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A simulated spectrum of convectively generated

gravity waves: Propagation from the tropopause to

the mesopause and effects on the middle atmosphere
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Abstract. This work evaluates the interaction of a simulated spectrum of

convectively generated gravity waves with realistic middle atmosphere mean winds.

The wave spectrum is derived from the nonlinear convection model described by

Alezander et al. [1995] that simulated a two-dimensional midlatitude squall line.

This spectrum becomes input to a linear ray tracing model for evaluation of wave

propagation as a function of height through climatological background wind and

buoyancy frequency profiles. The energy defined by the spectrum as a function

of wavenumber and frequency is distributed spatially and temporally into wave

packets for the purpose of estimating wave amplitudes at the lower boundary of the

ray tracing model. A wavelet analysis provides an estimate of these wave packet

widths in space and time. Without this redistribution of energies into wave packets

the Fourier analysis alone inaccurately assumes the energy is evenly distributed

throughout the storm model domain. The growth with height of wave amplitudes

is derived from wave action flux conservation coupled to a convective instability

saturation condition. Mean flow accelerations and wave energy dissipation profiles

are derived from this analysis and compared to parameterized estimates of gravity

wave forcing, providing a measure of the importance of the storm source to global

gravity wave forcing. The results suggest that a single large convective storm

system like the simulated squall line could provide a significant fraction of the

zonal mean gravity wave forcing at some levels, particularly in the mesosphere.

The vertical distributions of mean flow acceleration and energy dissipation do not

much resemble the parameterized profiles in form because of the peculiarities of

the spectral properties of the waves from the storm source. The ray tracing model

developed herein provides a tool for examining the role of convectively generated

waves in middle atmosphere physics.

/'

1. Introduction

Gravity waves transport energy and momentum from

the troposphere to the middle atmosphere where, it is

widely recognized, they can have a profound effect on

the general circulation patterns, temperature structure,

and spatial distributions of mixing ratios of the atmo-

spheric gases. The importance of wave drag and diffu-

sion in the middle atmosphere was clearly demonstrated

in zonal mean model studies in the 1980s [e.g. Holton,

1982, 1983; Dunkerton, 1982; Garcia and Solomon,

1985] that utilized the gravity wave parameterization

developed by Lindzeu [1981]. Lindzen's parameteriza-

tion required assumptions about the phase speeds and

source distributions of gravity waves which are to date

still not well characterized. Holton's [1982] work, as well
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as that of Matsuno [1982], established the importance of

high phase speed waves to explain the observed mean

zonal wind structure and thereby stressed the impor-

tance of wave sources other than flow over topography.

These wave-driven processes are also important in

three-dimensional global circulation models where pa-

rameterization of gravity wave effects is complicated by

the models' sensitivity to the geographical and tempo-

ral distributions of wave sources. Planetary scale waves

can be resolved explicitly in these models, however the

effects of smaller-scale waves (of the order of 100 km

and less) will likely be treated only via parameterization

for some time to come. Orographically excited waves

have been successfully parameterized in such models

and have been shown to affect circulation in the tropo-

sphere as well as the middle atmosphere [Palmer et al.,

1986; McFarlane, 1987; Bacmeister, 1995]. Other wave

sources have been more difficult to characterize. Specif-

ically, waves excited by convective activity are likely

very important in the tropics and southern hemisphere

where there are few orographic wave sources, and con-
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vectionmaybea source of the high phase speed waves

known to be important in the mesosphere.

Recent modeling efforts reported by Fovell et al.

[1992], Holton and Durran [1993], and Alezander e_ al.

[1995] have described properties of vertically propagat-

ing waves generated by deep convection in the form of

a two-dimensional squall line. In the work of Alezar_der

et al. [1995; hereafter referred to as AHD] the spec-

tral properties of the waves in the stratosphere in their

simulation were characterized and compared to observa-

tions. They noted a strong response at high frequencies

(corresponding to periods of 8 min to 1 hour) and at

long vertical wavelengths (6-10 km), which show sim-

ilarity to observations of stratospheric motions above

convective sources [Larsen e_ al., 1982; Sato, 1993], and

which may be characteristic of waves associated with

deep convection. Additional modeling studies and ob-

servations will eventually clarify the generality of these

spectral characteristics.

In this work, the interaction of this spectrum of con-

vectively generated waves with realistic middle atmo-

sphere winds is examined via a linear ray tracing tech-

nique which uses conservation of wave action flux to

predict wave amplitudes as a function of height. Wave

interactions with the mean flow are included as satu-

ration effects when amplitudes exceed convective insta-

bility limits and via the filtering effects of critical level

absorption and wave reflection. This method is chosen

as a means of estimating the importance of the contri-

bution of waves from such a convective source to the

estimated global gravity wave forcing. It is unrealis-

tic to extend the domain of the nonlinear simulation of

AHD to the altitudes and horizontal distances required

to make this estimate. Durran [1995] also highlights

the difficulty in using traditional diagnostic methods for

evaluating gravity wave dissipation effects in a domain

of limited size. The approach here is to take the two-

dimensional power spectrum derived from the nonlin-

ear model (AHD) as input to a linear wave propagation

calculation. The power in this spectrum is distributed

into packets of finite width in horizontal distance, z,

and time, $, and the packet widths are estimated from a

wavelet analysis of the nonlinear model results. The lin-

ear and nonlinear resultsare testedfor consistencybe-

low 32-km altitudewhere the models overlap.The ray

tracingmodel isinmany ways simplerthan the three-

dimensionalmodels describedby Eckerrnann [1992]and

Mar_ and Echermann [1995] that were designed to

study global propagation characteristics over the full

range of possible gravity wave frequencies. For the spec-

trum of convectively generated waves considered here, a

number of simplifying assumptions are possible for the

purpose of estimating the mean flow forcing.

The results of the linear wave propagation include

estimates of the mean flow acceleration and energy dis-

sipation rates associated with the input wave spectrum

and specified climatological mean wind profiles. Com-

parison to the spectral gravity wave parameterization

of Fri_s and La [1993] for the same mean wind profiles

provides an estimate of the importance of the single

storm source to globalgravitywave forcingand also

givesinsightinto how the peculiarspectralcharacter-

isticsassociatedwith the convectivelygenerated waves

affectthe profileof wave drag and dissipation.The

method developed here can be used to compare future

simulationsto the midlatitude case of AHD and also

provides an avenue for testingsimpler parameteriza-

tionsofconvectivelygenerated waves againstthismore

complete spectraldescription.

The followingsectionbrieflyreviews the convection

simulation and determination of the two-dimensional

power spectrum describedby AHD. The method ofcon-

vertingpower spectraldensitytowave amplitude isalso

derived,includinga wavelet analysisof the nonlinear

model resultsto estimate wave energy packet dimen-

sions in space and time. This then establisheslower

boundary conditionsforthe linearray tracinganalysis

described in section3, which includes determinations

of wave amplitudes as a function of height as well as

effectson the mean state. Expressions for mean flow

accelerationand rateof wave energy dissipationare de-

rived.Section4 isdevoted to checking the linearprop-
agation model againstthe fullnonlinearmodel results

between 13 and 32 km where the two models overlap,

testingmany of the simplifyingassumptions in the lin-

ear model. In section5 the wave spectrum interaction

with realisticmean wind and buoyancy frequency pro-
filesisexamined and compared to the Frittsand Lu

[1993]parameterized resultsfor the same background

state.A concluding summary followsinsection6.

2. Determination of Gravity Wave

Amplitudes and Propagation

Characteristics

2.1. The Convection Simulation

The convectivelygenerated gravitywave spectrum in
thisanalysisisderivedfrom the resultsof a numerical

midlatitudesqualllinesimulationpreviouslydescribed

by AHD [Alezander etal.,1995].Some ofthe features

of the model willbe brieflydescribed here. For more

detailsthe reader isalso referredto previous applica-

tionsof the squalllinemodel describedby Fovelle$ al.

