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SUMMARY

The main goal of oil reservoir management is to provide more efficient, cost-effective and environmentally
safer production of oil from reservoirs. Numerical simulations can aid in the design and implementation
of optimal production strategies. However, traditional simulation-based approaches to optimizing reservoir
management are rapidly overwhelmed by data volume when large numbers of realizations are sought using

detailed geologic descriptions. In this paper, we describe a software architecture to facilitate large-scale
simulation studies, involving ensembles of long-running simulations and analysis of vast volumes of output
data. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main goal of oil reservoir management is to provide more efficient, cost-effective and

environmentally safer production of oil from reservoirs. Implementing effective oil and gas production

requires optimized placement of wells in a reservoir. A production management environment

(see Figure 1) involves accurate characterization of the reservoir and management strategies that

involve interactions between data, reservoir models, and human evaluation. In this setting, a good

understanding and monitoring of changing fluid and rock properties in the reservoir is necessary for

the effective design and evaluation of management strategies. Despite technological advances, however,

operators still have at best a partial knowledge of critical parameters, such as rock permeability,

which govern production rates; as a result, a key problem in production management environments

is incorporating geologic uncertainty while maintaining operational flexibility.

Combining numerical reservoir models with geological measurements (obtained from either seismic

simulations or sensors embedded in reservoirs that dynamically monitor changes in fluid and rock

properties) can aid in the design and implementation of optimal production strategies. In that case, the

optimization process involves several steps:

(1) simulate production via reservoir modeling;

(2) detect and track changes in reservoir properties by acquiring seismic data (through field

measurements or seismic data simulations);

(3) revise the reservoir model by imaging and inversion of output from seismic data simulations.

Figure 2 illustrates the overall optimization process. Oil reservoir simulations are executed using

environment values (e.g. permeability of rocks, initial values of oil and gas pressures) and placements

of production and injection wells. The datasets generated by the simulations can be analyzed to forecast

production. The datasets can also be processed to generate input for seismic data simulations to

track changes in rock properties over time. Analysis of seismic datasets (e.g. using seismic imaging

algorithms) can reveal how the geophysical characteristics of the reservoir change over short and long

periods of time. The data can also be converted into input to the oil reservoir simulators for additional

reservoir simulations, with potentially different well placements.

As stated earlier, one challenging problem in the overall process is incorporating geological

uncertainty. An approach to address this issue is to simulate alternative production strategies (number,

type, timing and location of wells) applied to multiple realizations of multiple geostatistical models.

In a typical study, a scientist runs an ensemble of simulations to study the effects of varying oil reservoir

properties (e.g. permeability, oil/water ratio, etc.) over a long period of time. This approach is highly

data-driven. Choosing the next set of simulations to be performed requires analysis of data from earlier

simulations.

Another major problem is the enormity of data volumes to be handled. Large-scale, complex models

(several hundreds of thousands of unknowns) often involve multiphase, multicomponent flow, and

require the use of distributed and parallel machines. With the help of large PC clusters and high-

performance parallel computers, even for relatively coarse descriptions of reservoirs, performing series

of simulations can lead to very large volumes of output data. Similarly, seismic simulations can

generate large amounts of data. For example, downhole geophysical sensors in the field and ocean

bottom seismic measurements are episodic to track fluid changes. However, per episode, these involve

a large number (e.g. hundreds to thousands) of detectors and large numbers of controlled sources
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Figure 1. A production management environment.

of energy to excite the medium generating waves that probe the reservoir. These data are collected at

various time intervals. Thus, seismic simulators that model typical three-dimensional seismic field data

can generate simulation output that is terabytes in size. As a result, traditional simulation approaches

are overwhelmed by the vast volumes of data that need to be queried and analyzed.

In this work, we develop a software system that is designed to support: (1) accurate and efficient

discretization methods for reservoir and geophysical simulations; (2) efficient storage and processing

of simulation output on distributed, disk-based active storage systems‡ to rapidly handle ad-hoc queries

and data product generation; and (3) techniques for assimilating, analyzing, and interpreting very large

and diverse data. We describe the components of the software system and describe the implementation

‡PC clusters built from low-cost, commodity items are increasingly becoming widely used. With high-capacity, commodity
disks, they create active storage clusters that enhance a scientist’s ability to store large-scale scientific data. The low
cost/performance ratio of such systems makes them attractive platforms for interactive data analysis applications. We refer
to them as active storage because not only do they provide a platform for data storage and retrieval, but also some application-
specific processing can be carried out on the system.
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Figure 2. Well management and production optimization loop using numerical models.

of several data analysis scenarios. We present performance results for the data analysis scenarios and

for the system components.

In Section 2, we describe the overall system architecture and the individual components of the system

in greater detail. Section 3 presents a number of data analysis scenarios and describes how seismic

and oil reservoir simulations are coupled to each other. An experimental evaluation of the system

components is described in Section 4. Section 5 presents an overview of the related work.

2. AN INTEGRATED SYSTEM FOR OIL RESERVOIR MANAGEMENT

We propose an integrated simulation system (Figure 3) to support large-scale studies for oil production

optimization on distributed collections of PC compute and active storage clusters. This system consists

of three main subsystems.
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Figure 3. Overall system architecture. The system consists of three main components: oil reservoir simulators,
seismic data simulators, and data management and manipulation tools. The specific software components used
in this paper are indicated in parentheses in each box. These components are described in detail in Section 2.
The data analysis applications (i.e. economic evaluation, bypassed oil, representative realization, and seismic
imaging) implemented in this paper using the data management and manipulation tools are also shown in the

figure. These applications are described in Section 3.

(1) A simulation framework that supports multiple physical models and algorithms for the solution

of multiphase flow and transport problems in porous media (oil reservoir simulators).

