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Abstract

Composites manufacturing processes usually involve multiscale models in both space

and time, highly non-linear and anisotropic behaviors, strongly coupled multiphysics

and complex geometries. In this framework, the use of simulation for real-time decision

making directly in the manufacturing facility is still precluded nowadays, in spite of the

impressive progresses reached in numerical analysis and computer science during the

last decade. In this paper, a process-specific simulation tool based on reduced order

modeling is introduced, the Simulation App. This concept is presented through a

practical case involving a multi-physics and coupled problem describing the

manufacturing process of a composite outlet guide vane. We show that several

manufacturing settings can be simulated in few seconds with the Simulation App, thus

enabling fast process optimization. Finally, the advantages over general-purpose

simulation software, in the context of process simulation, are discussed.

Keywords: Simulation App, Reduced order modeling, Real time simulation, Numerical

simulation, Composites forming processes, Curing, Consolidation, Proper Generalized

Decomposition, Parametric solutions, Computational Vademecums

Background

Efficient simulation of composite manufacturing processes remains even nowadays, in

many cases, a challenging issue, mainly when they involve rich 3D behavior, multi-physics

and thenecessity of solvingmany scenarios very fast for optimizationpurposes [1,2]. Com-

posites manufacturing processes involve many different physics. For instance, impregna-

tion of fibrous reinforcements involves flow models through porous media, combined

with the mould compression for ensuring an appropriate degree of consolidation [3,4].

During consolidation the resin curing kinetics strongly affects its viscosity and therefore

the flow conditions [5].

The intimate coupling between the resin flow, the reinforcement permeability, that

decreases upon compression of the mould, and the viscosity, that depends on the tem-

perature and the curing degree, can be at the origin of different process defects. Large

viscosities imply high pressures that can generate irreversible preform deformations and

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40323-017-0087-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Aguado et al. Adv. Model. and Simul. in Eng. Sci. (2017) 4:1 Page 2 of 26

even local reinforcement displacements creating local inhomogeneity defects. Moreover,

residual stresses are another manifestation of this intimate multi-physics coupling [1,6].

Another important issue encountered in the simulation of composites manufacturing

is the one related to the process control and optimization [7–9]. In general, optimization

implies the definition of a cost function and the search of the optimumprocess parameters

defining the minimum of that cost function. The procedure starts by a guessed set of

process parameters. Then the process is simulated using suitable numerical methods.

The solution of the model is the most expensive step of the optimization procedure. As

soon as the solution is available, the cost function can be evaluated and its optimality

checked. If the chosen parameters do not define a minimum (at least local) of the cost

function, the process parameters should be updated and the solution recomputed. The

procedure continues until reaching the minimum of the cost function. The solution of

the process model is a tricky task that demands important computational resources and

usually implies extremely large computing times. Thus, usual optimization procedures

are inapplicable under the real-time constraint. The same issues are encountered when

dealing with inverse analysis in which material or process parameters are expected to

be identified from numerical simulation, by looking for the unknown parameters so that

computed fields match the ones measured experimentally.

Until now, the solution consisted in using the more and more powerful computing

platforms and techniques for speeding up standard discretization techniques. Appealing

alternatives for circumventing, or at least alleviating, these issues lie in the use of reduced

order modeling (ROM) [10–12] strategies. ROM is based on the observation that the

family of parametric solutions of a given model usually contains much less information

than it was originally assumed when the discrete model was built. Proper Orthogonal

Decomposition, Proper Generalized Decomposition and Reduced Basis are nowadays

widely considered from a fundamental and applicative viewpoints.

Proper Orthogonal Decomposition (POD) is a general technique for extracting the

most significant characteristics of a system’s behavior and representing them in a set of

“POD basis vectors” [13,14]. These basis vectors then provide an efficient (typically low-

dimensional) representation of the key system behavior, which proves useful in a variety

of ways. The most common use is to project the system governing equations onto the

reduced-order subspace defined by the POD basis vectors. This yields an explicit POD

reduced model that can be solved in place of the original system. The POD basis can

also provide a low-dimensional description in which to perform parametric interpolation

[15,16], infill missing or “gappy” data [17], hyper-reduced approximations [18,19], and

perform model adaptation. There is an extensive literature on POD showing it has broad

application across fields. Some review of POD and its applications can be found in [20,21]

and the references therein.