[1992] and Holton and Durran [1993].

The convection simulation from which the gravity

wave spectrum is derived is a two-dimensional, nonlin-

ear, compressible, nonhydrostatic squall line model. It

resolves a deep stratosphere layer, from the tropopause

at .._12 km up to 32 km altitude. The full model domain

is 840 km in the horizontal and 32 km in the vertical and

includes wave permeable boundaries at the sides and

top. The model reference frame translates eastward at

16 m s -1 to track the motion of the storm, keeping it in

the center of the domain. Winds in the stratosphere in

this model are constant in height at 16 m s -1, the same

as the reference frame translation speed, and so the

stratospheric waves produced by the storm are viewed

in their Uintrinsic" frame of reference (i.e., the observed

wave frequencies are the intrinsic frequencies). A rich
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Figure 1. Contours of vertical velocity in the stratospheric portion of the nonlinear convection

model. Contours are plotted at 0.5 m s -1 intervals. Dotted contours represent negative values.

(a) w(_, z) at _ = 5 hours. Horizontal lines represent surfaces of constant potential temperature

at 25 K intervals. The storm center, which is the main source region for these waves, lies in the

troposphere below the figure and is located at $ __ 420 kin. (b) w(_, $) at z = 30 km. The slopes

of surfaces of constant phase indicate the intrinsic phase speeds of the wave motions.

spectrum of gravity waves is generated in the strato-

sphere, as can be seen in Figure I. Figure la shows a

single time frame of vertical velocity contours and po-

tential temperature surfaces above 13 km. In Figure

lb, contours of w(z,_) at z = 30 km are shown. The

slope of the phase surfaces in Figure lb is an indication

of the separation east and west of storm center (at _ .._

420 kin) of eastward and westward propagating waves,

respectively, and points to the storm center region as

the location of the primary source of the wave energy.

A strong preference for forcing of westward propagat-

ing waves is observed in this and other similar simu-

lations due to a westward tilt with height of the main

tropospheric updraft and the westward propagation of

convection cells in the troposphere. These features have

been described in earlier work with this model [Fovell et

al., 1992; AHD], and have been observed in squall lines

in nature [e.g. Houze, 1993]. A spectral analysis of the

stratospheric waves was described by AHD and revealed

some distinctive spectral signatures which may be char-

acteristic of waves generated by deep convection. AHD

describe wave forcing mechanisms and their signatures

in the spectral response and also review similarities to

observations of wave motions above convective sources.

2.2. Fourier Spectral Analysis

The two-dimensional power spectrum in horizontal

wavenumber and intrinsic frequency P(/_, w) computed

from the simulation results of AHD will be used as lower

boundary input to the linear propagation analysis to

follow. The spectrum shown in Figure 2 separates

power into eastward and westward phase with positive

and negative frequencies, respectively. The power in

this spectrum defines wave energies at an altitude of

13 km. The superimposed white contour surrounds re-

gions of the spectrum with power greater than or equal

to 5 x 104(m/s)2(cycle/m)-1(cycle/s) -I. Regions out-

side this contour with power lessthan thisthreshold will

be excluded from the following analysis. The contour

includes over 93% of the total energy in the spectrum,

and spectral points outside this region are very likely

heavily contaminated by spectral bias from regions of

high power. Each pixel inside the white contour will

be treated as a monchomatic wave packet. The wave

amplitude can be derived from (I) the power spectral

density at that point, together with (2) the definition

of the wave packet width in time and space, and (3) an

estimate of power aliasing to other regions of the spcc-
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Figure 2. Two-dimensional power spectrum of the ver-

tical velocity field as a function of horizontal wavenum-

ber and intrinsic frequency. The spectrum is derived
from the two-dimensional Fourier transform of the field

w(z,L) like that shown in Figure lb. Spectra at each

altitude in the model have been averaged by using an

exp [-(z- 13 km)/H] weighting factor such that the

spectral power represents amplitudes at 13 km near the

tropopavse.

trum. Parameter (2) will be estimated from a wavelet

analysis of the vertical velocity field described in the

next section.

The power spectrum in Figure 2 resolves wavenum-

bets and frequencies,

n N=

k -- AzN., n : O, 1, ..., -_-

in N_

w - AtN_ n = O, 1,..., y

with Az = 1.5 kin, N_ = 256, AI : 2 min and Nt =

128. So pixel dimensions are Ak = 2.6 x 10 -s cycle

m -1 and Aw = 6.5 x 10 -s cycle s -1. Wave energy with

wnvenumbers and frequencies smaller than the mini-

mum nonzero values (k < Ak and w < Aw) is also

omitted from the linear propagation analysis but repre-

sents less than 0.2% of the total energy in the spectrum.

The power spectral density in Figure 2 can be re-

lated to the vertical velocity amplitude (in m s -1) if it

is assumed that a given pixel represents a wave mode

with the frequency and wavenumber associated with

that pixel. The two-dimensional power spectral density

Pk_ is given by

2AzAf,
Pk< - IWk< l (1)

N®N,

where Wk_, is the discrete Fourier transform of w(z,_)

at wavenumber k and frequency w. The power at (/c,w)

describes the mean square amplitude of the wave with

those characteristics averaged over the (z,_) domain,

Pk,, llAzN_atNt,= ½1A < 

or

Ak_ : [2Pk_A/cAw]X/l. (2)

This amplitude would be exactly the wave amplitude

if the assumptions (inherent in Fourier analysis) of sta-

tionarity throughout the (z, _) domain and periodicity
on the z and L intervals were both satisfied. On the con-

trary, both of these assumptions are violated, as can be

seen in Figure 1. There is significant spatial and tempo-

ral variation in the spectral properties. The waves can

be thought of as concentrated in wave packets in both

space and time; i.e., the areal extent of a given mode

over the (z,t) domain is limited in both dimensions.

These effects make the amplitude predicted from (2)

smaller than the true amplitude at any point in (z,_).

The power Pk_ in equation (2) must be adjusted by two

multiplicative factors:

1. The first factor is equal to the areal extent of

the whole domain divided by the energy-weighted areal

extent of the wave packet. This factor arises because the

spectrum gives a measure of the mean square amplitude

in the domain, not the amplitude in the wave packet.

2. The wave packet envelope can be thought of as

a taper function which creates bias in the spectrum,

reducing the value of the power at the peaks in the

spectrum and spreading that power over a broad range

of wavelengths. For a rectangular wave packet the bias

would be described by the Fejer kernel [Percival and

Walden, 1993, Section 6.4]. The power at the central

peak of the kernel is proportional to the length of the

window, so this second factor is also proportional to

the ratio of the domain area to the envelope area, just

as in factor 1. The proportionality constant will vary

between 1 and 2 depending on the shape of the wave

packet envelope. A value of 1 corresponding to a rect-

angular shape is assumed for simplicity.

Thus if the wave packets were rectangular in shape,

and covered an area n=nt within the entire domain (area

N_Nt), then the wave amplitude within that packet be-

comes

= , , (3)

with one factor of (N, Nt/n_nt) from each of factors

1 and 2. This equation will be used to estimate am-

plitudes at the lower boundary for the purpose of pre-

dicting breaking levels for each mode in the ray tracing

analysis. Parseval's theorem, however, demands that

the total power in the spectrum equal the power in the

original signal integrated over the (z, _) domain,
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Figure 3. An example of the wavelet basis functions

centered in the analysis domain (z, _). Peaks and valleys

are plotted with solid and dotted contours, respectively.

This is the 96-km wavelength and 32-min period case.

The panels along the top and side show cross sections

in z and t through the center.

P(k, @= A=A  )12. (4)

Therefore the wave packet amplitude adjustments in

(3) must be removed prior to evaluating any net ef-
fects of the waves on the mean flow to conserve en-

ergy. Wave packet dimensions will be estimated via the

wavelet analysis described below.