(2) A simulator for modeling controlled source seismic measurements and the response of the

reservoir to those measurements (seismic data simulators).

(3) A component-based framework for storage and processing of simulation datasets in a distributed

environment (data management and manipulation tools).

An architecture of the integrated simulation system is shown in Figure 3. The simulation tools are

used to simulate alternative production strategies for a large number of geostatistical realizations and to

model subsurface material properties and changes in properties. Output from these simulators is stored

on distributed collections of disk-based storage systems for interactive data analysis. In this system,

the coupling of seismic simulators and oil reservoir simulators is done through data management

and manipulation tools. Output from seismic simulations and oil reservoir simulations is stored and

managed by the data management tools. Seismic data simulation tools query and process the datasets
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generated by oil reservoir simulations to generate input data and parameter values. Similarly, oil

reservoir simulations access the subsets of seismic data output to revise the reservoir characteristics

for new simulations.

In addition to the coupling of simulation tools, various data analysis operations can be implemented

that query and manipulate datasets of simulation output so as to forecast production amount, assess the

economic value of the reservoir under study, and understand the changes in reservoir characteristics

through seismic imaging and visualization (Figure 2). These operations can be executed on the storage

systems where the datasets are stored or on other machines dispersed across a network. A scientist can

formulate queries to carry out different analysis scenarios, such as economic ranking of the alternatives,

exploration of the physical basis for differences in behavior between realizations, in particular to

identify regions of bypassed oil and representative realizations, which could be used as a basis for

further optimization. In the following sections, we describe the individual components of this system

in greater detail.

2.1. Oil reservoir simulator: IPARS

The reservoir simulation part of the described work was performed with the use of the Integrated

Parallel Accurate Reservoir Simulator (IPARS). IPARS has been developed at the Center for

Subsurface Modeling (CSM) [1–4] and is suitable for simulation of various non-trivial models of

multiphase, multicomponent flow and transport in porous media. IPARS is portable across several

serial and parallel platforms including Linux (clusters), SGI, IBM SP, T3E, Intel IA-32, IBM Power4

and MS Windows. A unique feature of the framework is the multiblock and multiphysics capability,

which allows for the computational domain to be decomposed into several subdomains, each with a

separate Grid system and with an individual physical and numerical model associated with it [4–10].

Furthermore, a modular and flexible structure of the framework allows for its easy integration with

other software; for example, IPARS has been coupled with DISCOVER [11,12] and with NetSolve [13]

for interactive steering [14].

The physical models in IPARS range from single-phase through two-phase oil–water and air–

water to three-phase black-oil and compositional models. In addition, general reactive transport and

compositional multicomponent models are available. Finally, poroelastic models are available [15].

Solvers used by IPARS employ state-of-the-art techniques for nonlinear and linear problems including

multigrid and other preconditioners [16].

In this project we use the fully implicit black-oil model implemented under IPARS. This model

is a three phase (water, oil and gas) model describing the flow in a petroleum reservoir with three

components. Here it is assumed that no mass transfer occurs between the water phase and the other two

phases and that the water phase can be identified with the water component. In the hydrocarbon (oil–

gas) system, only two components, light and heavy hydrocarbons, are considered. Furthermore, the

following standard assumptions have been made in developing the mathematical model: the reservoir

is isothermal and its boundaries are impermeable, permeability tensor is diagonal and aligned with the

coordinate system, Darcy’s law is valid and viscosity of fluids is constant within the assumed range of

reservoir pressures and the reservoir rock formation is slightly compressible.

We note that this last assumption can be lifted, as was done, for example, in a loose-in-time coupling

of flow and geomechanics processes realized as a connection between the black-oil flow model under

IPARS and the elasticity–plasticity geomechanics model under JAS3D [17]. However, such a coupling
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is very complex and currently has only limited portability, therefore this coupled model is not used in

this work. In the future, a fully integrated coupled poroelastic model [18] will be used. We remark that

the model has been shown [19,20] to give accurate results by comparison with (i) available analytical

solutions and on a benchmark problem [21], and with (ii) another numerical simulator: a recognized

industrial reservoir simulation tool Eclipse [22].

Input to the model

Input to the numerical black-oil model consists of all the data that characterizes the reservoir and

its fluids, in particular, the porosity φ and permeability K , as well as relative permeability, capillary

pressures and compressibility and pressure/volume/temperature (PVT) data. In addition, exploration

parameters are specified that define the position and operating conditions of injection and production

wells (rates qM , bottom hole pressure etc.). Finally, the time of simulation and the spatial ijk Grid as

well as the time-stepping δtn are specified.

Output

The results of numerical black-oil model are of two distinct types. The first type of data is collected in

so-called well files, which collect the resulting well rates qn
M = qM(tn), for every time step tn and every

component M(water, oil, gas). Well files are output by one of the processors only, are of low volume

and are additionally buffered in order to decrease the time spent on I/O. The second type is the data

that can be used for post-processing analysis and visualization purposes and it encompasses pointwise

values of field variables. These are defined in the numerical model as piecewise-constant over each cell

ijk. Such values are output every couple of time steps of simulation, depending on the needs of a user,

and the resulting dataset can quickly reach large volume. Some other variables, for example, velocities,

are defined at the edges/faces between cells.

2.2. Seismic data simulator: FDPSV

The Finite-Difference Simulation of P and SV Waves (FDPSV) is a simulator for the elastic waves

that are used to model the reservoir’s response to controlled source seismic measurements. Predicting

the elastic response requires the elastic reservoir model and the model for the surrounding geology.

Since we expect the fluid properties of the reservoir to change during production, if we can match the

seismic predictions to the seismic data recorded, we can infer the changes in the reservoir model.