Another family of ROM techniques is based on the use of a reduced basis constructed

by combining a greedy algorithm and “a posteriori” error indicators [22–24]. As for the

POD, the Reduced Basismethod requires some amount offlinework, but then the reduced

basis model can be used online for solving different models with control of the solution

accuracy, because the availability of error bounds [25]. When the error is unacceptably

high, the reduced basis can be enriched by invoking a greedy adaption strategy. Useful

review works on the subject are [26,27].
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Techniques based on the use of separated representations are at the heart of the so-

called Proper Generalized Decomposition (PGD) methods [28–30]. Such separated rep-

resentations were considered in computational mechanics for separating space and time

in transient solutions [31,32]. Separated representations were employed for solving mul-

tidimensional models suffering the so-called curse of dimensionality [33–35] and in the

context of stochastic modeling [36]. Then, they were extended for separating space coor-

dinates making possible the solution of models defined in degenerated domains, e.g. plate

and shells [37] as well as for addressing parametric models where model parameters were

considered asmodel extra-coordinates,making possible the offline calculation of the para-

metric solution that can be viewed as a metamodel or a computational vademecum, to be

used online for real time simulation, optimization, inverse analysis and simulation-based

control [38]. Some applications in the context of composites manufacturing processes

were addressed in [39] while the multi physics coupling was successfully achieved in [40].

This work is intended to propose a first approach using reduced order modeling tech-

niques to enhance adaptability of composite manufacturing process to changeable mate-

rial and process environments through increased parametric modeling capabilities. The

process selected is the consolidation and curing of a real part. Consolidation and curing

of thermoset pre-impregnated fibers (from now on, simply referred as pre-pregs) involve

different physics: heat transfer, compression of fiber beds, resin flow and chemical reac-

tion. Strong couplings exist between these physics and many material parameters come

into play. In this paper we combine several different modeling and simulation strategies

for the efficient solution of a generic multi-physic and coupled problem. In particular, we

propose a ROM-based segregated approach (rather than a monolithic one) for treating

each physics separately. This approach allows applying, in each case, the most convenient

ROMtechnique. Then, coupling ismade by defining an appropriate parametrization of the

coupling variables. A strategy for coupling ROMsof different kind (i.e. reduced solvers and

parametric solutions) is also proposed. The integration of all these models constitutes a

Simulation App that allows real-time evaluation of any process conditions. The described

methodology can be extended and generalized to other processing technologies.

The rest of the paper is organized as follows. “Process description and physics model-

ing” section presents the manufacturing process as well as the equations describing the

physics involved in the manufacturing process of composite outlet guide vanes (OGV).

“Simulation based on reduced order modeling” section describes the simulation strat-

egy, including the different simulation modules based on ROM and their coupling. In

particular, we recall the main features of the ROM methods that were implemented,

emphasizing both the construction of the reduced models in the offline stage and their

utilization in the online stage, as a part of the Simulation App. Finally, “A Simulation

App for the OGV manufacturing process” section presents how the simulation modules

were integrated into a process-specific simulation tool, a Simulation App.We describe the

different functionalities of the application, organized by tabs, allowing to the user to per-

form the usual pre-processing, simulation and visualization operations. The advantages

of process-specific simulation tools, such as the Simulation App, over general-purpose

simulation software are discussed, especially in process optimization framework.
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Process description and physics modeling

The concept of a SimulationApp is presented in this paper through a practical application:

the manufacturing process of a composite blade, and more specifically, an outlet guide

vane. In this sectionwe are first describing themanufacturing process froma technological

point of view. Then we shall present the physics modeling and constitutive behavior for

each considered physical phenomena.

Process description

Figure 1 shows the geometry and the computational mesh of the composite OGV part,

which is manufactured by press forming and curing of 66 thermoset unidirectional con-

tinuous fiber pre-preg layers, i.e. fibers already impregnated with resin in a partially cured

stage.

During the forming process, the composite lay-up is heated by conduction from the

top and bottom metallic mold walls and consolidated under press. See Fig. 2 for details.