2.3. Wavelet Analysis

Wavelet analysis is a spectral analysis technique that

retains information about the spatial/temporal location

of variations in the spectral power. Without this infor-

mation the amplitudes derived solely from the Fourier

analysis cannot be used to predict realistic breaking lev-

els. For an energy-conserving orthogonal wavelet set,

the spatial/temporal information is gained at the ex-

pense of spectral resolution: Given a 128-point time

array, the number of resolved frequencies in the wavelet

spectrum is only log2(128) -- 7, compared to the 64

nonzero frequencies obtained from a Fourier analysis.

Therefore wavelet analysis cannot replace the Fourier

analysis for our purposes but can provide a rough esti-

mate of the spatial/temporal extent of a given wavenum-

ber/frequency signal and thus an estimate of an effective

wave packet width.

The 512×128 array of w(z,_) with 1.5-km and 2-

min resolution, as shown in Figure lb, is examined

via wavelet analysis. A two-dimensional, orthogonal

wavelet transform is applied and an energy spectrum

computed as the square of the resulting wavelet coef-

ficients. Figure 3 shows an example of the wavelet

basis functions employed here. The wavelet transform

utilizes the set of Daubechies wavelet filters with 20

coefficients summarized in the Numerical Recipes sub-

routines "pwtset" and "pwt" [Press e_ aL, 1993, sec.

13.10]. The set of basis functions employed in the anal-

ysis consists of translations and dilations/contractions

of the function shown in Figure 3. The wavelengths

and periods resolved in the analysis are summari_.ed in

Table 1, as well as the fractional energy contained in

each of these modes. For each point in Table 1, a corre-

sponding array of energy as a function of (z,_) can be

produced. The resolutions in z and t of each energy ar-

ray are equal to the wavelength and period of the mode,

respectively. Four examples are shown in Figure 4 for

the four modes containing the largest fractional energy.

These modes are also highlighted in boldface in Table

1. Together these four modes comprise 64% of the total

energy in the spectrum. Note that the left and right

halves of the figure display properties of the westward

and eastward propagating waves, respectively. The con-

tours describe how energy for the resolved mode with

wavelength and period (A=,T) is distributed in (z,$).

When these figures are compared to Figure lb, it can

be seen that the wavelet analysis describes how energy

in a given spectral mode is localized in (z, $).

Table 1. Percent Energy in the Wavelet Spectrum as a Function of Hori2ontal

Wavelength and Period

As, km

T, min 768 384 192 98 48 24 12 6 3

256 0.ii <O.Ol 0.01 0.03 0.04 0.06 0.02 <O.Ol <0.01

128 0.04 <0.01 0.02 0.05 0.06 0.08 0.03 <0.01 <0.01

64 0.04 0.05 0.20 1.50 1.73 0.44 0.07 0.01 <0.01

32 0.02 0.04 0.20 1.46 9.46 6.01 1.33 0.08 0.04

16 <0.01 <0.01 0.02 0.17 4.41 15.83 10.98 0.33 <0.01

8 <0.01 <0.01 <0.01 0.02 0.24 5.52 29.16 5.47 0.05

4 <0.01 <0.01 <0.01 0.02 0.07 0.20 1.25 2.77 0.12
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Figure 4. Energy distributions in (z, t) from the wavelet analysis for the four modes in boldface

in Table 1. These four modes contain the largest fractional energies in the wavelet spectrum

(Table 1). Maps like these show how spectral energy at a given (k,w) is distributed in (z,t).
Comparison to Figure lb shows how the wavelet analysis captures the spatial/temporal variability

in the spectral modes. The contours label energy distribution as percent of maximum at 10%
intervals.

Spatially,Figure 4 shows that energy tends to be

tightlyconstrained within narrow regionsof z. The

span ofthe distributioninz can alsobe seen toroughly

vary with the wavelength ofthe mode. The relationship

between the energy distributionin time and the wave

period isnot so obvious. To develop an objectivees-

timate of wave packet widths in space and time, the

followingmethod was appliedto each energy distribu-

tion in Table I (likethose shown in Figure 4). (Note,

however, that the energy arraysrepresentingthe longest

resolvedperiod and wavelength (top row and firstcol-

umn ofTable 1)are omitted because these arraysonly

resolvea singlepoint in t and z,respectively,and con-

tain very littleenergy anyway.) East and west halves

ofthe domain are analyzed separatelyto separateeast-

ward and westward propagating modes.

To estimate equivalentpacket width inz, the energy

density for each mode Eke(z, _) is summed over time:

=

where i and j are dummy indices representing the dis-

crete grid points in the wavelet energy arrays. The wave

packet width zwp is then estimated as the width of a

box whose length is equal to the maximum energy in

E_(z_) and whose area is the total energy in the mode,
or

Figure 5 illustrates this definition of wave packet width.

The equivalent width zwp is plotted versus wavelength

in Figure 6a. An energy weighted least squares straight

line fit is computed and overplotted as the solid line

in Figure 6a. The correlation coefficient is 0.91, with

slope = 1.24 + 0.06 and intercept = 27 + 2 km. Fits

to eastward and westward propagating modes were not

significantly different, so both are included in Figure

6. The dashed lines show the 95% confidence limits to

the weighted linear fit. The dotted line represents the

resolution of the wavelet analysis. These packet widths
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Figure 5. Illustration of the definition of wave packet

width. The vertical axis is energy per unit distance,

and the horizontal axis is distance. Packet widths zwp

are determined as the width of a box (dotted line)

whose height is the maximum of the energy distribu-

tion and whose area is the total energy in the mode

(k,w). This width is approximately equal to the full

width at half maximum of a Gaussian shaped packet

with the same amplitude (dashed line). The cosine en-

velope with wavelength equal to Irzwp (solid line) also

encloses the same area and is used to reconstruct the

wind and temperature fields at a given height as in Fig-

ures 7 and 17.

are fairly narrow compared to the wavelength of the

wave they enclose, casting some doubt on the use of

the simple oscillatory form assumed in z to compute

derivatives in the linear equations, i.e., D/Sz = ik. In

section 4 the linear analysis will be tested against the

full nonlinear model below 32 km where they overlap,

and the linear treatment in fact produces quite realistic

results.

An exactly analogous procedure was performed to de-

termine wave packet widths in time, twp, that are plot-

ted in Figure 6b along with the weighted least squares

straight line fit and 95% confidence limits. The cor-

relation coefficient is again 0.91 with slope equal to

1.37 + 0.06 and intercept equal to 0.50 4- 0.02 hours.

Modes with periods beyond 2 hours are weighted quite

low and do not affect the fit, but there is indication of an

upper bound to the wave packet width of ...2.5-3 hours

for periods longer than an hour. An upper limit of 3

hours for the wave packet width in time is then chosen

as a modification to the straight line fit in Figure 6b.

These results are used to define the amplitude cor-

rection factor in (3):

7t.. $w P
- zwp = 1.24A= + 27 km (5)

N= N=A=

nt tW P

twp = 1.37T + 0.50 hours (6)
N, N, At

where Az is wavelength in kilometers, and T is wave

period in hours. (Note also that these correction fac-

tors cannot exceed unity, a value which would indicate

a wave packet width equal to the size of the domain.)

Table 2 lists values of the correction factor NxNt/n, nt

as a function of wavelength and period. Modes con-

taining less than .01% of the spectral energy have been

omitted. With these correction factors and equation (3)

the maximum vertical velocity amplitude at z =13 km

for any single mode predicted from the power spectrum

(Figure 2) is 1.8 m s -1. These amplitude corrections are

applied for the purpose of determining breaking levels

and wave saturation.