FDPSV is a fourth order in space and second order in time staggered Grid explicit finite difference

solution to the elastic wave equation. It can have sources of seismic energy and receivers anywhere

within the computation Grid so it is possible to acquire numerical data for any acquisition geometry.

For three-dimensional data simulations, nine tractions and three displacements are computed for each

time step.

In our implementation, we map the flow parameters to elastic parameters in the same Grid and

thus we make no use of any upscaling. For seismic simulation, data are required at the Grid location

specified to model a given seismic acquisition scheme. One approach to parallelization of FDPSV is

to distribute different parts of the three-dimensional model to different nodes and make use of domain

decomposition. However, we adopt a much simpler strategy in that we simply run multiple FDPSV
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simulations on different nodes for different source locations. Each controlled source being modeled is

a new run of the algorithm. Many controlled source activations can be run in parallel since in most

modern PC clusters each node has adequate memory for a realistic three-dimensional simulation.

2.3. Data management and manipulation tools: DataCutter

IPARS and FDPSV provide the simulation components of the integrated system. As we noted earlier,

the operation of the system is highly data driven: In a typical study, multiple oil reservoir simulations

are executed using IPARS and FDPSV. Output from these simulations are analyzed for production

estimation; analysis of simulation output can also drive new reservoir and seismic simulations. All of

these steps involve the storage, management, and processing of large volumes of data. Since these

complex, long-running simulations require significant computing power, it is likely that the simulations

are executed on multiple, distributed computing platforms. As a result, the datasets are generated

and stored in a distributed, heterogeneous environment. A unique aspect of our integrated system

is its ability to manage and manipulate very large volumes of oil reservoir and seismic datasets on

heterogeneous, distributed collections of storage and compute systems. This ability requires a runtime

system that supports efficient indexing and retrieval of large data volumes and execution of data

processing operations in a distributed setting. In this work, we employ a component-based framework,

called DataCutter [23–25], to address these requirements.

In DataCutter, the data-processing structure of an application is represented as a set of application

filters. A filter is a user-defined object that performs application-specific processing on data. A filter

object has three functions§, init, process and finalize, that should be implemented by the application

developer. A stream is an abstraction used for all filter communication, and specifies how filters are

logically connected. A stream also denotes a supply of data to and from the storage media, or a flow of

data between two separate filters, or between a filter and a client. Bi-directional data exchange can be

achieved by creating two pipe streams in opposite directions between two filters. All transfers to and

from streams are through a provided buffer abstraction (Figure 4). A buffer represents a contiguous

memory region containing useful data. The init function is where any required resources such as

memory can be pre-allocated for a filter. The process function of the filter is called by the runtime

system to read from any input streams, work on data buffers received, and write to any output streams.

The finalize function is called after all processing is finished, to allow the release of allocated resources

such as scratch space.

A set of filters that collectively carry out application-specific data processing are referred to as

a filter group. The runtime system provides a multi-threaded, distributed execution environment.

Multiple instances of a filter group can be instantiated and executed concurrently; work can be assigned

to any group. Within each filter group instance, multiple copies of individual filters can also be

created. Filters co-located on the same machine are executed as separate threads by the runtime system.

Data exchange between two co-located filters is carried out by simple pointer copy operations, thereby

minimizing the communication overhead. Communication between two filters on different hosts is

done through TCP/IP sockets.

§The DataCutter framework supplies a base class with three virtual functions (init, process, finalize). An application-specific
filter is derived from this base class, and application operations are implemented in the three functions.
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Figure 4. DataCutter stream abstraction and support for copies: (a) data buffers on a stream; (b) P, F,C filter
group instantiated using transparent filter copies.

Decomposition of application processing into filters and filter copies effectively provide a

combination of task- and data-parallelism (Figure 4(b)). Filter groups and filters can be placed on a

distributed collection of machines to minimize computation and communication overheads. Filters that

exchange large volumes of data can be placed on the same machine, while compute intensive filters

can be executed on more powerful machines or less loaded hosts.

3. PUTTING IT TOGETHER: A CASE STUDY

As is illustrated in Figures 2 and 3, the process of optimizing oil production involves coupling of oil

reservoir models and seismic data models and analysis of output from ensembles of simulations in

order to predict production rates and geophysical changes. Both the coupling of numerical models and

analysis of data are made possible through the data management and manipulation infrastructure.

Section 2 presented the overall system architecture and the individual components of the system.

We now present the implementation of a case study. In this case study, the IPARS and FDPSV

components of the integrated system are used to simulate oil production using the models described

in Sections 2.1 and 2.2. The third component of the system, DataCutter, is a framework that can

be employed to implement various data analysis operations on both IPARS and FDPSV datasets as

well as data transformation operations to couple IPARS with FDPSV. In this section, we describe the

implementation using DataCutter of several data analysis operations and of coupling between IPARS

and FDPSV. We start with the implementation of data transformation operations to create FDPSV

input from IPARS output. Following that section are the sections on the implementations of data

processing applications to analyze datasets generated by IPARS and FDPSV. In Section 4, we carry

out a performance evaluation of these implementations using large datasets.
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3.1. Data conversion from IPARS to FDPSV

IPARS generates the reservoir parameters during production, and these parameters, in particular

saturation and porosity, must be converted into the elastic wave model parameters of compressional

wave velocity, shear velocity and density. Empirical formulation based on the Biot–Gassman equations

are used to map the reservoir simulator output to the seismic model input.