The heat initiates the cure reaction and the applied pressure provides the force needed

to drain the excess of resin out of the composite, to consolidate pre-preg layers and to

reduce voids by compressing the air inside. The temperature raise determines the onset

of the cure reaction. Because of the exothermic effects of the curing process and the

variability of the kinetic and thermal properties of the resin with the temperature and

curing degree, the process is highly nonlinear. Moreover, the resin undergoes a strong

Fig. 1 Global view of the OGV part geometry with cross sectional slice (left) and detail of the computational

mesh (right)

Fig. 2 Global view of the press (left) and detail of an OGV part being produced (right). Images courtesy of

General Electric Global Research
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rheological modification because its viscosity also depends on the temperature and the

degree of cure. Therefore the flow conditions vary continuously with time.

The nominal heating cycle is designed so as to apply a constant temperature of 438 K

(330 F) on both top and bottom mold walls. The press closure is initially based on a

constant closure rate of 0.1524 mm/min (6 mils/min). As the cure reaction advances, the

viscosity increases and so the closing force to be applied by the press increases. When

the maximum closing force of the press is attained, the control switches to a force-based

one. The closure rate is therefore adapted so as to keep the closing force constant. A final

technological restriction to be taken into account is the so-called hard-stop condition,

occurring when the cumulated displacement reaches its maximum value, 3.3 mm (130

mils).

Remark 1 (On the simulationof thepress control system)Observe that themanufacturing

process simulation will be nonlinear due to the just described press control system. If a

force-based control applies, one has to solve a nonlinear problem in order to find out the

closure rate that keeps the force constant at its maximum value.

Thermo-kinetic model

The model governing thermo-kinetic is given by the following partial differential equa-

tions:

ρCp(T,α)
∂T

∂t
= ∇ · λ∇T + ρ�H α̇ (1a)

α̇ = f kin(T,α), (1b)

where T (x, t) and α(x, t) represent the temperature and curing degree fields, respectively.

We shall refer to Eq. (1a) and to Eq. (1b) as the heat and kinetic equations, respectively.

The curing function, denoted by f kin, is given by the phenomenological model by Kamal

and Sourour [41], widely used to describe the conversion kinetics of epoxy systems:

f kin (T,α) =

(

k1 exp

(

E1

RT

)

+ k2α
m exp

(

E2

RT

))

(1 − α)n , (2)

Heat convection is neglected because of the creeping flow approximation and it is assumed

there is no dispersion effect, i.e. resin and fiber share the same temperature. The coef-

ficients ρ and Cp appearing in Eq. (1a) denote the density and the specific heat, while λ

stands for the thermal conductivity tensor of the composite part. These were obtained

from the properties of the resin and fibers using a linear mixing rule. For the specific heat

this reads:

Cp (T,α) = Vf Cpf + (1 − Vf )Cpr , (3)

where Cpf and Cpr are the specific heat of the fibers (depending on the temperature) and

the resin, respectively. At the initial conditions, i.e. Vf = Vf 0 = 57%, it can be rewritten

as follows:

Cp (T,α) = (p1T + p0)α + (q1T + q0) (1 − α) , (4)

where coefficients p0, p1, q0 and q1 are defined in Table 1. Note that only this quantity

is varying with the temperature, whereas ρ and λ can be reasonably approximated as
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Table 1 Material parameters considered in the physical modeling of the OGV part

manufacturing process

k1 1.77 · 10−5 s−1

k2 9.30 · 102 s−1

E1/R 9, 200 K

E2/R 6, 450 K

n 0.91

m 0.37

�H 570 J/g

η0 3.10 · 10−12 Pa s

B 10800 K

C 27

d 1.77

c‖ 9.43 · 10−13 m2

c⊥ 2.50 · 10−12 m2

Vfa 78.5%

p0 0.1203 J/gK

p1 0.005 J/gK2

q0 0.5905 J/gK

q1 0.0019 J/gK2

ρresin 1.26 g/cm3

ρfiber 1.80 g/cm3

Vf 0 57%

λ11 5.80 W/mK

λ22 0.57 W/mK

λ33 0.57 W/mK

Courtesy of GE Global Research

constants in the system considered in this application. The thermal properties, as well as

the coefficients of the kinetic model, were obtained from experimental characterization

and are summarized in Table 1.