3. Linear Wave Propagation With

Saturation

The following analysis is designed to study the ver-

tical propagation of waves produced in the nonlinear

squall line model to altitudes much greater than the

current top at 32 km, into the upper stratosphere, meso-

sphere, and lower thermosphere. The difficulties in ex-
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Figure 6. Equivalent wave packet widths in (a) z and (b) t, derived from the wavelet analysis

plotted as a function of wavelength and period respectively. The result for each mode in Table

1 is represented by a plus symbol. Solid lines show the energy-weighted least squares straight

line fits to the wave packet results, which have high correlation coefficients equal to 0.91. (Note

from Table 1 that many of the modes contain very little energy.) Dashed lines show the 95%

confidence limits on these fits, and the dotted line in each panel indicates the resolution limit

of the wavelet analysis. The fits define simple relationships between wave packet widths and

frequency and wavenumber of the wave which will be used in subsequent analysis.
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Table 2. Wave Packet Correction Factor (N, Nt)/(n,n¢) as a Function

of Horizontal Wavelength and Period

2u, km

T, rnin 768 384 192 96 48 24 12 6 3

256 1.0 1.9 3.5 6.0 9.1 12.3

128 1.0 3.6 6.6 11.1 16.9 22.9

64 1.7 3.3 6.3 11.4 19.3 29.4 39.9 48.5

32 2.7 5.3 10.0 18.2 30.8 46.9 83.6 77.3

16 14.3 25.9 43.8 66.7 90.4 110.0

8 32.9 55.5 84.6 114.6 139.4

4 37.9 64.0 97.6 132.3 160.9

86.7

156.2

180.4

tending the mesoscale simulation to study wave-mean

flow interactions at these altitudes were described in the

introduction. The linear propagation analysis derived

here can be used to estimate the effects of the convec-

tively generated waves on the mean flow for realistic

middle atmosphere winds, and it also provides a means

of comparing the nonlinear simulation results to re_nt

observations at altitudes near the mesopause [Swenson

and Mende, 1994; Taylor et al., 1995].

Each point in the power spectrum, P(k, w), in Figure

2 is assumed to describe the amplitude of a monochro-

matic wave A_(k,w), at 13 km altitude, and centered

at z = 420 km at the center of the storm. Note that

the frequencies in Figure 2 are intrinsic frequencies at

the lower boundary of the linear analysis (z = 13 kin),

where the mean wind speed is set to 16 m s-1 to match

conditions in the nonlinear model from which Figure 2

was derived. The power to amplitude conversion is de-

scribed by equations (3), (4), (5) and (6). Linear grav-

ity wave theory and the polarization relations [Gossard

and Hooke, 1975, pp. 97-100] relate this vertical veloc-

ity amplitude to the total wave energy per unit density

E [Fritts and Vangandt, 1993],

E : N' 4' (7)

where N is the buoyancy frequency and w is the intrin-

sic frequency. Similarly, the square of the horizontal

velocity amplitude A S can also be related to E and A_,

Aau= 1-_-_ E: _-5--1 A_. (8)

Each wave will follow a ray path, (X(z)), described by

Ligh_hill [1978, sec. 4.6] as

z

ray
0

the slope along the ray is defined by the direction of

energy propagation relative to a stationary reference

f_Tle,

d-) V(z) + 0 /0k (10)
-_z ,_ : O_lOm '

where U(z) is the mean wind and (k, m) is the wavenum-

ber vector. The linear nonhydrostatic dispersion rela-

tion can be written as

-t-Nk

- (k, + m,)l/, - +Ncos o, (11)

where 8 is the angle at which lines of constant phase lie

from the vertical. Equation (11) assumes that w' >>

f' and rn' >> (2H)-' (f is the Coriolis parameter; H

is density scale height). The effects of rotation could

ecome important'when the waves are very near their

critical levels. Marks and Eckermann [1995] point out

the importance of the density scale height term on the

prediction of turning point altitudes; however, for the

spectrum considered in this work, neither of these ef-

fects is important in estimating the mean flow forcing

(see section 5). Differentiation of (11) with respect to

k and m, and substitution into (10), yields

,o, = T- -sec o csco - tan O. 02)

In general, U, N, and 0 all vary with height. This ex-

pression describes the slope of the ray path as a function

of height and with a simple numerical integration using

the trapezoidal rule will define the ray path of the wave.

Note that the sign convention used here is w > 0 (6 < 0)

for eastward intrinsic phase speeds, w < 0 (6 > 0) for

waves with westward intrinsic phase speeds, and k pos-

itive definite, which is different from that of Lighthill

and accounts for the sign differences in this derivation.

The upper sign, then, in these equations refers to east-

ward and the lower to westward propagating waves in
the frame of the storm.

Two conditions on the intrinsic frequency define the

maximum height to which waves can propagate:

1. Where the wave phase speed equals the mean wind

speed the intrinsic frequency w --* 0, 6 _ T90 °, and the

wave will be absorbed there. This level is traditionally
referred to as the critical level.
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2. Where the intrinsicfrequency, w --* N, and

cos(O) --*1, the verticalwavenumber, m -_ O. So-
lutionsabove this levelhave m imaginary,and so the

wave undergoes totalinternalreflection.In the case

of nonzero curvature in the background wind U(z) the

solutionscan theoreticallybe modified to permit prop-

agationthrough thislevelifthe conditionw = N occurs

very near an inflectionpoint in the mean wind profile.

This situationisrare enough to neglect,so itwillbe

treated as a simple reflectionand such levelswillbe

referredto as turning points.

The ray path integrationforeach wave istaken only

up to the leveljust below the firstcriticallevelor turn-

ing point.At and above that heightthe wave energy is

setto zero.Below the criticallevelorturningpoint,and

in the absence of dissipation,the wave amplitude will

change with height according to conservationof wave

actionfluxalong a ray [Lighthill,1978,p. 331]:

pEcg, _ const,
_J

where p is density,and cg. = Ow/Om isthe vertical

component of the group velocity.With (7) thiscan be
rewritteninterms ofthe verticalvelocityamplitude to

describethe change inA_ with height,

p (la)

The zero subscriptrefersto the lower boundary value.

At some altitudethispredictedamplitude willgrow to

the point where the wave would become unstable.Here

the convectiveinstabilitycriterionisused todetermine

thiswave breaking level,and the wave amplitude above

that height ismaintained at or below thisinstability

limit.This isthe traditionalsaturationtheory,reviewed

by Frit_s[1984].At the breakinglevelthe totalEulerian

parcelvelocityexceeds the ground relativephase speed,
and lineartheory breaks down. Dewan and Good [1986]

derivethe instabilitycriterionfor the verticalvelocity,

_j2

A_ < --
-- m2'

which aftersubstitutionof(11)to eliminatethe vertical

wavenumber can be writtenas

_2

_<k, 1] (i4)

The breaking level of the wave is defined as that level

where the amplitude equals or exceeds this saturation

limit. Above that level, wave amplitudes will be mod-

ified as necessary by condition (14), and (13) is then

taken to describe the linear growth in amplitude from

one level(subscriptzero)to the next. Waves that arere-
flectedbefore reachingthe breaking levelare discarded

and willhave no net effecton the mean state.Ifsatura-

tion were to occur below the turning point,the wave

would contribute to the mean state interactiononly

between the breaking leveland the turning point,al-

though this situation never occurs in the cases consid-

ered here.

