Plots of some digitized objects with and without distortions

are shown in Figures 4.1 to 4.4. Four types of controlled

distortion and also the magnitude of distortions are

tabulated below.

4.1.1. Objects in the Object Pool

We have stored 10 simple geometric objects in our

object pool. These objects are listed in Table 4.1 and their

undistorted images are shown in Appendix.
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Figure 4.4. A distorted circle.

blurring by pixel relocation: ?2 to -2

x-axis compression: 5%

rotation angle: 51

size change: +10%
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Index Object Name

1 Square ?
2 Rectangle ?
3 Isosceles Triangle A
4 Right Triangle ^3

5 Circle O
6 Washer (Ring)

7 Nut (Circle in Square) 0
8 Hexagon o
9 Nut (Circle in Hexagon) <o>
10 Asymmetric Shape *33

Table 4.1. Objects in the Object Pool.

The coordinates of key points for these 10 objects in a

64x64 frame are shown in Table 4.2. Note that the objects do

not fully occupy the whole field of view. The system

automatically calculated the coordinates for 32x32 and 16x16

frames by multiplying all coordinates with factors 0.5 and

0.25, respectively. The resulted numbers from multiplicaton

were not rounded off.
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Key points Center

Object of lines of a circle & radius

1 (-20,20X20, 20X20,-20)

(-20,-20)(-20,20)

2 (-24, 12)(24, 12X24,-12)

(-24,-12X-24, 12)

3 (-16,-20X0, 20X16, -20)

(-16,-20)

4 (-24,-4X24,10X24,-4)

(-24,-4)

5

6

(0,0), r = 20

(0,0), rx = 20

(0,0), ra = 15

(0,0), r = 157 (-20,20X20,20X20,-20)

(-20, -20X-20,20)

8 (-10, 17X10, 17X20,0X10,-17)

(-10,-17X-20,0X-10,17)

9 (-10,17X10,17X20,0X10,-17) (0,0). r = 12

(-10,-17X-20,0X-10,17)

10 (-24,10X26,22X26,-12) (16,0), r = 8

(-16,-12)(-24, 10)

Table 4.2. Coordinates of key points for 10 objects,
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As described in Section 3.4.3, the object pool can be

expanded easily by accessing the "Create and Store Objects"

menu, which guides the user step by step through the process

of creating a new object. Once a new object is created, it

will remain in the object pool until it is deleted and can

be retrieved whenever it is needed.

4.1.2. Digitized Images without Distortion

Figures 4.1 and 4.2 show the undistorted digitized

images of an isosceles triangle and a circle in the current

object pool. All images have a field of view of 64x64.

In the images, series of
"o"

characters represent edges

and the dots
"."

indicate pixels that are not part of an

edge. Since we chose to use text mode for printing the

objects, the line spacing has been re-set to be almost the

same as the spacing between characters on the same line. As

a result, a square looks like a square on paper.

4.1.3. Types of Distortion

The magnitude and number of each type of distortion,

for the current study, are listed in Table 4.3. There are a

total of 24 states (variations) for each object class. These

states include the undistorted one.
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Magnitude Number*

of variations

+ 10% 3

5% 2

51

2

>n ~ 5% 2

Type of Distortion

Change of size

x-axis compression

Rotation

Blurring by pixel relocation ~ 5%

* includes the undistorted state.

Table 4.3. Our controlled distortions.

With our system, the user can ask "what
if"

questions.

For instance, what is the ability to separate a rectangle

from a square if the x-axis compression is 20% instead of

5%, or what will happen if the blurring effect becomes twice

as severe?

Each type of distortion is controlled by a single

parameter, which can be re-set easily for the system. For a

real application, the distortion parameters should be

determined experimentally in order to closely simulate a

given robot vision system. These parameters can be

determined by repeatedly taking pictures of the same object.

4.1.4. Digitized Images with Distortions

Figures 4.3 and 4.4 show a distorted isosceles triangle

and a distorted circle. The magnitudes of the distortions

also are given in the figures along with the images. One can

see the effects of blurring, rotation, and x-axis
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compression, which simulates the quality of images an actual

vision system might produce.

In Figure 4.4, note that the number of x-axis pixels is

46 and the number of y-axis pixels is 49, since the circle

is compressed along its x-axis.

4.2. Properties of the Objects in the Object Pool

Since our system recognizes objects by using the method

of feature extraction, the first task is to compute various

feature values for each object, and the second task is to

compute Mahalanobis distances among object classes in a

given feature space.

4.2.1. Average Feature Values and their Standard Deviations

Currently, there are 12 features employed in our

system. These features were defined in Section 3.3.1 and

stored in the feature pool. Feature values were computed for

24 variations of each object class. The average feature

values and their standard deviations, for 10 objects with a

grid size of 64x64, are shown in Table 4.4. The name of the

objects are shown in Table 4. 1 and the formulas for

computing the features are given in Table 3.1.