Different steps of mapping flow parameters to elastic parameters are as follows. If the rock pores

have water, oil and gas with varying saturation, effective fluid density is given by the weighted average

of the densities ρm of the component fluid phases weighed by the fluid saturations Sm

ρfluid = Swatρwat + Soilρoil + Sgasρgas

Swat + Soil + Sgas = 1.0

The effective density of the reservoir rock is given by the weighted average of the densities of the solid

matrix ρrock and the density of the fluid filling up the pore space

ρeff = φρfluid + (1 − φ)ρrock

Similar averaging is done to compute effective bulk modulus and shear modulus. Therefore, the

compressional and shear wave velocities that are functions of elastic moduli and density, can be

easily computed. At each time step of IPARS run, we have pore pressure and saturation, and thus

we can employ the Biot–Gassman equation to predict elastic properties at different time steps during

the production of a hydrocarbon reservoir. These parameters then serve as model parameters to run

FDPSV, which computes seismic response.

DataCutter services are used to convert IPARS reservoir simulation output to the elastic properties

needed as inputs to the seismic simulator FDPSV. IPARS output is stored in simulation timestep order,

and may be partitioned across multiple storage devices, so it is necessary to recombine the distributed

data and extract the variables of interest before performing the variable conversion. The converted

reservoir data are then rescaled and inserted into a pre-existing seismic model based on a set of user-

defined parameters.

The DataCutter implementation consists of a server process located on a machine that can access

the metadata that describes the IPARS simulation runs and the locations of their output, and a set of

DataCutter filters. Five filters were developed to handle the different portions of the conversion and

insertion process.

• The Provider filter reads the file containing the original seismic model and forwards it to the

filter that ultimately performs the insertion of the converted reservoir data. A client provides the

host location of the input seismic model, and a single copy of the Provider filter is mapped to

that host.

• The Reader filter is designed to access and subset IPARS output based on a given timestep and

variable. Instances of the Reader are mapped to each host on which IPARS output is located.

• Since data sent by multiple Reader filters for a timestep may arrive in an arbitrary order, a

Serializer filter acts as a buffer for combining received data into the correct order. A single

copy of this filter is mapped to any available host.

• A Flattener filter combines the distributed data into a single dataset and formats it properly for

the conversion code.
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• The final filter, the Biot–Gassman filter, performs the actual conversion and handles the insertion

of the resulting reservoir data into the original seismic model. It computes the required

compressional wave velocity, shear wave velocity, and the density, from the reservoir variables

Poil (oil pressure), Soil (oil saturation), and Sgas (gas saturation). This filter is mapped to the host

specified as the desired output location.

A single conversion request is initiated by a client query, which selects an available dataset and

specifies the locations of the input and output seismic model. After the server process has determined

the appropriate mappings for all of the filters, based on the IPARS input and other user-provided

information, each request is handled in five stages. In the first stage the filters are initialized with

the locations of the input and output files, both for IPARS and FDPSV, and the input seismic model

is transferred from the Provider filter to the Biot–Gassman filter and saved to disk on that host.

In the second stage, parameters for the IPARS run, such as the problem and Grid size, the number

of processors, and a list of the stored timesteps, are read by the server process and distributed to each

of the Reader filters so that they can calculate the portion of the problem for which they are responsible

and allocate memory accordingly. The Reader filters also search for and use per-processor IPARS

initialization files describing the partitioning of the reservoir data across processors to create a partial

index, or data descriptor, for the data locally available¶. During the third phase, the partial descriptors

are sent by each Reader to the Flattener, so that a global descriptor can be generated that maps the

data indices to their processor locations. The fourth phase begins when the client selects a particular

timestep and provides the parameters needed for insertion of the reservoir data into the seismic model.

At that time, data for each of the three IPARS variables (Poil, Soil, Sgas) for the given timestep is read

by each Reader filter, sent to the Serializer filter, which organizes the buffers into processor order,

then forwarded to the Flattener for final merging and formatting. In the fifth and final phase, the Biot–

Gassman filter performs the conversion and insertion of the reservoir data into the seismic model.

3.2. Analysis of IPARS output

We have implemented several data exploration scenarios. These scenarios involve user-defined queries

for economic evaluation as well as technical evaluation, such as determination of representative

realizations and identification of areas of bypassed oil.

3.2.1. Economic evaluation

In the optimization of oil field production strategies, the objective function to be maximized is the

resulting economic value of a given production strategy. The value can be measured in a variety of

ways. In our model we compute both the net present value (NPV) and return on investment (ROI).

In the computation of the NPV for a given realization, a query integrates over time the revenue from

produced oil and gas, and the expenses from water injection and production, accounting for the time

value of the resources produced. This calculation is performed for a subset of the realizations chosen

by the user. The user specifies the costs and prices that parameterize the objective function, e.g. oil

¶The partitioning of the IPARS data depends on how the IPARS simulator was run in parallel, and how it wrote its output data.
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price, cost of handling produced water, drilling costs. As all of the well production and injection data

for each realization resides in a single file on a single disk, the data access pattern for this application

is relatively simple, and most of the computation time is spent parsing the output file. The well data

is also a relatively small part of the output data at each time step, so this is not a compute- and data-

intensive computation. Presently, the operations for the economic evaluation are implemented as a

single DataCutter filter, which also performs data retrieval from the storage system.

3.2.2. Bypassed oil

Depending on the distribution of reservoir permeability and the production strategy employed, it is

possible for oil to remain unextracted from certain regions in the reservoir. To optimize the production

strategy, it is useful to know the location and size of these regions of bypassed oil. To locate these

regions, we apply the following algorithm. In this algorithm, the user selects a subset of datasets (D),

a subset of time steps (T ), minimum oil saturation value (Soil,tol), maximum oil velocity (Voil,tol), and

minimum number of connected Grid cells (Nc) for a bypassed oil pocket. The goal is to find all the

datasets in D that have some bypassed oil pockets with at least Nc Grid cells. A cell (C) is a potential

bypassed oil cell if Soil,c > Soil,tol and Voil,c < Voil,tol.