The saturation condition (14) implies a certain shape

of the power spectrum as a function of vertical wavenum-

bcr, m. VanZandt [1982] and many other authors since

have described the universality of the shape of the corre-

sponding horizontal velocity power spectrum P_,(rn) in

observations, which follows a power law approximately

proportional to m -s. For the vertical velocity the ana-

log to equation (2) for the vertical wavenumber power

spectrum and (14) imply the saturated power spectral

density,

Po(m)- _
(Am) 2m2Am

where Am is the spectral bandwidth. The linear disper-

sion relation (11) simplifies in the hydrostatic approxi-

mation (m 2 >> k 2) to

N2k2
W 2 __

m2 '

which is a good approximation in the short vertical

wavelength "tail" of the spectrum where saturation oc-

curs. Substitution then gives

N_k 2

m_(m)- 2re'Am" (15)

The analogous expression for the saturated horizontal

velocity power spectrum was derived by Dewan and

Good [1986] and, with the definition of the vertical ve-

locity power spectrum (analogous to (2)), can be writ-

ten as

pu(m ) _ 1A2u N2 (16)
(Am) -- 2m2Am"

Note, however, that unlike the Dewan and Good

[1986] analysis, no separate assumption about the band-

width is made here to determine the shape of the sat-

urated spectrum as a function of vertical wavenumber,

m. The bandwidth, Am, in this case, is dictated by the

resolution (A/c, Aw) of the power spectrum (Figure 2)

used to define a mode in this analysis. The hydrostatic

dispersion relation implies

m, (17)
Am = Trot Nk

with Ak and Aw fixed constants in this case. There-

fore the Dewan and Good [1986] assumption, Am o¢ m,

will only apply in those regions of the spectrum where

the first term on the right-hand side of (17) dominates.

More generally, the saturated spectra in these calcula-

tions will follow P_(m) c< m -s to m -s and P,,(m) oc

m -s to m -4. Numerous spectral observations of hor-

izontal wind fluctuations show that a P_(m) cx m -s

spectral shape is ubiquitous in the middle atmosphere

[ VanZand$, 1982; Smith et al., 1987]. This observed

power law relationship and the associated amplitude

limits have been attributed to the process of satura-

tion. The spectra produced in this model are roughly

consistent with observations but do not provide any new
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insightsintotheoriginoftheobservedspectralfeatures.
AnexampleofthesaturatedP,_(rn) spectrum produced
in this model will be shown in section 5.

3.1. Energy, Momentum, and Wave Action

Fluxes

Wave amplitudes derived from equations (13) and

(14) can be used to compute the fluxes of energy and

momentum associated with the convectively generated

waves. These relationships have been derived by Fritts

and VanZandt [1993] and reproduced here in slightly

different form, in terms of the information contained in

the power spectrum (Figure 2). By using equations (7)

and (11), energy flux per unit density can be written as

w(N 2 )1/2F_ =cg E= ±_ -_--1 A_. (18)

Momentum flux per unit density is computed as the z-

and t-averaged product of horizontal and vertical veloc-

ity perturbations, _'_, and with (8) becomes

- -+5 (19)

These expression differ from those of Fritts and Van-

Zandt in the neglect of rotation effects (f = 0) and in

that no "anisotropy factor" appears here because (18)

and (19) describe a single wave mode rather than a full

wave spectrum. Also unlike the work of Fritts and Van-

Zandt, no assumptions about the shape of the spectrum

are made to integrate these expressions over all frequen-

cies and wavenumbers. Instead the integration is per-

formed by summing over the individual points in the

spectrum. This method allows the spectrum from our

peculiar storm source to be free to take any shape. The

Fritts and VanZandt model is instead intended to cap-

ture the more general properties of middle atmosphere

waves.

An expression for wave action flux in terms of the

same variables can also be derived using equations (7)

and (11),

E (N2 )l/2A_ (20)FA = c, = -1 --Z-

Equations (18), (19), and (20) describe fluxes associ-

ated with a single wave mode defined by (k, w). Before

computing net effects of the full spectrum of waves, the

amplitude adjustments previously applied in (3) for the

purpose of predicting breaking levels and saturation ef-

fects must first be removed. This amounts to dividing

the amplitudes by the correction factors (N,N_/n=nt),

or

Fpb" -4 Fph" \ N, N, ] k_"

The same factor must also be applied to the energy

and wave action fluxes before any net effects can be

computed.

3.2. Wave Interactions With the Mean State

The fluxes derived above can be used to infer the

effects of wave dissipation on the mean state. A vertical

gradient in the momentum flux (19) implies a drag force

per unit mass on the mean flow U:

1 0 (_Fp) (22)
D= -- -ficgz

if the momentum flux is averaged over a suitably large

hot±zonal domain. (_ is the basic state density profile.)

Integration over the spectrum

gives the net zonal drag on the mean flow, averaged over

a distance of 384 km and a time interval of 4 hours, cor-

responding to the averaging over the full (z, t) domain

of the original spectrum.

Durran [1995] underscores the difficulty in using (22)

to describe the momentum budget in numerical models

with a limited horizontal domain. In particular, contri-

butions to the full nonlinear momentum budget due to

differences in the upstream and downstream values of

(pu 2+p) are significant. The net mean flow acceleration

associated with breaking mountain waves in his model is

spread over very large distances away from the region

containing the largest wave perturbations. The same

difficulties arise in evaluating the momentum budget in
the nonlinear storm model.

With this in mind, the mean flow effects derived from

(22) in the linear analysis described here are further nor-

malized to represent an average over the circumference

of the earth at a latitude of 40 o and over 1 day of time.

The result given in m s-1 day-1 represents the zonally

averaged drag exerted on the mean flow, and averaged

over a day's time, due to one storm active for a period

of 4 hours. This normalization also allows more direct

comparison of these results to global parameterizations

of gravity wave drag.

Gravity wave dissipation also leads to transfer of en-

ergy to the mean flow. The energy dissipation rate can

be derived from conservation of wave action flux. By

defining the wave action per unit density A = E/w and

the associated flux of A, F A = A%., then

0 0

0 (pA) = (23)

Note that both sides of (23) are zero in the absence

of wave dissipation. Solving for the energy dissipation

rate, e,

OE -w c9

e= 0_ -- p 8z(PFA) (24)

describes the rate of energy transfer from the waves to

the mean flow along a ray and with equation (20) can be

computed readily from the linear analysis. Analogous

to the net zonal drag calculation, contributions from in-

dividual modes are summed to compute the net energy
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dissipationrateandnormalizedasdescribedabove.So
theresultsthengiveninm2 s -3 represent the zonally

averaged rate of energy dissipation to the mean state,

averaged over a day's time, due to waves produced by

a single storm active over a 4-hour period.

4. Comparison of Nonlinear and Linear

Models

As a test of the validity of the method and assump-

tions within the analysis described in sections 2 and

3, comparisons between these linear wave propagation

calculations and the full nonlinear model between 13-

and 32-kin altitude are presented in this section. Ver-

tical velocity w(z), momentum flux profiles, and the

power spectrum versus vertical wavenumber P_ (m) are

each computed from the linear model for comparison to

the full nonlinear results. Ray paths and breaking level

predictions from the linear model are also examined for

qualitative agreement with the nonlinear model results.

4.1. Reconstruction of the Vertical Velocity w(z)

By using only the power spectrum (Figure 2) and the

results of the linear wave propagation analysis, realiza-

tions of the field w(z) at selected heights can be recon-

structed and compared to instantaneous distributions

of w(z) in the nonlinear model. These reconstructions

represent properties averaged in time. The comparison

provides a test of the derived wave packet widths in z,

as well as the overall amplitudes implied by the wave

packet width adjustments in z.

The ray tracing analysis provides the location of each

point in the spectrum X(z, k_, ovi) via equations (9) and

(12). Ray paths in a stratosphere with constant 16 m

s -1 winds, like those in the nonlinear simulation, are

straight lines and form a simple fan pattern emanat-

ing from the central source region. The fan pattern

appearance is similar to the pattern observable in the

nonlinear model, but the time dependence of the wave

forcing, especially evident in the eastward propagating

waves (see Figure lb), is not captured in this analysis.