As shown in Table 4.4, some of the feature values for

higher order moments are near zero. This is expected, since

many of our objects are highly symmetrical. Moments are

useful to discriminate symmetrical objects from asymmetrical
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Obj Obj Obj Obj Obj

Fea
Dev

1
1

1.2560
0.0307

1.3570
0.0310

1.6310
0.0382

1.9430
0.0394

1.0900
0.0593

Fea
Dev

2
2

0. 8244
0.0378

0.5633
0.0362

0.5331
0.0438

0.2091
0.0463

0.9112
0.0608

Fea
Dev

3
3

0.6052
0.0752

0. 5408
0.0219

0.2345
0.0397

0.2286
0.0453

0.9928
0.0149

Fea
Dev

4
4

0.3948
0.0752

0.2904
0.0208

0.4629
0.0438

0.2879
0.0389

0.0072
0.0149

Fea
Dev

5
5

0. 0000
0.0000

0. 1689
0.0217

0.3026
0.0181

0.2811
0.0157

0.0000
0.0000

Fea
Dev

6
6

4.0530
0.0044

4.2490
0.0115

4.2960
0.0193

4.9090
0.0336

4.0090
0.0082

Fea
Dev

7
7

0.0205
0.0267

4.0260
0. 2707

2.2380
0.2790

18.0200
0. 5133

0.0193
0.0207

Fea
Dev

8
8

0.0350
0.0798

0.0321
0.0653

30.2900
2.5040

6.5110
1.5690

0.0461
0.0715

Fea
Dev

9
9

0.0049
0.0078

0.0066
0.0112

0. 2049
0.2094

0.4995
0.3182

0.0079
0.0144

Fea
Dev

10
10

0.0001
0.0005

0.0002
0.0010

0.6295
0.8856

1.0480
1. 1640

-0.0002

0.0005

Fea
Dev

11
11

-0.0001

0.0008
0.0063
0.0163

0.2731
0.3273

1.9540
1.3600

0.0001
0.0012

Fea
Dev

12
12

0.0000
0.0002

0.0001
0.0004

-0. 1017
0.2797

0.2791
0.2700

-0.0001

0.0007

Fea = Average feature value

Dev - ;tandard deviat ion

Table 4.4. Average feature values and corresponding standard

deviation for 10 objects.

grid size = 64x64
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Obj Obj 7 Obj 8 Obj 9 Obj 10

Fea
Dev

1
1

1.2210
0.0601

1.4250
0.0241

1.1320
0.0291

1.2910
0.0262

1.6890
0.0367

Fea
Dev

2
2

0.7477
0.0579

0.6611
0.0590

0.8838
0.0433

0.6596
0.0737

0.0560
0.0275

Fea
Dev

3
3

0.5808
0.0140

0.3973
0.0350

0.9830
0.0288

0.6263
0.0229

0.2388
0.0224

Fea
Dev

4
4

0.4129
0.0140

0.5353
0.0543

0.0170
0.0288

0.3514
0.0387

0.4521
0.0202

Fea
Dev

5
5

0.0000
0.0000

0.0674
0.0518

0.0000
0.0000

0.0223
0.0241

0.2393
0.0272

Fea
Dev

6
6

4.0920
0.0085

4. 1900
0.0163

4.0150
0.0061

4. 1460
0.0072

4.4690
0.0452

Fea
Dev

7
7

0.0277
0.0333

0.0176
0.0208

0.0535
0.0483

0.0436
0.0360

2.5510
0.3227

Fea
Dev

8
8

0.0340
0.0570

0.0183
0.0308

0.0246
0.0386

0.0210
0.0360

10.4300
1.5570

Fea
Dev

9
9

0.0108
0.0173

0.0093
0.0151

0.0145
0.0214

0.0074
0.0116

5.2980
1.4400

Fea
Dev

10
10

0.0001
0.0007

0.0001
0.0006

-0.0001

0.0006
0.0002
0.0004

38.6400
17.2700

Fea
Dev

11
11

0.0005
0.0021

-0.0001

0.0015
0.0010
0.0035

0.0006
0.0019

7.6300
2.4670

Fea
Dev

12
12

0.0003
0.0009

-0.0000

0.0008

-0.0003

0.0007
-0.0001

0.0002
14.7000
6.8600

Table 4.4. continued

ones. Note that all the moments (features 6 to 12) have non

zero values for our asymmetric object (Obj 10).
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4.2.2. Mahalanobis Distances between Object Classes

Given the computed feature values and standard

deviations, as shown in Table 4.4, Mahalanobis distances

were calculated by using Equation 2.6. Table 4.5 shows the

calculated results at a grid size of 64x64. All distances

were calculated for our 12-dimensional feature space.

Based on the probabilities shown in Table 3.3, a

distance greater than 2 means a successful recognition

greater than 95.50% and distance greater than 3 means a

correct recognition greater than 99.73%. One can see in

Table 4. 5 that most of the object pairs can be separated

easily. However, objects 5 (circle) and 8 (hexagon) are

difficult to discriminate, since the distance is only

0.9485. This seems reasonable, since a circle and a haxagon

do look alike.