(1) Find all potential bypassed oil cells in a dataset at time step Ti ∈ T .

(2) Run a connected components analysis. Discard pockets with fewer cells than Nc.

(3) Mark cells that are in a region of bypassed oil.

(4) Perform an AND operation on all cells over all time steps in T .

(5) Perform the operations in step (2) on the result, and report back to client.

We used the DataCutter framework to implement a set of filters that carry out the various operations

employed by the algorithm. The implementation consists of three filters. RD (Read Data filter) retrieves

the data of interest from disk and writes the data to its output stream. A data buffer in the output stream

contains oil velocity and oil saturation values, and corresponds to a portion of the Grid at a time step

in a data set. CC (Connected Component filter) performs steps (1), (2) and (3) of the bypassed oil

algorithm. It carries out operations to find bypassed oil pockets at a time step on data buffer received

from RD. These oil pockets are stored in a data buffer, which is a byte array. Each entry of the data

buffer denotes a Grid cell and stores if the cell is bypassed oil cell or not. The CC filter writes the data

buffer for each time step to the output stream, which connects CC to the MT filter. MT (Merge over

Time filter) carries out the steps (4) and (5) of the bypassed oil algorithm. The filter performs an AND

operation on the data buffers received from CC, and finds the bypassed oil pockets. The result is sent

to the client. Figure 5 shows the implementation of the bypassed oil computations as a filter group

and a possible execution of the filter group using the transparent copies abstraction of DataCutter.

This scenario accesses the large four-dimensional (three spatial dimensions and time) datasets which

are output for each realization.

3.2.3. Representative realization

Running multiple realizations with the same geostatistical model and well configurations can give

an idea of the upper and lower bounds of performance for a particular production strategy. It is also

of interest to find one realization for a given production scenario that best represents the average or
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Figure 5. (a) Filter group for bypassed oil computations and (b) execution on a parallel system.

expected behavior. A client query to find a representative realization for a given subset of realizations

computes the average of the primary IPARS unknowns (oil concentration COIL, water pressure Pwat,

gas concentration CGAS) and then finds the realization in the subset, for which the values at each Grid

point is closest to the average values:

Ri =
∑

all Grid points

|COIL − COIL avg|

COIL avg
+

|Pwat − Pwat, avg|

Pwat, avg
+

|CGAS − CGAS, avg|

CGAS, avg
(1)

Representative Realization = min(Ri) for i ∈ {subset of realizations} (2)

The DataCutter implementation consists of four filters. RD retrieves the data of interest from disk.

The read filter sends data from each dataset to the SUM (Sum filter) and DIFF (Difference filter) filters.

A data buffer from the read filter is a portion of the Grid at one time step. SUM computes the sum for

COIL, Pwat and CGAS variables at each Grid point across the datasets selected by the user. AVG (average

filter) calculates the average for COIL, Pwat and CGAS values. DIFF finds the sum of the differences

between the Grid values and the average values for each dataset. It sends the difference to the client,

which keeps track of differences for each time step, carries out average over all time steps for each

dataset.

Figure 6 shows the implementation of the representative realization computations as a filter group

and a possible execution of the filter group using the transparent copies abstraction of DataCutter on

the storage system where the simulation output is stored.
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Figure 6. (a) Filter group for representative realization computations and (b) execution on a parallel system.

3.3. Analysis of FDPSV output: seismic imaging

Seismic data are recorded as sound traces in the field and under simulation in a standard exchange

format defined by the Society of Exploration Geophysics. They are used to infer subsurface material

properties or changes in properties. Also, the data are used directly to create subsurface images and

estimates of material properties. The former is termed model-based inversion, while the latter is called

seismic imaging and direct inversion.

Seismic imaging analysis requires that subsets of seismic data be selected based on the type of sensor

in a recording array, the actual recording array or arrays, and for each or a suite of source activations.

Thus, we must be able to quickly sort through data sets of terabyte scale. Multiple queries will have to

be made as we interpret or analyze each dataset. In order to speed up the selection of data to be used

in imaging, an index can be built on the dataset. For this purpose, we form a key from the values of

recording array, source activations and the type of sensor in a recording array. A B-tree index is built

using these key values. Pointers to the corresponding sound traces in the dataset are also stored along

with the key values. For a client query, this index is searched to find the pointers to the data elements

(sound traces) that satisfy the query. Then, the selected data elements are retrieved from the data files

and input to the seismic imaging algorithm.

The seismic imaging algorithm first receives the subsurface velocity model and then using an integral

solution to the wave equation computes the travel times that describe the travel path from the source to

the receiver using a subsurface scattering or diffraction model. The data along these trajectories in the

data space are then summed into the image point to form a numerical stationary phase evaluation for

the current velocity model. If the model is close to the actual, events will add in phase and a coherent

image will be constructed. Born inversion consists of applying weights to the data to be imaged based

on their angle of incidence to give an estimate of the fractional changes in, e.g. the compressional wave

velocity. The overall algorithm for seismic imaging can be represented by the following pseudo-code.

(1) Extract a subset of seismic traces from the dataset.

(2) Allocate and initialize three-dimensional velocity and image volume.
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(3) foreach shot point p do

(4) read all traces for p.

(5) add the contribution of each trace to the image volume (time migration).

(6) enddo

For execution in a parallel or distributed environment, we implement two DataCutter filters.

An Aggregation filter (A) performs the time migration computations. A Reader filter (R) retrieves

the traces for shot points and sends them to the worker filters. Multiple copies of the Reader filter

can be created to read data in parallel if the dataset is partitioned and distributed across multiple

storage nodes. Similarly, multiple copies of the Aggregation filter can be instantiated to parallelize

the processing of traces. The three-dimensional image volume is employed as an accumulator that

maintains the partial contributions as the traces are retrieved and processed. We should note that the

operation (time migration) performed at step (5) of the algorithm is commutative and associative.