The ray location at a specified altitude is taken as the

central locus of a packet of wave energy with amplitude

determined by wave action flux conservation/saturation

(equations (13) and (14)). The energy in the packet is

then distributed in z within a half-cosine envelope with

wavelength rzwp. This envelope was illustrated in Fig-

ure 5 and has the same amplitude and total energy of

the square wave packet with width zwp. Each mode

is then renormalized by multiplication of the tempo-

ral width factor given by (6), returning the power back

to time-averaged values. The bias factor used to es-

timate the true power at the peaks in the spectrum

(N®Nt/n=n_) is also removed before the contributions

from each spectral mode are summed to produce pro-

files of w(z) shown in Figure 7 for an altitude of 30
km. Since the sum of the contributions from each mode

may depend strongly on the phase of the wave within

each wave packet, the phase is randomized before the
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Figure 7. Reconstructions of the vertical velocity dis-

tribution w(x) at z--30 km from the spectral input and

linear wave propagation analysis. (a)-(d) Different real-

izations of the field created by selecting different phase

randomizations for each wave mode contributing to the
total. The mean flow U=O m s -1 in these calculations

so that results are shown in the storm-relative frame for

comparison to the nonlinear model (Figure 8).

sum is computed. Four different realizations of the field

w(z) are presented in Figures 7a-Td, each computed

with a different random number sequence to determine

the phase randomization. Figures 8a-8d show four real-

izations of the nonlinear model w(x) at 30 km. Figures

T and 8 show similar amplitudes and similar variations

as a function of x. The similarities suggest that the

wave packet width in z is approximately correct and

that the computed ray paths are capturing the trajec-

tories of the wave energy packets fairly well (despite the

many simplifying assumptions like the point source ap-

proximation at 13 km and the time-averaging effect of

using the power spectrum as input). Similar compar-

isons at 20 km (not shown) demonstrate that the growth

of wave amplitude with height is being accurately sim-

ulated by the linear calculation; however, the distribu-

tions in z appear less similar to the nonlinear model at

this altitude much closer to the prescribed source (at

13 km), presumably because of the inaccuracy of the

point-source approximation.

4.2. Momentum Flux Profiles

Time- and z-averaged profiles of momentum flux can

also be computed from the linear wave propagation

analysis and compared to the nonlinear simulation. The

nonlinear results are averaged over 4 hours and -6400

km from the central source region, with east and west

halves of the domain averaged separately. The results

are shown in Figure 9a. Momentum flux in the lin-

ear model can be calculated from equation (19), and

contributions from each mode summed after removal of

the wave packet and bias adjustments (21). Where ray

paths extend beyond 4-400 km from the source, those

waves do not contribute to the average for the purpose
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Figure 8. Vertical velocity distribution w(z) at z=30

km from the nonlinear convection simulation. (a)-(d)

Four times (3.03, 3.53, 6.03, and 4.87 hours) selected
randomly for comparison to the four reconstructions

in Figure 7. The comparison shows very similar am-

plitudes, as well as similarities in the distribution of

horizontal wavelength in z. This comparison provides

a check on the computed ray paths and on the wave

packet widths in the linear analysis.

of comparison to the nonlinear model. Westward and

eastward propagating modes are averaged separately

and overplotted in Figure 9a as heavy lines. The lin-

ear and nonlinear results are very similar at z > 15

km, suggesting the momentum in the vertically propa-

gating waves is well represented by the linear spectral

model. At lower altitudes the nonlinear model shows

an abrupt decrease in magnitude from the tropopause

to 15 km in the westward average. This may be an

indication of wave dissipation in the nonlinear model

at these altitudes, where a thin layer of shear develops

that is not considered in the linear comparison. The

very low frequency waves not resolved in the spectrum

may also be contributing to the domain-averaged mo-
mentum flux at these lower altitudes in the nonlinear

model. Nonetheless, Figure 9a suggests the flux to the

upper stratosphere and mesosphere is well characterized

by the linear approximation.

A further test of the linear analysis is shown in Fig-

ure 9b. The thin lines again show momentum fluxes in

a nonlinear simulation identical to that of AHID, except

for the inclusion of strong shear equal to -2 m s-i km -i

in the stratospheric winds above 13 km. The strato-

spheric shear dramatically alters the vertically propa-

gating waves but has no discernible effect on the de-

velopment of the storm. The heavy lines in Figure 9b

display the momentum flux profiles predicted from the

original wave spectrum (Figure 2) and the linear wave

propagation analysis through a background wind with

shear identical to the nonlinear model. The linear and

nonlinear momentum flux profiles are very similar in

both magnitude and form. Differences are compara-

ble to the no shear case in Figure 9a. Predicted ray

paths also compare quite well to the nonlinear result

(not shown). The comparison lends further credence to

the linear wave treatment, even in this case with fairly

strong background shear.

4.3. Reconstruction of the Vertical Wavenumber

Power Spectrum

As a further test of the linear model assumptions the

spectrum P_(rn) can be computed from the spectrum

in Figure 2, P_(k,w), with the help of the linear grav-

ity wave dispersion relation (11). The result can be

compared to the spectrum computed directly from the

vertical velocity field in the nonlinear simulation with-

out stratospheric shear. That spectrum, described by

AHD is reproduced in Figure 10 and compared to the

linear model reconstruction.

For the reconstruction the value of rn at each point

in the P(k,w) spectrum is computed from (11). The
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Figure 9. Profiles of momentum flux p0u--w averaged in

z and L Thin lines show profiles averaged west (solid)
and east (dashed) of storm center from the nonlinear

convection simulation. Heavy lines show the same quan-

tities reconstructed from the spectral input with the re-

sults of the linear ray tracing model. (a) Comparison of

the AHD model and the linear analysis. (b) Compari-

son to a nonlinear simulation identical to AHD except
with -2 m s -1 km -i shear in the stratosphere above 13

km. The thin lines are derived from the same spectral

input as in Figure 9a but are now affected by the strong
background shear.
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Figure 10. Power spectrum of the verticalvelocity

as a function of verticalwavenumber P_o(m). Thin
linesshow spectracomputed directlyfrom the nonlinear

convection simulation(AHD), while heavy linesshow

P_ (rn)reconstructedfrom the spectralinput (Figure2)
by usinglineargravitywave theory.This isthe no-shear
case.The solidand dashed linesrepresentthe spectrum
ofwaves west and east ofstorm center,respectively.

power at each point P(k,w) is then binned in a verti-

cal wavenumber array, identical to that in the original

spectrum:

n N_
- n = O,1,...,-- - i

N, Az 2

where N_ = 128, and Az = 148 m (AHD). Power falling

into each bin is integrated over k and w:

= Z e (k(m),,,,(m))AkA ,

P(m) is the resulting spectrum overplotted in Figure

10. The similarity of the result to the nonlinear model

spectrum reflects the accuracy of applying linear gravity

wave theory to these motions. It also suggests that the _"

errors associated with truncating the power spectrum at

Pmir, are small but evident as an absence of power in the N

low-energy tail of the reconstructed P_o(m) spectrum.

5. Wave Interactions With Realistic

Background Wind Profiles

With wave properties obtained from the nonlinear

convection simulation, the linear ray tracing and wave

action conservation model can predict the behavior of

these vertically propagating waves through climatolog-

ical background wind and buoyancy frequency profiles.

The CIRA [Fleming et al., 1990] model at 40°N lati-

tude provides background state profiles for this analy-

sis. Profiles for April and June monthly averages are

chosen to illustrate the nature of the wave-mean flow

interactions.

5.1. Breaking Levels and Critical Level Filtering

Associated With Variable Background Winds

The intrinsic frequency in the linear dispersion rela-

tion (11) will vary with height when there is shear in the

background wind as w = wo - kU(z), so in the presence

of shear, vertically propagating waves may find critical

levels as described in section 3. This Doppler shifting

also affects wave amplitude growth, breaking levels, and

saturation of the waves via the frequency dependences

in equations (13) and (14).