In order to improve the discrimination ability for

certain object pairs, one needs to do one or both of the

following: (1) add new features that better discriminate

between them; however, this approach is beyond the scope of

current study, and (2) use a higher resolution device so

that the acccuracy of representation is improved. The effect

of resolution will be discussed shortly in Section 4.3.2.
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Obj 1 Obj 2 Obj 3 Obj 4 Obj 5

Obj 1 0.0000 20.2922 25.0717 46.0664 7.3146

Obj 2 20.2922 0.0000 14.5795 25.9531 25. 1828

Obj 3 25.0717 14.5795 0.0000 24.5178 29.6500

Obj 4 46.0664 25.9531 24.5178 0.0000 47.4236

Obj 5 7.3146 25. 1828 29.6500 47.4236 0.0000

Obj 6 3. 1850 17.7792 24.2398 43.8471 20.8400

Obj 7 7.9236 14.6707 15.4120 38.3823 16.6716

Obj 8 6.6886 23.0164 28.5858 46.8030 0.9485

Obj 9 8.2966 14.7062 18.4088 40.4302 15.0075

Obj 10 21.6234 15.6869 10. 1953 20.4255 31.3193

Obj 6 Obj 7 Obj 8 Obj 9 Obj 10

Obj 1 3. 1850 7.9236 6.6886 8.2966 21.6234

Obj 2 17.7792 14.6707 23.0164 14.7062 15.6869

Obj 3 24.2398 15.4120 28.5858 18.4088 10. 1953

Obj 4 43.8471 38.3823 46.8030 40.4302 20.4255

Obj 5 20.8400 16.6716 0.9485 15.0075 31.3198

Obj 6 0.0000 6.3767 14.3880 4. 1299 20.7021

Obj 7 6.3767 0.0000 14.8813 5.5470 15.2255

Obj 8 14.3880 14.8813 0.0000 13.5187 '27.8225

Obj 9 4. 1299 5.5470 13.5187 0.0000 18.2098

Obj 10 20.7021 15.2255 27.8225 18.2098 0.0000

Table 4.5. Mahalanobis distances for 10 object classes

with 12 features at grid size = 64x64.
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Note that an adequate distance between object classes

does not guarantee an adequate distance between a reference

object and an unknown at a randomly distorted state.

Recognizing this fact, one can do "image
averaging"

for

improved recognition accuracy. The trade off is a slow down

in recognition speed. This "image
averaging"

feature has not

been implemented in our system.

4.3. Selection of Reference Objects from the Object Pool

The goal of our system is to classify unknowns among

some predetermined reference objects using the method of

feature extraction. The effectiveness of the features

depends on the objects to be classified. As a result,

effective features need to be selected after the reference

objects are specified.

For each given shape recognition task, one begins by

selecting reference objects from the object pool. If a

desired object is not in the pool, the object should be

created by using the "Create and Store
Objects"

menu.

Table 4.6 shows a set of selected reference objects from

our object pool. These objects are used in the current

example to further describe our method. Note that the object

indices are re-numbered and are different from those in

Table 4. 1.
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Index Qb.ie.c_t_najoe

1 Square D
2 Right Triangle ^3

3 Circle O
4 Hexagon o
5 Asymmetric Shape ^

Table 4.6. Selected reference objects from our

object pool.

4.4. Effect of Resolution

Focusing on the above selected objects of which the

feature values and standard deviations are shown in Tables

4.7a, 4.7b and 4.7c, Mahalanobis distances are shown in

Table 4.8. The results are listed at 3 grid sizes, 64x64,

32x32, and 16x16 to show the effect of resolution.

Comparing Table 4.7a to Tables 4.7b and 4.7c, one can

see that the average feature values from one grid size to

another do not show much change, because our selected

features are independent of size. For instance, the value of

feature 1 for object 1 slightly changes from 1.2560 to

1.2310, when the grid size decreases from 64x64 to 16x16.
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Obj Obj Obj 3 Obj 4 Obj

Fea
Dev

1
1

1.2560
0.0307

1.9430
0.0394

1.0900
0.0593

1.1320
0.0291

1.6890
0.0367

Fea
Dev

2
2

0.8244
0.0378

0.2091
0.4630

0.9112
0.0608

0.8838
0.0433

0.0560
0.0275

Fea
Dev

3
3

0.6052
0.0752

0.2286
0.0453

0.9928
0.0149

0.9830
0.0288

0.2388
0.0224

Fea
Dev

4
4

0.3948
0.0752

0.2879
0.0389

0.0072
0.0149

0.0170
0.0288

0.4521
0.0202

Fea
Dev

5
5

0.0000
0.0000

0.2811
0.0157

0.0000
0.0000

0.0000
0.0000

0.2393
0.0272

Fea
Dev

6
6

4.0530
0.0044

4.9090
0.0336

4.0090
0.0082

4.0150
0.0061

4.4690
0.0452

Fea
Dev

7
7

0.0205
0.0267

18.0200
0.5133

0.0193
0.0207

0.0535
0.0483

2.5510
0.3227

Fea
Dev

8
8

0.0350
0.0798

6.5110
1.5690

0.0461
0.0715

0.0246
0.0386

10.4300
1.5570

Fea
Dev

9
9

0.0049
0.0078

0.4995
0.3182

0.0079
0.0144

0.0145
0.0214

5.2980
1.4400

Fea
Dev

10
10

0.0001
0.0005

1.0480
1. 1640

-0.0002

0.0005
-0.0001

0.0006
38.6400
17.2700

Fea
Dev

11
11

-0.0001

0.0008
1.9540
1.3600

0.0001
0.0012

0.0010
0.0035

7.6300
2.4670

Fea
Dev

12
12

0.0000
0.0002

0.2791
0.2700

-0.0001

0.0007
-0.0003

0.0007
14.7000
6.8600

Table 4.7a. Average feature values and corresponding

standard deviations for 5 objects.

grid size = 64x64
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Obj Ob. Obj 3 Obj Ob.