That is, the final output value is the same irrespective of the order the traces are retrieved and their

contribution is added to the output. This aspect of the algorithm allows for different parallelization

strategies [26,27]. In this paper we consider two parallelization strategies, replicated accumulator and

partitioned accumulator [26].

In the partitioned accumulator strategy, the three-dimensional image volume is partitioned across the

copies of the Aggregation filter. The partitioned accumulator strategy makes good use of the aggregate

system memory by partitioning the image volume, but it results in communication overhead. Since each

shot trace contributes to every element in the image volume, a Reader filter has to send a trace to all

the copies of the Aggregation filter.

In the replicated accumulator strategy, the three-dimensional image volume is replicated in

each copy of the Aggregation filter. A Reader filter can send a shot trace to any one of the

copies of the Aggregation filter. The replicated accumulator strategy can be implemented using

the transparent copies abstraction of DataCutter and can take advantage of the demand-driven

mechanism employed in DataCutter. The three-dimensional image volume in each Aggregation

filter contains partial results at the end of processing. These results should be merged to compute

the final output. Thus, a Merge filter (M) that combines the partial results from copies of the

Aggregation filter is part of the filter group in the replicated accumulator strategy. This strategy

reduces the volume of communication that would be incurred because of input shot traces.

However, it does not make efficient use of distributed memory in the system as it replicates the

data structures for the three-dimensional image volume data in all Aggregation filters, and introduces

communication and computation overhead because of the Merge filter. Figure 7 illustrates the two

strategies.

4. PERFORMANCE EVALUATION

In this section we report on the performance evaluation of the implementations of data analysis and

data transformation operations, described in Section 3. The performance of the simulation tools in the

context of computational complexity and parallel scalability are described in [10,16,28,29]. Briefly,

realistic reservoir simulation cases are large, do not fit in the memory of a single workstation and

have to be simulated on massively parallel platforms. The mechanism underlying the parallel features
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Figure 7. (a) The replicated accumulator strategy. The application is composed of Reader (R), Aggregation
(A) and Output (O) filters. The Merge filter (M) is added to ensure correct execution when multiple copies
are executed. Buffers from a R filter are dynamically scheduled among A filters using a demand-driven
policy. (b) The partitioned accumulator strategy. In this example, the accumulator structure is partitioned
into four disjoint regions, and each region is assigned to one of the copies of filter A. Since the accumulator
is partitioned, a merger filter is not needed. An output filter O simply receives results from each copy of

filter A and stitches them together to form the final output.

of the IPARS framework are routines based on MPI [30], which realize the updates of ghost cells

as well as the global-reduce type operations. Load-balancing is Grid-based whereby the cells are

distributed evenly between processors, or model-based [10]. If multiple realizations are simulated,

then the computational time required to complete the overall set of simulations scales linearly with the

number of simulations.

4.1. Case study datasets

In order to evaluate the performance of the data analysis applications, we constructed three case study

datasets. The first two were oriented towards the data analysis of multiple realizations of reservoir

simulation data, each of which was of small or of medium size. The third was designed to provide a

meaningful test case for connecting IPARS and FDPSV. Here we briefly summarize the characteristics

of these cases.

4.1.1. Industry benchmark-based multiple realizations: case spe9

The input data for this dataset is based on the industry benchmark SPE9 problem [21], which requires

the solution of a black-oil (three phase) flow problem on a Grid with 9000 = 24 × 25 × 15 cells, with

26 wells, and with highly heterogeneous permeability field. The base case is very well known and is

used frequently as a test for nonlinear and linear solvers used in reservoir simulators. In our project

we used the base case and we generated additional permeability fields using a fast Fourier transform
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(FFT)-based geostatistics program provided by Jim Jennings from Bureau of Economic Geology

at University of Texas at Austin [31]. Additionally, we varied the well patterns. The total of 207

realizations were taken from among 18 geostatistical models and four well configurations/production

scenarios. The geostatistical models are used to randomly generate permeability fields that are

characterized by statistical parameters such as covariance and correlation length.

At each time step, the value of 17 separate variables is output for each node in the Grid. A total of

10 000 time steps were taken and the total output stored for each realization is about 6.9 GB. The total

dataset size is roughly 1.5 TB and was generated and stored on a storage cluster, referred to here as

UMD, of 50 Linux nodes (PIII-650, 768 MB, Switched Fast Ethernet) with a total disk storage of 9 TB

at University of Maryland.

4.1.2. GSLIB-based multiple realizations: case bh

This case was an extension of the spe9 dataset. The base case was 65 536 = 64 × 64 × 16

cells with one or five wells, with some limited refinement patterns applied uniformly to the whole

Grid. The permeability fields were created using constrained sequential Gaussian simulation (sgsim)

program from the GSLIB family [32]. The use of conditional stochastic simulations, that is the use of

prior knowledge of reservoir data in the vicinity of wells, decreased the uncertainty of the simulation

results as well as improved the number of successful simulations with respect to the spe9 cases.

Each realization simulated 17 variables over 2000 time steps and generated an output of 10 GB. A total

of 500 realizations were executed, resulting in a dataset of 5 TB. This dataset was generated and stored

at three locations: The High-Performance Storage System (HPSS) at San Diego Supercomputer Center,

UMD at the University of Maryland and a 24-node storage system, referred to here as OSUMED, with

7.2 TB of disk space at the Ohio State University.

4.1.3. Case study for coupled IPARS–FDPSV simulations: case bitr

The purpose of this case was to construct a meaningful example for testing the connection between

IPARS and FDPSV simulations. In other words, we considered only one realization of permeability

field, a large enough case and production parameters capable of generating significant variation in

seismic properties. The reservoir model is 3000′ × 6000 × 300′ with a uniform Grid of 50 × 100 × 30

cells. The porosity φ and permeability K fields for this case were constructed to create a (stretched)

Z-shaped almost impermeable fault, which separates two types of sand: sand type 1 and sand type 2

(see Figure 8). The flow in the reservoir is driven by six water injection wells; the fluids (oil, water and

gas) are produced from five production wells. Injection wells are located under the upper arm of the

‘Z’ (depth 80–170′), and production wells are above the lower arm of the ‘Z’. The simulation was over

20 000 days.