The solution of the thermo-kinetic model requires defining appropriate initial and

boundary conditions. The initial conditions are given by T (x, t = 0) = T0 and

α(x, t = 0) = α0. It is important to note that the heat equation, Eq. (1a), is global in

space whereas the kinetic equation, Eq. (1b) is local, that is, the solution at a particular

location of the part only depends on the thermo-kinetic history at that location. Therefore,

boundary conditions are only needed for the heat conduction equation, and in particular

they concern the temperature cycle prescribed at the top and bottom surfaces S+ and

S−, see Fig. 3, that read T (x ∈ S+, t) = Tt (t) and T (x ∈ S−, t) = Tb(t), respectively.

The heat losses through the lateral surfaces L (see Fig. 3) can be neglected, that results in

∇T (x, t) · n = 0, being n the unit outwards vector defined on L.

Consolidation model

During the consolidation under press, the excess of resin is drained out of the composite.

Assuming that only the resin moves between fibers, that is, preform is compressed but

remains nearly at rest, the resin flowmodel can be described from the Darcy’s flowmodel:

{

∇ · v = 0

v = −η−1
K · ∇P

, (5)
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Fig. 3 Boundary conditions description for the thermo-kinetic problem

where v, P and η are the velocity, pressure and viscosity fields and K is the permeability

tensor. The solution of the flow model requires adequate boundary conditions. In par-

ticular it is assumed that in the lateral boundaries L, see Fig. 3, the pressure vanishes.

On the other hand, it is assumed that the velocity at the top surface corresponds to the

compression rate U̇ imposed by the press, which is assumed to be directed vertically, while

the resin velocity vanishes at the bottom surface. In summary:

⎧

⎪

⎨

⎪

⎩

P(x ∈ L) = 0

v(x ∈ S+) = (0, 0,−U̇ )T

v(x ∈ S−) = 0

. (6)

As the curing reaction advances, the resin viscosity η tends to increase until the flow is

no longer possible or will induce fiber washing. This behavior is taken into account in the

following chemo-rheological model:

η (T,α) = η0 exp

(

B

T

)

exp
(

Cαd
)

. (7)

The viscosity evolution is therefore the main link between Eqs. (1) and (5): the thermo-

kinetic simulation influences the pressure field through the viscosity, which depends on

both the temperature and the curing degree. Note also that, strictly speaking, the thermo-

kinetic simulation depends on the consolidation simulation, because, as the excess of

resin is drained out under the action of the press, the fiber volume fraction changes, and

so the specific heat does, see Eq. (3). However, this link will be neglected in practice thanks

to the semi-implicit linearization scheme that was implemented, see “Online simulation

strategy: simulation modules coupling” section for details.

Finally, the permeability is also assumed to depend on the fiber volume fraction evolu-

tion. The principal components obey the following expressions [42]:

K11 = K22 = c‖
(1 − Vf )

3

V 2
f

and K33 = c⊥

(√

Vfa

Vf
− 1

)5/2

. (8)

Coefficients of Eqs. (7) and (8) are defined in Table 1. Observe that the permeability

depends on the fiber volume fraction, which in turn, depends on the pressure field,making

the consolidation problem nonlinear itself. However, the permeability coefficients can

be assumed to be uniform all over the domain, i.e. they do not depend on the space

coordinates. This fact will allow for a very simple parametrization of the permeability

tensor, see “The consolidation simulation module” section for details.
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Simulation based on reduced order modeling

In this section, we describe the simulation strategy, including the different simulation

modules based on ROM techniques and their coupling. In particular, we recall the main

features of the ROMmethods that were implemented, emphasizing both the construction

of the reducedmodels in the offline stage and their utilization in the online stage, as a part

of the Simulation App.

The coupled model described in “Process description and physics modeling” section

involves three primary unknown fields, the temperature T (x, t), the pressure P(x, t) and

the curing degreeα(x, t). The viscosity field, η(x, t), can be obtained as a post-processing of

the temperature and curing degree fields. The nonlinearity associated to the coupling can

be efficiently addressed by using a semi-implicit incremental time integration, and treating

all coupling terms explicitly, therefore allowing for decoupling of the different problems.