Fea
Dev

1
1

1.2580
0.0324

1.9680
0.0544

1. 1020
0.0614

1. 1400
0.0294

1.6890
0.0499

Fea
Dev

2
2

0.8256
0.0366

0.2221
0.0486

0.8906
0.0631

0.8675
0.0569

0.0907
0.0515

Fea
Dev

3
3

0.6076
0.0792

0.2072
0.0499

0.9703
0.0454

0.9768
0.0338

0.2420
0.0260

Fea
Dev

4
4

0.3924
0.0792

0.3012
0.0414

0.0297
0.0454

0.0232
0.0338

0.4478
0.0365

Fea
Dev

5
5

0.0000
0.0000

0.2810
0.0214

0.0000
0.0000

0.0000
0.0000

0.2348
0.0498

Fea
Dev

6
6

4.0560
0.0052

4.9180
0.0405

4.0140
0.0117

4.0170
0.0071

4.4980
0.0522

Fea
Dev

7
7

0.0436
0.0789

17.9400
0.7964

0.0385
0.0371

0.0451
0.0487

2.5550
0.3406

Fea
Dev

8
8

0.0202
0.0448

6.8950
1.5490

0.0907
0. 1299

0.0447
0.0649

11.6500
2.2520

Fea
Dev

9
9

0.0143
0.0315

0.6353
0.4070

0.0605
0. 1055

0.0293
0.0393

5.8130
1.6720

Fea
Dev

10
10

0.0002
0.0012

1.5650
1.6150

-0.0018

0.0077
-0.0004

0.0025
46.0600
22.9800

Fea
Dev

11
11

0.0032
0.0107

2.5130
1.7430

-0.0050

0.0141
0.0007
0.0054

8. 1120
2.5220

Fea
Dev

12
12

0.0002
0.0011

0.2489
0.4549

0.0010
0.0152

-0.0003

0.0028
20.6900
10.9000

Table 4.7b. Average feature values and corresponding

standard deviations for 5 objects.

grid size = 32x32
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Obj Obj 2 Obj Obj Obj 5

Fea
Dev

1
1

1.2310
0.0384

1.9930
0.0774

1. 1050
0.0707

1. 1460
0.0364

1.6680
0.0407

Fea
Dev

2
2

0.8262
0.0443

0.2450
0.0444

0.8969
0.0846

0.8441
0.0531

0. 1073
0.0419

Fea
Dev

3
3

0.6563
0.0904

0. 1923
0.0655

0.9416
0. 1094

0.9315
0.0849

0.2574
0.0300

Fea
Dev

4
4

0.3437
0.0904

0.2992
0.0588

0.0584
0. 1094

0.0685
0.0849

0.4463
0.0416

Fea
Dev

5
5

0.0000
0.0000

0.2949
0.0321

0.0000
0.0000

0.0000
0.0000

0.2162
0.0469

Fea
Dev

6
6

4.0590
0.0085

4.9470
0.0604

4.0220
0.0216

4.0290
0.0124

4.5040
0.0466

Fea
Dev

7
7

0.0494
0.0733

17.6600
0.9401

0.0144
0.0372

0. 1231
0.0861

2.2880
0.4617

Fea
Dev

8
8

0. 1033
0.2049

8.6910
3.7070

0. 1268
0.2265

0. 1318
0.2952

11.0800
2.4160

Fea
Dev

9
9

0.0293
0.0552

1.2690
1.0530

0.0468
0. 1124

0.0365
0.0710

4.8360
1.3010

Fea
Dev

10
10

0.0043
0.0174

5.8530
8.6980

0.0042
0.0189

0.0043
0.0151

33.2800
14.9700

Fea
Dev

11
11

0.0062
0.0132

5.0990
4.6150

0.0008
0.0068

-0.0001

0.0169
6.2820
2.2100

Fea
Dev

12
12

-0.0011

0.0061

0.8100
1.0900

-0.0038

0.0393
-0.0040

0.0268
13.5000
8.9230

Table 4.7c. Average feature values and corresponding

standard deviations for 5 objects.

grid size = 16x16

A smaller grid size, however, usually means a less

accurate representation of an object, which typically leads

to a larger deviation. As shown in Tables 4. 7 (a, b, c) the
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standard deviation of feature 1 for object 1 increases from

0.0307 to 0.0384 while grid size decreases from 64x64 to

16x16.

One also can see from Table 4.8 that Mahalanobis

distances increase with the increase in grid size. Judging

from Equation 2.6, this increase is mainly due to the

decrease in standard deviations.

Table 4.8 shows that the distance between object

classes 1 and 2 decreases from 46.0664 to 25.6095, when the

grid size decreases from 64x64 to 16x16. It seems that a low

resolution camera, 16x16, is more than adequate to

discriminate between these two object classes.

A lower resolution increases the speed of recognition.

As a rule of thumb, the recognition time is roughly

proportional to the number of pixels, so reduction of

resolution from 64x64 to 16x16 leads to a 16-fold increase

in the speed.

It is generally true that the higher the resolution is,

the more accurate the identification is. However, a higher

resolution means more expensive hardware and/or a slower

recognition speed. It is desired, therefore, to determine a

minimum but adequate resolution for a given task.