Due to previous experience [17], we determined that the presence of free gas phase is essential in

order to generate significant gradients of pressure, porosity, as well as of saturations, which become

data for the Biot–Gassmann equations. In addition, our synthetic case had significant geological

features so we could determine how well the seismic simulation would be able to detect them.

The reservoir simulation results are shown in Figure 9. The figure presents the contours of the
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Figure 8. Synthetic reservoir model for bitr case: (a) the side view of the porosity field;
(b) the top view of the porosity field.
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Figure 9. Results of reservoir model. The contours of difference of final and initial values of pressure
and of oil and gas saturations are shown.

differences of Pwat, Soil, Sgas between the beginning and the end of production. Seismic simulation

results for the entire seismic domain, which is much larger than the reservoir model, are shown in

Figure 10. These show the change in compressional velocity and correlate very well with the structure

of porosity of the data set.

4.2. IPARS to FDPSV conversion

Figure 11 shows the processing times for conversion of IPARS output data to FDPSV input. The case

study used in this experiment was bitr described in Section 4.1.3. The values were obtained by
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used to convert the IPARS output parameters to elastic parameters.
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(a) (b)

Figure 12. Performance numbers using the dataset generated in case spe9: (a) performance results for bypassed
oil computation; (b) performance results for representative realization computation.

running five conversion queries on a 57.7 GB IPARS dataset distributed evenly across 20 650 MHz

Pentium III nodes (2.9 GB per node). A single reader filter was assigned to each of these nodes.

The Provider and Serializer filters ran on a dual processor 400 MHz Pentium II data where the

32 MB input seismic model resided. The Flattener and Biot–Gassman filters ran on an eight-processor

550 MHz Pentium III.

The graph shows the minimum, maximum and average processing time per filter, and the last column

shows the values for overall query execution times. The combined value, on average, is approximately

22% less than the sum of the individual filter timings, because of overlap in processing between the

various stages of the DataCutter pipeline. The relative times of the first four filters correlate directly

with the amount of data sent to the next stage in the pipeline by the filter. On average, the Provider sends

the 32 MB seismic model to the Biot–Gassman filter, the Readers sends 408 KB to the Serializer, the

Serializer sends 4.3 MB to the Flattener and the Flattener forwards 4.3 MB to the Biot–Gassman filter.

The Biot–Gassman filter is by far the most expensive stage of the pipeline, because of the large amount

of computation required to perform the variable conversion.

4.3. Analysis of output from IPARS

We have carried out experiments using the bypassed oil and representative realization scenarios (see

Section 3.2). In the first set of experiments, analysis queries were executed on the datasets generated

in case spe9 (see Section 4.1.1) and stored at University of Maryland. The second set of experiments

involved queries to the datasets generated in case bh (see Section 4.1.2) and stored at University of

Maryland and the Ohio State University.

In Figure 12, we present results for the first set of experiments. The queries were evaluated on

19 nodes of the 9.5 TB storage cluster at University of Maryland. In the experiments, we varied the

number of data sets accessed by a query. For this purpose, we submitted a total of 28 queries (varying

the number of datasets from 1 to 200); 14 queries for the bypassed oil analysis and 14 queries for the

representative realization analysis. Half of the queries in each set requests data over 10 time steps (time
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Figure 13. Performance numbers using the dataset generated in case bh: (a) performance results for bypassed oil
computation; (b) performance results for representative realization computation.

steps 0 through 9999, with increments of 1000 time steps), while the other half retrieves 25 time steps

(time steps 0 through 9999 with increments of 400 time steps).

As is seen from the figure, up to 40 datasets the query execution time remains below one second for

the bypassed oil scenario. As the number of datasets is increased the query execution time increases, as

expected. For a query that accesses 200 datasets over 25 time steps, the execution time is about three

seconds. Thus, we are able to achieve interactive rates even for queries that access a large number of

datasets from the collection. The experimental results show that queries for representative realization

scenario take longer, as the operations involved are more expensive. As is seen from the figure, the

query execution time remains below five seconds for queries that access up to 40 datasets over 25 time

steps. Our preliminary results show that the query execution does not scale well after 40 datasets for

the representative realization scenario. This is because of the fact that in the experiments the number

of transparent copies for the SUM and DIFF filters are fixed at four.

In the second set of experiments, queries requested data from 68 realizations, where output from 20

of the realizations were stored on eight nodes of the cluster at University of Maryland and output from

48 of the realizations were stored on 16 nodes of the cluster at the Ohio State University. The nodes of

each cluster are connected over a switched 100 Mbits s−1 Fast Ethernet. The connection between the

two clusters is over the Internet. We observed about 1.1 Mbits s−1 bandwidth between the two clusters.

We should note that the size of the Grid used in this set of experiments is about seven times as large

as than that of the Grid in the first set of experiments, a single time step consists of a Grid of 65 536

elements. Another difference of this dataset is each simulation had been run in parallel on eight nodes.

Each node stored the local portion of the output, effectively partitioning the output of each realization

across those nodes.

Figure 13 displays average execution time of the queries. Since we do not have exclusive control of

the wide-area network, one would expect to see some variations in the execution time of the queries

due to the variations in the network performance. To alleviate this problem to some extent, we repeated

each experiment three times. The performance numbers in the figures are the average of the three runs.