Figures lla and llb illustrate some of these effects

in the linear model. The solid lines represent climato-

logical wind profiles for April and June. Symbols mark

the ground-relative phase speeds of the waves in the

spectrum along the abcissa. Dot symbols mark turning

point altitudes where waves are reflected as the magni-

tude of their intrinsic frequency reaches the local buoy-
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Figure 11. Zonal winds, breaking levels, and turn-

ing points for (a) April and (b) June, with background
states defined by the CIRA model at 40°N latitude.

Solid lines are zonal wind profiles (U). Plus symbols

mark breaking levels as a function of ground-relative

phase speed (cffi) for each wave mode. Dots denote turn-

ing points. Critical levels are not explicitly shown but
occur at altitudes where cffi = U. Wave modes con-

tribute to the mean flow forcing between their breaking

and critical levels.
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ancyfrequency.Wave reflection tends to occur in re-

gions where the background shear causes growth in the

intrinsic wave frequency. For the climatological winds

considered here, none of these modes saturate below

their reflection levels, so they are discarded from fur-

ther analysis, having no net effect on the background

state. Plus symbols mark breaking level altitudes as

a function of phase speed. Wave breaking tends to oc-

cur where the background shear causes the intrinsic fre-

quency to shrink in magnitude. If the shear is strong,

as in the June case in the stratosphere, the breaking

level tends to appear just below the critical level where

w -4 0. This also tends to be true in the stratosphere

where wave amplitudes predicted from wave action con-

servation (13) have not grown large enough to saturate

(14) until their intrinsic frequencies become very small.

In the much rarer atmosphere in the mesosphere, waves

more often break well below any critical level and so

contribute far more energy and momentum to the mean

state forcing via the effects of saturation. Wave criti-

cal levels are not explicity shown but occur where the

ground-relative phase speed matches the speed of the

background wind.

5.2. Saturation Effects on the Power Spectrum

Versus Vertical Wavenumber

The effects of saturation on the shape of the horizon-

tal velocity perturbation power spectrum versus vertical

wavenumber have been described by numerous authors

[Dewar_ and Good, 1986; Smith et al., 1987; Fritts and

VanZandt, 1993] and have been offered as an explana-

tion for the ubiquitous observations of a power curve

with a shape proportional to m -s as described in sec-

tion 3. Fritts and VanZaudt [1993] describe this satu-

rated spectrum as

Pu(m) - (p+ 1) g 220 m3 (25)

with p = _. This theory also explains the nearly con-

stant amplitude of the spectrum with height despite the

large changes in density from the troposphere to the

thermosphere. In regions where waves are saturating,

the linear wave propagation model developed here dis-

plays characteristics similar to the theory and to spec-

tral observations.

The region between _20 and 30 km in the June case

(Figure llb) provides an example. At these altitudes,

waves with phase speeds between _ -20 and 0 m s -1

break, and their intrinsic frequencies shrink rapidly to-

ward zero as the waves approach their critical levels.

Alternatively, waves with phase speeds larger than 16

m s -1 are Doppler shifted to higher frequency. The

effect of the shear on the vertical wavenumber spec-

trum is shown in Figure 12. The thin line shows the

original spectrum, Pu(m), at 13-km altitude. Waves

with phase speeds of <16 m s -1 are Doppler shifted

to higher vertical wavenumbers and saturate. The east-

ward propagating waves with phase speeds of > 16 m s- 1

are Doppler shifted to lower m and grow in amplitude

106 , , ,

105 "',

__ 103 \'_' ",

_ lo 2

o_ 101 ',. I"

',\

100 ,........ J \

100 t0 1

VERTICALWAVELENGTH(kin)

Figure 12. Saturation effects on the horizontal veloc-

ity power spectrum P_,(rn). The thin line shows the

input wave spectrum at 13 km including both east-

ward and westward propagating waves. The heavy solid

line shows the "saturated spectrum" between 20 and

30 km in the June case. Eastward propagating waves

are Doppler shifted to long Az and grown in amplitude,

while westward waves get shifted to short A, and satu-

rate. The dashed line is the theoretical curve, equation

(25).

as they propagate vertically. The saturated spectrum

averaged between 20 and 30 km is shown as the thick

solid line in Figure 12, and the theoretical saturation

limit (25) is plotted as a dashed line. The spectrum is

noisy, since it is computed as a sum of the discrete set

of modes, but approximately follows an 17_ -3 to m -4

power law, as expected from equations (16) and (17),

and the amplitude is similar to that given by the the-

ory (25). (Note that variations in wave packet travel

times associated with variations in group velocity are

neglected in these calculations.) It should be empha-

sized that the fit of the P_,(m) spectrum in this model to

the saturation theory (25) is a direct result of the spec-

tral treatment (17) coupled to the imposed saturation

condition (16). This result provides no new insight into

the physical mechanisms responsible for the observed

m -3 power law. It has been suggested that wave-w_ve

interactions in fact produce the observed spectral shape

[Weinstock, 1990; Hines, 1991], and these have been ne-

glected in the present model. Figure 12 shows, however,

that the linear spectral model with saturation described

here is at least not inconsistent with the observations.

5.3. Zonal Drag and Dissipation Rates

Wave drag and dissipation rates for the April and

June cases are shown in Figures 13 and 14. The

rates plotted represent the contribution to the mean

flow acceleration or wave energy dissipation rate result-

ing from the single storm of 4-hour duration averaged

over the latitude circle at 40°N and over a day's time.

Also shown for referenceare the parameterizationre-

sultsfrom Frittsand Lu [1993]plotted at one-tenth

magnitude asdashed lines.In both figures,lowerpanels"

displaystratosphericaltitudesand upper panels show
mesospheric altitudes.
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Figure 13. Zonal mean drag force per unit mass on the

zonal wind from the convectively generated wave spec-

trum (solid lines). The dashed lines show the Fr/tts and

Iu [1993] parameterization at one tenth the magnitude

for comparison. Upper panels show mesozpheric alti-

tudes, while lower panels show the stratospheric results

at finer scale.

The storm forcing is not very similar in form to the

parameterization. These high-frequency waves, forced

in the upper troposphere, have only weak effects in the

lower stratosphere. In the more ratified upper strato-

sphere and mesosphere their effects can be substantial.

The storm-generated wave effects dwindle in the lower

thermosphere: Most of the original spectrum has been

reflected or absorbed at critical levels below these alti-

tudes.

In the June case, stratospheric shear in the mean

winds eliminates much of the spectrum carrying nega-

tive momentum flux (waves with cz < 16 m s-l). These

waves are absorbed at critical levels in the stratosphere

(Figure lib). The critical level absorption, however,

contributes little to the mean flow forcing (Figures 13

and 14), because as the intrinsic frequency approaches

zero at the critical level, so the wave energy also goes to

zero, conserving wave action flux. Wave saturation due

to the density effect has a far greater effect on the mean

state. In the mesosphere, in this case, waves carry-

ing eastward momentum flux (cz > 16 m s -1) saturate

well below their critical levels and deposit substantial

momentum and energy at these levels. The Fritts and

Lu parameterization predicts a peak drag of .-.100 m

s -1 day -1 at 85 km in general agreement with Holton's

[1982] original summer soltice estimate. The storm drag

peaks at nearly 40 m s-1 day- _ and so is a substantial

fraction of the zonal mean in the upper mesosphere.

In April the shear is weaker, and the storm-generated

waves create drag of opposite sign as that of Fritts and

Lu in the mesosphere. Referring to Figure 11a, the

waves that are breaking above 60 km have eastward

phase speeds, so they produce an eastward drag force.

The parameterized drag, on the other hand, has some

tendency to oppose the mean wind regardless of such

phase speed preferences.