Thanks to this strategy, we are able to define different simulation modules, described

below, one for each physics involved in the manufacturing process. This approach is

particularly effective in the context of ROM, because it allows applying the most suitable

techniques depending on the nature of the equations.

It is to be noted that domain changes due too the applied compression will be neglected,

i.e. the mould thickness reduction remains small enough.

Reduced order modeling methods

The simulation strategy combines three different numerical techniques: (i) the Proper

Orthogonal Decomposition (POD), (ii) the Discrete Empirical Interpolation Method

(DEIM) and (iii) the Proper Generalized Decomposition (PGD). In this section we sum-

marize the main ingredients of these three techniques.

The Proper Orthogonal Decomposition

POD extracts the most significant components, measured in 2-norm, in the solutions

of a parametric problem from the analysis of a set of “snapshots” (previously computed

solutions of a given problem at different times and for different values of the model

parameters) and uses them to approximate the solution for a new set of parameters up to

a certain degree of accuracy.

Thus, POD allows expressing the unknown field involved in a generic problem u(x, t;μ),

with μ the vector containing the model parameters, as

u(x, t;μ) ≈

Nu
∑

n=1

anu(t;μ)φ
n
u(x), (9)

with usually much lowerNu that the number of nodes, denoted by I , used for approximat-

ing the unknown field within the finite element framework. When considering discrete

approximation spaces, the unknown vector at time tj , j = 1, . . . , J , is denoted by u(tj ;μ),

that contains the value of the unknown field at each node xi, i = 1, . . . , I , can be expressed

in the following reduced form:

u(tj ;μ) = �uau(tj ;μ), (10)

defining the linear combination of vectors φn
u, constituting the columns of matrix �u, by

the coeffients au(tj ;μ), where the subscript •u indicates that the reduced basis and the

projection coefficients are associated to the (scalar) field u.
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The discrete empirical interpolationmethod

When considering a generic nonlinear function g(u(x, t;μ)) its evaluation in the reduced

state space from the coefficients au(tj ;μ) can be very expensive and, as discussed in [15,43],

it may compromise the efficiency of reducedmodel techniques. One possibility consists of

using the POD just described to extract a reduced basis able to approximate the nonlinear

term as

g(x, t;μ) ≈

Ng
∑

n=1

ang (t;μ)φ
n
g (x). (11)

In order to compute the approximation coefficients ang , with n = 1, . . . , Ng , the nonlinear

function is reconstructed at any time tj at onlyNg nodes, denoted by x
i
g , with i = 1, . . . , Ng .

The subscript •g stands for the fact of that points being related to the approximation of

the nonlinear function on the reduced basis, φn
g . It results in the following linear system

to be solved each at each time instance and given set of parameters:

⎛

⎜

⎜

⎝

g(x1g , tj ;μ)
...

g(x
Ng
g , tj ;μ)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

φ1
g (x

1
g ) · · · φ

Ng
g (x1g )

...
. . .

...

φ1
g (x

Ng
g ) · · · φ

Ng
g (x

Ng
g )

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

a1g (tj ;μ)
...

a
Ng
g (tj ;μ)

⎞

⎟

⎟

⎠

. (12)

The remaining question concerns the choice of points xig , i = 1, . . . , Ng . These points are

a priori arbitrary, the only contraint being that thematrix involved in Eq. (12) be invertible.

However, in [43] authors propose to define these points using a greedy strategy in order to

locate them to capture as much information as possible. The resulting points were called

“magic points” and for the sake of completeness we describe below their calculation. We

start by considering

x
1
g = argmax

x
|φ1

g (x)|. (13)

Then we compute d1 from

d1φ
1
g (x

1
g ) = φ2

g (x
1
g ), (14)

that allows defining the residual r2(x), i.e. a contribution in φ2
g (x) that cannot be explained

by φ1
g (x), from which computing point x2g :

x
2
g = argmax

x
|r2(x)| with r2(x) = φ2

g (x) − d1φ
1
g (x). (15)