As is seen from the figure, the execution time of bypassed oil analysis queries does not increase linearly
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Figure 14. (a) Execution time of the partitioned accumulator strategy, when the number of reader and aggregation
filters is varied. (b) Execution times of the replicated accumulator and partitioned accumulator strategies when the

number of aggregation filters is varied. The number of readers is two.

with the number of time steps, as expected. There are a number of reasons for this behavior. One of

them is that since this is not a compute intensive operation and setup time for the query is significant,

increasing the number of time steps that should be processed does not increase the execution time

linearly. Second, the bypassed oil scenario is very well suited for pipelined execution of the data;

as a result, it does not have a synchronization point like the average filter in the implementation of

representation realization scenario. This second set of experimental results also show that queries for

the representative realization scenario take longer, as the operations involved are more expensive.

4.4. Analysis of output from FDPSV: seismic imaging

We have evaluated the relative performance of the two strategies described in Section 3.3 for imaging

of seismic simulation output. The experiments were carried out using a 1 GB dataset generated by

FDPSV. The three-dimensional image volume was 1.3 MB in size. Each node of the PC cluster used in

these experiments had one 933 MHz Pentium III processor and 512 MB main memory. The nodes of

the cluster were connected via Switched Fast Ethernet.

Figure 14(a) shows the execution time of the partitioned accumulator strategy when the number

of reader and aggregation filters is varied. In this experiment, the input dataset is partitioned across

one, two, and four nodes. The number of reader filters is equal to the number of nodes that store

the input dataset. As is seen from the figure, the execution time decreases, as the number of reader

filters is increased (i.e. the dataset is distributed across more nodes). We attribute this performance

improvement to the fact that as the dataset is distributed among more nodes, the aggregate I/O
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bandwidth increases. The graph also shows that for a given distribution of the dataset, increasing

the number of aggregation filters decreases the execution time. However, after a minimum point, the

execution time begins to increase. This is because in the partitioned accumulator strategy, a shot trace is

sent to all the aggregation filters. As more aggregation filters are added to the configuration, the volume

of communication increases, eventually offsetting the gain obtained by parallelization of aggregation

operations.

Figure 14(b) compares the performance of the partitioned and replicated accumulator strategies.

In this experiment, the input dataset is distributed across two nodes. As is seen in the figure, the

replicated accumulator strategy performs better than the partitioned accumulator strategy. Although

the three-dimensional image volume is replicated, its size is much smaller compared with the input

dataset size. Moreover, a reader filter sends a shot trace to only one of the copies of the aggregation

filter. As a result, the volume of communication in the replicated accumulator is smaller than that in

the partitioned accumulator strategy.

5. RELATED WORK

Requirements associated with the need to access geographically dispersed data repositories have been a

key motivation behind several large data Grid projects. The Biomedical Informatics Research Network

(BIRN) [33] and Shared Pathology Informatics Network (SPIN) [34] are examples of projects that

target shared access to medical data in a wide-area environment. GriPhyN project [35] targets storage,

cataloging and retrieval of large, measured datasets from large-scale physical experiments. The goal

is to deliver data products generated from these datasets to physicists across a wide-area network.

The objective of Earth Systems Grid (ESG) project [36] is to provide Grid technologies for storage,

publishing and movement of large-scale data from climate-modeling applications. The TeraGrid [37]

effort aims to develop an integrated systems software suite capable of managing a scalable set of Grid-

based data and compute resources. The EUROGRID project [38] intends to develop tools for easy

and seamless access to high-performance computing (HPC) resources. MEDIGRID [39] is another

project recently initiated in Europe to investigate application of Grid technologies for manipulating

large medical image databases. The Asia Pacific BioGRID [40] is an initiative that aims to provide

an Asia-Pacific-wide computational resource package that will benefit all biomedical scientists in the

Asia Pacific.

Driven by such large-scale applications, a large body of research has been focused on developing

middleware frameworks, protocols and programming and runtime environments. These efforts have

led to the development of middleware tools and infrastructures such as Globus [41], Condor-G [42],

Storage Resource Broker [43], Network Weather Service [44], DataCutter [24,45,46], Legion [47],

Cactus [48], and Common Component Architecture [49], and many others [50–55]. There were also

been some recent efforts to develop Grid and Web services [56–59] implementations of database

technologies [60–63].

Our project is directed towards the general problem of modeling and characterization of the Earth’s

subsurface. Thus, it has immediate application to other areas, including environmental remediation,

aquifer management and storage of hazardous wastes. To the best of our knowledge, no integrated

systems exist to address computational and data-handling challenges in large-scale oil reservoir

studies.
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6. CONCLUSIONS

We have presented a new paradigm for applying reservoir simulation to the challenges of reservoir

management. The selected challenge is to enable the analysis and evaluation of large numbers of

realizations, both of geological models and of production strategies. We have proposed a software

system to address this challenge. In this system, the IPARS and FDPSV frameworks provide the

numerical solutions to the forward-flow problems, while the DataCutter middleware provides the

means for subsetting and filtering the multidimensional output. The volume of data resulting from

such studies can be extremely large. Such datasets would be unmanageable for most evaluation tools,

especially for complex queries such as identifying representative realizations or locating regions of

bypassed oil, or analysis of variation of seismic parameters such as the input to the Biot–Gassman

equation.

The integrated simulation and data analysis system proposed in this paper enables the creation,

interrogation and visualization of such datasets while maintaining the familiarity and speed of

interaction of the traditional simulation workflow. Thus, many more realizations of higher-resolution

geologic models and more production strategies can be studied in greater detail within a given time,

increasing the utility of the study for decision making.
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