We believe that our system provides a useful tool for

determining a proper resolution for a given pair of object

classes.
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Obj 1

0. 0000

46.0664

7.3146

6.6886

21.6234

a. grid size = 64x64

Obj 2 Obj 3 Obj 4 Obj 5

21.6234

20.4255

31.3198

27.8225

0.0000

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

46.0664

0.0000

47.4236

46.8030

20.4255

7.3146

47.4236

0.0000

0.9485

31.3198

6.6886

46.8030

0.9485

0.0000

27.8225

Obj 1

0.0000

33. 1086

5. 1686

5.9454

16.7848

b. grid size = 32x32

Obj 2 Obj 3 Obj 4 Obj 5

16.7848

15.2541

19.5600

21.6939

0.0000

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

33. 1086

0.0000

33.4545

35. 1400

15.2541

5. 1686

33.4545

0.0000

0.6847

19. 5600

5.9454

35. 1400

0.6847

0.0000

21.6939

Obj 1

0.0000

25.6095

2.7226

2.9320

16. 1542

c. grid size = 16x16

Obj 2 Obj 3 Obj 4 Obj 5

16. 1542

12.5170

15.2012

17. 1716

0.0000

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

25.6095

0.0000

25.0509

25.7578

12.5170

2.7226

25.0509

0.0000

1.0601

15.2012

2.9320

25.7578

1.0601

0.0000

17.1716

Table 4.8. Mahalanobis distances with 12 features for

5 objects classes at 3 grid sizes.
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4.5. Selection of a Feature Subset

Once the reference objects are selected, the next step

is to select an effective feature subset.

We use two criteria to help make an intelligent

selection. One is to delete a redundant feature if the

correlation coefficient between a feature pair is near

unity. The other criterion is to choose the most

discriminating feature for each object pair when that

feature is used alone.

4.5.1. Elimination of Redundant Features

Table 4.9 shows the correlation coefficients for all

feature pairs involving the 5 selected reference object

classes. The coefficients were computed according to

Equation (3.3). The feature values of each selected object

were obtained from Table 4.7a,

If the coefficient for a feature pair is near unity, it

means that these two features are highly redundant in the

given object space. In our present study, if a feature pair

has a correlation coefficient greater than 0.95, which can

be re-set by the user, then one of these features will be

deleted.

75



Fea Fea 2 Fea Fea 4 Fea

Fea 1 1.0000 0.9270 0.9391 0.6297 0.9769
Fea 2 0.9270 1 . 0000 0.9285 0.6877 0.9694
Fea 3 0.9391 0.9285 1.0000 0.8563 0.9062
Fea 4 0.6297 0.6877 0.8563 1.0000 0.5716
Fea 5 0.9769 0.9694 0.9062 0.5716 1.0000
Fea 6 0.9801 0.8591 0.8572 0.4768 0.9541
Fea 7 0.8526 0.6161 0.6584 0.2380 0.7846
Fea 6 0. 6463 0. 9645 0. 8689 0.6577 0.9231
Fea S 0.4781 0.7706 0.6134 0.6139 0.6031
Fea 10 0.4210 0.7277 0.5687 0.5970 0.5498
Fea 11 0.6153 0.8652 0.7171 0.6480 0.7275
Fea 12 0.4139 0.7223 0.5630 0.5946 0.5432

Fea 6 Fea 7 Fea 8 Fea 9 Fea 10

Fea 1 0.9801 0.8526 0.8483 0.4781 0.4210
Fea 2 0.8591 0.6161 0.9845 0.7706 0.7277
Fea 3 0.8572 0.6584 0.8689 0.6134 0.5687
Fea 4 0.4768 0.2380 0.6577 0.6139 0.5970
Fea 5 0.9541 0.7846 0.9231 0.6031 0. 5498
Fea 6 1.0000 0.9323 0.7668 0.3389 0.2770
Fea 7 0.9323 1.0000 0.4858 0.0214 0.0865
Fea 8 0.7668 0.4858 1.0000 0.8634 0.8287
Fea 9 0.3389 0.0214 0.8634 1.0000 0.9979
Fea 10 0.2770 0.0865 0.8287 0.9979 1.0000

Fea 11 0.4907 0. 1454 0.9354 0.9860 0.9731
Fea 12 0.2694

Fea 11

0.0944

Fea 12

0.8243 0.9973 1 . 0000

Fea 1 0.6153 0.4139

Fea 2 0.8652 0.7223

Fea 3 0.7171 0.5630

Fea 4 0.6480 0.5946

Fea 5 0.7275 0.5432

Fea 6 0.4907 0.2694

Fea 7 0. 1454 0.0944

Fea 8 0.9354 0.8243

Fea 9 0.9860 0.9973

Fea 10 0.9731 1 . 0000

Fea 11 1 . 0000 0.9712

Fea 12 0.9712 1 . 0000

Table 4.9. Correlation coefficients between features.

grid size = 64x64
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As described in Section 3.3.2, the feature to be

deleted is determined by the overall discrimination ability.

The computed overall discrimination abilities of each

feature for the 5 selected object classes were computed

according to Equation (3.2). The results are listed in Table

4. 10.