The largest uncertainty in these results lies in the de-

termination of wave packet widths that influence where

the waves break. To evaluate this uncertainty, wave

packet widths defined by the 95% confidence limits on

the straight line fits in Figure 6 are alternately sub-

stituted for equations (5) and (6), and the wave/mean
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Figure 14. Wave energy dissipation rates from the

convectively generated wave spectrum (solid lines) are

compared to one tenth the magnitude of the Fritts and

Lu [1993] parameterization (dashed lines).
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Figure 15. The effect of uncertainty in the wave energy

packet widths on the mean flow acceleration. Solid lines

are the same as those in Figure 14. Dashed lines show

the effect of packet widths defined by the upper limit

fits shown in Figure 6. Dot-dashed lines show effects of

the lower limits.

v

N

April
100 '''''''_' ''''''

9O

80 I;

70r60
50 ...............

0.00 0.02 0.04 0.06 0.08

Dissipation Rate (m2s-_)

April

601 .... , .... , .... , ....

501 _

/

i'

_ 40
E

v

N

3O

2O

10 .... _ .... i .... _ ....

0.00 0.05 0.10 0.15 0.20

Dissipation Rote (10 -_ m2s-3)

E
.x
v

N

June

100 ' ''' ''''''' ''' '

90

7O

60

50 ....... _,,,,,,,

0.00 0.02 0.04 0.06 0.08

Dissipation Rote (m2s-_)

June

60 ._1.., .... , ....

5O

40

30

2O

10 .... , ..............

0.00 0.05 0.10 0.15 0.20

Dissipation Rate (10 .4 m2s -s)

N

Figure 16. The effect of uncertainty in the wave en-

ergy packet widths on the energy dissipation rate pro-

file. Solid lines are the same as those in Figure 15.

Dashed lines show the effect of packet widths defined

by the upper limit fits shown in Figure 6. Dot-dashed

lines show effects of the lower limits.

interaction is recomputed. The results are shown in

Figures 15 and 16. Note that these changes do not

result in a simple scaling of the profiles in Figures 13

and 14. Instead the forcing is redistributed in z. The

changes affect the breaking levels of the waves but not

the net energy and momentum they carry at the lower

boundary, which are fixed by the integrated power in

the input spectrum. The changes can be significant at

some altitudes but do not affect the overall conclusions.

Still this uncertainty underscores the need for caution

in the quantiative use of the forcing profiles derived in

this analysis.

5.4. Mesopause Perturbations

Figure 17 shows estimates of temperature perturba-

tions at the mesopause constructed in a manner anal-

ogous to the vertical velocities in Figure 7. Tempera-

ture perturbations are derived from the wind perturba-

tions via the polarization relations [Gossard and Hooke,

1975] and the ideal gas equation of state. Here, z = 0

April Mesopouse

 °Io

_" -10

-2O_3o[ v. V- -

-1500 -1000 -500 0 500 1000

x (k_)

June Mesopouse

23°Ib

,o°I
-20
-30

1500

-1500 -1000 -500 0 500 1000

(k=)
1500

Figure 17. Mesopause temperature perturbation
reconstructions, 6T(z), shown as percent of the

mesopause temperature for the (a) April and (b) June
cases.



ALEXANDER: PROPAGATION OF CONVECTIVELY GENERATED GRAVITY WAVES 1587

represents the location of the wave source specified at

13 kin. Filtering of the westward propagating waves

by wind shear is particularly evident in the June case,

where there is an absence of wave perturbations west of

the storm source. Amplitudes to the east of the source

are limited by saturation in this region, where positive

shear in the zonal wind is present for both the April and

June cases. Peak perturbations are approximately 10-

15% in the April case, and 20-30% for June. Vertical

wavelengths at the mesopause for these waves cluster in

the 5- to 20-km range for April, 10- to 30-km for June.

These are large perturbations, and they would be read-

ily visible in observations of the OH airglow like those

reported by Swenson and Mende [1994] and Taylor et

al. [1995]. A pattern of increasing horizontal wave-

length with increasing distance from the source region
is a common feature of these calculations and is con-

sistent with the aircraft-based observations reported by

Swenson and Mende [1994] in the vicinity of a Pacific

storm system. Radiative damping, not included in this

analysis, might reduce the amplitude of the perturba-

tions derived here. Rough calculations using the scale

dependent damping rates of Fels [1984] suggest that am-

plitudes in the layer between 55 and 85 km would be

reduced by only 1% or less over most of the spectrum,

but a few of the modes may be significantly damped

(~ lo%).

6. Summary and Conclusions

This paper describes a technique for evaluating the ef-

fects of simulated convectively generated gravity waves

on the middle atmosphere. The method employs linear

gravity wave theory in a ray tracing calculation from

the tropopause to the lower thermosphere. Conserva-

tion of wave action ilux predicts wave amplitude growth

with height along the rays, and a saturation condition

derived from the convective instability criterion is em-

ployed to predict breaking levels and limits to the am-

plitude growth.

In the work of AHD an analysis of the gravity wave

spectrum observed above the deep convection in their

squall line simulation established that some of the defin-

ing characteristics of the spectrum result directly from

the wave-forcing mechanisms active in the model and

that some of these characteristics have also been seen in

ground-based observations of motions above deep con-

vective storms. The spectrum of simulated waves above

the storm AHD describe provides the lower boundary

input to the ray tracing model. Input wave amplitudes

as a function of frequency and horizontal wavenumber

are determined by combining the results of Fourier and

wavelet spectral analysis techniques. The Fourier anal-

ysis provides a high-resolution two-dimensional spec-

trum of wave amplitudes as a function of frequency

and wavenumber, but these amplitudes are averaged

over the entire spatial/temporal interval of the analy-

sis. Since the wave modes observed in the convection

simulation are not uniformly present in space and time,

an estimate of the distribution of wave energy is pro-

vided by the spatial and temporal information retained

in an orthogonal wavelet analysis, although at greatly

reduced spectral resolution. This information on the

distribution in (z,t) of the spectral energy E(k,w) is

cast into an estimate of the wave energy packet widths

in space and time and then used to adjust the am-

plitudes in the power spectrum derived from Fourier

analysis to represent local, rather than averaged, val-

ues. The adjusted amplitudes allow realistic estimates

of wave breaking levels in the ray tracing calculation;

however, the wave packet adjustments are removed be-

fore evaluation of any net wave/mean state interactions

to properly conserve energy. The model is tested for

consistency with the full nonlinear simulation below 32

kin, where they overlap.

This ray tracing model is subsequently used to ex-

amine the effects of realistic mean wind profiles on the

convectively generated gravity wave spectrum. The ef-

fects of variable buoyancy frequency are also included.

Critical level absorption, wave reflection, and the ef-

fects of Doppler shifting and saturation on the power

spectrum versus vertical wavenumber are all treated in

fairly realistic manner and produce results consistent

with observations and theory.

The results are cast in terms of the drag force per unit

mass on the mean flow and wave energy dissipation rate

and compared to the Fritt$ and Lu [1993] parameteri-

ration of gravity wave effects. The comparison suggests

that single large storm systems could contribute signif-

icant fractions of estimated zonal mean wave forcing at

some altitudes, particularly in the mesosphere. Further

theoretical work on gravity waves generated by deep

convection will establish the generality of these conclu-

sions.

This model may also be usefulin assessingrelation-

ships between storm generated waves and observations

of gravity wave induced brightness variations in the high

altitude airglow such as those obtained during the re-

cent ALOHA 93 campaign and reported by Swensor_

and Meade [1994]. Predicted temperature fluctuations

at mesopause altitudes derived from this theoretical

analysis would be easily detectable in such OH airglow

observations, and some of the characteristics of waves

associated with the Pacific storm in the observations

are qualitatively matched in these theoretical results.

The model developed here also provides a means of

comparing other convectively generated gravity wave

simulations and may allow the assessment of the rela-

tionship between general characteristics of convectively

generated waves and their global effects on the middle

atmosphere. It can also be used to test simpler parame-

terizations of convectively generated waves against cal-

culations with more detailed spectral information such

as the example in this work.
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