Feature Overall discrimination ability

1 59. 1476

2 58.5136

3 72.8064

4 43.2413

5 81.0322

6 105.6837

7 139.8460

8 32.7623

9 18.7122

10 11.4993

11 15.2778

12 11.6080

Table 4. 10. Overall discrimination abilities of each

feature for the selected 5 object classes.
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Note that the above table by itself provides

information on the overall effectiveness of each feature for

the given object domain. One can see that feature 7 has the

best overall discrimination ability. Considering both

correlation coefficient of linear regression and the overall

discrimination ability, the decisions to delete a feature

were summarized by Equation (3.4).

One can see in Table 4.9 that the correlation

coefficient for features 9 and 11 is 0.9860. We thus can

delete one of the two without significantly losing

discrimination capability.

From Table 4.10, the overall discrimination ability for

feature 9 and feature 11 are 18.7122 and 15.2778,

respectively. Therefore, feature 11 was deleted based on

Equation (3.4).

The above practice was applied to all feature pairs.

After using our algorithm to eliminate redundant features,

only features 3, 4, 6, 7, and 9 were retained for

classification. The results are shown in Table 4.11 which

is, in fact, a condensed version of Table 4.7.
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Obj 1 Obj 2 Obj 3 Obj 4 Obj 5

Fea 3
Dev 3

0.
0.
6052
0752

0.2286
0.0453

0.9928
0.0149

0.9830
0.0288

0.
0.
,2388

,0224

Fea 4
Dev 4

0.
0.
3948
0752

0.2879
0.0389

0.0072
0.0149

0.0170
0.0288

0.
0.
4521
0202

Fea 6
Dev 6

4.
0.
0530
0044

4.9090
0.0336

4.0090
0.0082

4.0150
0.0061

4.
0.
4690
0452

Fea 7
Dev 7

0.
0.
0205
0267

18.0200
0.5133

0.0193
0.0207

0.0535
0.0483

2.
0.
5510
3227

Fea 9
Dev 9

0.
0.
0049
0178

0.4995
0.3182

0.0079
0.0144

0.0145
0.0214

5.
1.
2980
4400

Table 4.11. Feature values and deviations for

the selected features after removing

redundancy. grid size = 64x64

4.5.2. Selection of Features by Discrimination Ability

Our second criterion for selecting features is to pick

a feature with the highest discrimination ability for a pair

of object classes. The discrimination ability was computed

according to Equation (3. 1).

Table 4. 12 shows the discrimination ability for the

features from Table 4.11. One can see that, for

discriminating object classes 1 and 2, the discrimination

abilities of features 3, 4, 6, 7, 9 are 3.1251, 0.9369,

22.5679, 33.3343 and 1.5174, respectively. It is obvious

that feature 7 should be chosen to best discriminate between

them.
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In our system, a second best feature is added if the

best feature does not give a discrimination ability greater

than 2. For object classes 3 and 4, the discrimination

abilities of features 3, 4, 6, 7, 9 are 0.2244, 0.2255,

0.4204, 0.4957, 0.1836, respectively. Both features 7 and 6

were selected, since none of the five has a discrimination

ability greater than 2.

The above practice was applied to all pairs of object

classes. The selected features for each pair of object

classes are checked in Table 4.12. One sees that feature 7

is selected 5 times for objects pairs (1,2), (2,3), (2,4),

(2,5) and (3,4). This is consistent with the large overall

discrimination ability of feature 7 as shown in Table 4. 10.

For the present example, 4 features from Table 4.11

were selected. The properties of selected features, 3, 4, 6,

and 7, are shown in Table 4. 13.
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Feature 3
Obj 1 Obj 2 Obj 3 Obj 4 Obj 5

Obj 1 0.0000 3. 1251 4.3019 3.6316 3.7514
Obj 2 3. 1251 0.0000 12.7049 10. 1836 0. 1506
Obj 3 4.3019 12.7049 0.0000 0.2244 20.2091V
Obj 4 3.6316 10. 1836 0.2244 0.0000 14.5238^
Obj 5 3.7514 0. 1506 20.2091 14.5238 0.0000

Feature 4

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5

Obj 1 0.0000 0.9369 4.3024\/ 3.6316 0.6001
Obj 2 0.9369 0.0000 5.2242 4.0033 2.7774
Obj 3 4.3024 5.2242 0.0000 0.2255 12.6693
Obj 4 3.6316 4.0033 0.2255 0.0000 8.8705
Obj 5 0.6001 2.7774 12.6693 8.8705 0.0000

Feature 6

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5

Obj 1 0.0000 22.5679 3.5051 3.6336v/ 8.3922v/

Obj 2 22.5679 0.0000 21.5605 22.5484 5.5866

Obj 3 3.5051 21.5605 0.0000 0.4204v/ 8.6170

Obj 4 3.6336 22.5484 0.4204 0.0000 8.8520

Obj 5 8.3922 5.5866 8.6170 8.8520 0.0000

Feature 7
Obj Obj Obj Obj Ob.

Obj 1 0.0000 33.3343v/ 0.0245 0.4407 7.2431

Obj 2 33.3343 0.0000 33.7098\/ 31. 9904 v/ 18.5036v/

Obj 3 0.0245 33.7098 0.0000 0.4957v/ 7.3726

Obj 4 0.4407 31.9904 0.4957 0.0000 6.7313

Obj 5 7.2431 18.5036 7.3726 6.7313 0.0000

Feature 9
Obj 1 Obj 2 Obj 3 Obj 4 Obj 5

Obi 1 0.0000 1.5174 0. 1376 0.3294 3.6561

Obi 2 1.5174 0.0000 1.4782 1.4281 2.7292

Obj 3 0. 1376 1.4782 0.0000 0. 1836 3.6374

Obj 4 0.3294 1.4281 0. 1836 0.0000 3.6153

Obj 5 3.6561 2.7292 3.6374 3.6153 0.0000

Table 4.12. Discrimination abilities by each selected

feature for object class pairs.

grid size 64x64
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Obj 1 Obj 2 Obj 3 Obj 4 Ob.

Fea 3 0. 6052 0.2286 0.9928 0.9830 0.2388
Dev 3 0. 0752 0.0453 0.0149 0.0288 0.0224

Fea 4 0. 3948 0.2879 0.0072 0.0170 0.4521
Dev 4 0. 0752 0.0389 0.0149 0.0288 0.0202

Fea 6 4. 0530 4.9090 4.0090 4.0150 4.4690
Dev 6 0. 0044 0.0336 0.0082 0.0061 0.0452

Fea 7 0.,0205 18.0200 0.0193 0.0535 2.5510
Dev 7 0. 0267 0.5133 0.0207 0.0483 0.3227

Table 4.13. Feature values and deviations for

the final selected features.

grid size = 64x64

We also investigated the best feature subset for a

different object set. The objects included a square, a

rectangle, a right triangle, a circle in hexagon and an

asymmetric shape.

The remaining features after removing redundancy were

features 2, 4, 5, 6, 7 and 9. Among them, features 2, 6, and

7 were finally chosen, by judging their discrimination

abilities, to form the feature subset.

4.5.3. Mahalanobis Distances between Object Classes

Table 4. 14 lists Mahalanobis distances in a 4-

dimensional feature space using the features in Table 4.13.
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Obj 1 Obj 2 Obj 3 Obj 4 Obj 5

Obj 1 0.0000 40.3872 7.0216 6.3067 11.7185

Obj 2 40.3872 0.0000 42.3073 40.6393 19.5277

Obj 3 7.0216 42.3073 0. 0000 0.7237 26.4107

Obj 4 6.3067 40.6393 0.7237 0.0000 20.3297

Obj 5 11.7185 19.5277 26.4107 20.3297 0.0000

Table 4.14. Mahalanobis distances between object

classes in the 4-dimensional feature space.

Table 4.8a shows the corresponding Mahalanobis

distances but in the 12-dimensional feature space. Comparing

Table 4.8a with Table 4.14, one sees that the distance

between object classes 1 and 2 decreases slightly from

46.0664 to 40.3872, when the feature space reduces greatly

from 12 to 4.

This demonstrates that the recognition speed can be

considerably improved if a smaller but well selected feature

subset is employed. Roughly speaking, the recognition time

is proportional to the number of features. In the present

case, the time is reduced to about one third of the

original.

However, the distance from object 3 (circle) to object

4 (hexagon) is 0.7237. This short distance makes the

discrimination between circle and hexagon very difficult

and also not reliable. As shown in Table 4.8a, the distance

increases to only 0.9485 even when all 12 features are used.
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In such a case, one should by all means explore other

features which can better discriminate circle and hexagon.

4.6. Classification of Unknown Objects

In the preceding section, we have discussed Mahalanobis

distance between object classes. For unknown classification,

we need to determine the distance between an object class

and an unknown. Note that an object class is the average of

an object and its many distorted states. However, an unknown

is an object at a randomly distorted state. Sometimes, two

object classes, A and B, are well separated in a feature

space, but object class A and unknown B may not be well

separated. In such a case, image averaging can enhance

recognition accuracy.

4.6.1. Generation of an Unknown Object at a Randomly

Distorted State

Our computer program uses a random number generator to

determine the state of each distortion. Based on the random

numbers, blurring, change of size, x-axis compression and

rotation will be set either
"on"

or "off". Figures 4.5 to

4. 10 show the images of some unknown objects in their

randomly distorted states and the identifications made by

the system.
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4.6.2. Confidence Level on Identification

An unknown object will be identified with a reference

object if their Mahalanobis distance is the shortest among

the distances between the unknown and all reference objects.

However, the identification may be questionable if the next

nearest distance is only slightly longer.

This is why the next nearest distance and the

confidence level are also given along with the

identification in Figures 4.5 to 4.10. The confidence level

is defined by Equation 3.4.

In Figure 4.5, the triangle was correctly identified

with high confidence. In Figures 4.6 and 4.7, the asymmetric

shapes also were confidently identified at both high and low

resolutions. Note that the grid sizes for both reference

objects and unknown need to be the same for a fair

comparison.

In Figure 4.8, a washer, which was not in the selected

reference object set, was intentionally chosen to test the

system. The nearest reference object was a square, however,

with a long distance of 6.10. The system also warned the

user that the confidence level was low.

In Figure 4.9, a circle was mistakenly identified as

hexagon and the confidence level was low. this was due to a

short Mahalanobis distance between a circle object class and

a hexagon object class.
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Figure 4. 5.

Classification:

unknown object a right triangle

blurring by pixel relocation: +2 to -2

x-axis compression: no

o

rotation angle: 51

size change: no

The unknown object is identified as a right triangle with a

Mahanalobis distance of 1.66. The next nearest distance is

49.92 and the corresponding object is an asymmetric shape.

Confidence level for identification is high.
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Figure 4.6. unknown object asymmetric shape(64x64)

blurring by pixel relocation: +2 to -2

x-axis compression: no

rotation angle:
0

size change: -10%

Class if icatic-nj.

The unknown object is identified as an asymmetric shape with

a Mahanalobis distance of 0.58. The next nearest distance is

33.48 and the corresponding object is a right triangle.

Confidence level for identification is high.
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Figure 4.7,

C_Las.s_if_ic

unknown object asymmetric shape( 16x16)

blurring by pixel relocation: +2 to -2

x-axis compression: 5%

rotation angle:
51

size change: +10%

The unknown object is identified as an asymmetric shape with

a Mahanalobis distance of 1.97. The next nearest distance is

18.72 and the corresponding object is a right triangle.

Confidence level for identification is high.
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Figure 4.8 unknown object a washer

blurring by pixel relocation

x-axis compression:

rotation angle:

size change:

+2 to -2

5%

0

-10%

CJ^s_sJjicjiiorj_L

The unknown object is identified as a square with a

Mahanalobis distance of 6.10. The next nearest distance is

18.15 and the corresponding object is a nut (circle in

hexagon). Confidence level for identification is low.
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Figure 4.9. unknown object a circle

blurring by pixel relocation: +2 to -2

x-axis compression: 5%

rotation angle: o

size change: +10%

CJ.As^JLilc.atiQjai

The unknown object is identified as a hexagon with a

Mahanalobis distance of 0.43. The next nearest distance is

1.87 and the corresponding object is a circle. Confidence

level for identification is low.
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Figure 4. 10. unknown object a hexagon

blurring by pixel relocation: +2 to -2

x-axis compression: 5%

rotation angle:
51

size change: +10%

C_las_g_i f icat iom.

The unknown object is identified as a hexagon with a

Mahanalobis distance of 0.67. The next nearest distance is

1.41 and the corresponding object is a circle. Confidence

level for identification is low.
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In Figure 4. 10, a hexagon was correctly identified as a

haxagon but with a low confidence level. Note that an

unknown is at a randomly distorted state. As a result, in

cases like circle and hexagon, some identifications are

correct, but some others are not. However, the system always

warns the user about the danger of mis-identification by

indicating a low level of confidence.
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CHAPTER 5

CONCLUSION, FUTURE WORK, AND OTHER APPLICATIONS

We have successfully constructed a simulated shape

recognition system using the method of feature extraction.

We believe that the system is a useful tool to do

feasibility studies for someone who is interested in buying

robot vision equipment. The system also can serve as a

framework for future expansion and improvement.

5.1. Future Work

We are serious in comparing this simulated system with

an actual robot vision system. We would welcome someone who

wishes to test the system with optical and electronic

devices to capture images, do digitization and perform edge

extraction.

One should start by checking the validity of the

simulation of image distortions. One can repeatedly take

electronic pictures of the objects in the object pool at

various angles and camera-to-object distances. After -

obtaining the digitized and edge extracted images by

hardware, the system can take over from there to compute

feature values and standard deviations. Then one needs to

adjust the parameters for the controlled distortions

currently used by the system (Table 4.3), so that the

feature values and the standard deviations can be roughly

reproduced by our simulation method. If this can be done, it
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implies that our method of simulation is valid. If this can

not be done, further work is needed to identify sources of

distortion and develop ways to simulate them.

Another extension would be to write an interface

between an actual data acquisition device and the system.

The interface would enable the system to receive digitized

output directly from the hardware device, and perform all

the necessary data processing and classification tasks. The

system then would become an integral part of an actual robot

vision package. Simulation would no longer be needed.

One also could test the system in more complex

environment, such as dealing with printed characters, hand

written characters, Chinese characters, machines, machine

parts, people and landscapes. One needs to make sure that

the computer to be used has adequate memory to handle

complex objects.

The current system handles only binary images. One may

extend the system to color objects or many gray levels.

The present system deals with 2-D objects. Extending

our work to a 3-D environment would be useful. For 3-D

objects, three axes are needed for rotating object.

One may expand the feature pool by exploring additional

features that are independent of size and orientation. One

also may include size and/or orientation dependent features

in the feature pool for broader applications.

Currently, confidence levels for object identification

is qualitatively classified to high, average or low. It

94



would be nice to do some mathematical derivation, so that a

quantitative confidence level (e.g., 91%) can be given along

with each identification. Refering to Equation (3.4), one

should be able to calculate a precise confidence level based

on the Mahalanobis distances from unknown to the nearest

neighbor, Dx, and to the next nearest neighbor, Dz.

5.2. Other Applications

We believe that the system can become an inexpensive

educational tool to teach students the concept of

digitization, feature space, reduction of feature space,

classification, etc. The system will be able to generate

examples for abstract concept. The students also can work

with the system without knowledge of complex hardware.
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APPENDIX

Ten Undistorted Objects in the Object Pool
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2. A rectangular.
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