As by construction r2(x
1
g ) = 0 we can ensure x2g �= x

1
g . The procedure is generalized for

obtaining the other points involved in the interpolation procedure. Thus, for obtaining

point xig we consider

x
i
g = argmax

x
|ri(x)| with ri(x) = φi

g (x) −

i−1
∑

j=1

djφ
j
g (x). (16)
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The coefficients d1, . . . , di−1 must be chosen for ensuring that xig �= x
j
g , ∀j < i. For this

purpose we enforce that the residual ri(x) vanishes at each location x
j
g , with j < i by

solving:

ri(x
j
g ) = 0 = φi

g (x
j
g ) −

i−1
∑

l=1

dl φ
l
g (x

j
g ), j = 1, · · · , i − 1, (17)

that constitutes a linear system whose solution leads to the sought-after coefficients

d1, . . . , di−1.

The Proper Generalized Decomposition

Most of the existing model reduction techniques proceed by extracting a suitable reduced

basis and then projecting the problem solution on it. Thus, the reduced basis construction

precedes its use in the solution procedure, and one must be careful on the suitability of

a particular reduced basis when employed for representing the solution of a particular

problem.

This issue disappears if the approximation basis is constructed at the same time that

the problem is solved. Thus, each problem has its associated basis in which its solution

is expressed. One could consider few terms in its approximation, leading to a reduced

representation, or all the terms needed for approximating the solution up to a certain

accuracy level. The Proper Generalized Decomposition (PGD) proceeds in this manner.

When addressing the solution of a parametric problem u(x, t;μ) its PGD-based sepa-

rated representation, including parameters as extra-coordinates, reads

u(x, t,μ) ≈

Nu
∑

n=1

φn
x (x)φ

n
t (t)φ

n
μ(μ). (18)

For additional details the interested reader can refer to [38] and the numerous references

therein.

The thermo-kinetic simulation module

A POD approach is applied in order to reduce the computational complexity of the

thermo-kinetic simulation. Reduced basis are computed for both primary fields, tem-

perature and curing degree. Other reduced basis are also computed in order to approx-

imate nonlinearities using the DEIM. The training stage, i.e. snapshots generation, and

the reduced basis extraction are explained in “Training stage and reduced basis extrac-

tion” section. Then, in “Assembling the Reduced order model” section, the ROM for

the thermo-kinetic simulation is assembled. The reduced version of the heat equation is

formed by standard Galerkin projection onto the temperature reduced basis. The kinetic

equation can be treated in a differentmanner thanks to its local nature. The computational

complexity is reduced in this case by integrating Eq. (1b) only in a well-chosen subset of

mesh nodes; in particular, that subset will be computed using DEIM.

Training stage and reduced basis extraction

In the training stage, a series of simulations were carried out with a full-order solver based

on standard numerical techniques, for different choices of the model parameters. In our

case, the following model parameters were identified:
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• Initial degree of curing, α0, that may differ from one OGV part to another depending

on the time the pre-pregs stay out of the freezer before manufacturing.

• Initial temperature, T0, that may change depending on the ambient conditions.

• Temperature cycle imposed at both top and bottom walls of the mold, denoted by

Tt (t) and Tb(t), respectively. In the actual process, however, a fixed temperature is

kept all along the process, i.e. the variability at both the beginning and the end can be

neglected. In addition, both top and bottom temperatures are the same in practice so

we can simply denote Tc ≡ Tt = Tb.

• Initial fiber volume fraction, Vf 0, that may change if the ply stack is modified by

adding or removing plies.

We denote by μm = (α0, T0, Tc , Vf 0)m, with 1 ≤ m ≤ M, the parameter sampling in

order to compute the snapshots. Recall that the objective is to train a ROM from these

snapshots. The nonlinear thermo-kinetic coupled problem given by Eq. (1) was therefore

solved to obtain the space-time temperature and curing degree space-time fields, i.e.

T (x, t;μm) and α(x, t;μm).

From these collected data, a reduced basis is extracted for both temperature and curing

degree, allowing the introduction of the following approximations:

T (x, t;μ) ≈

NT
∑

n=1

anT (t;μ)φ
n
T (x) and α(x, t;μ) ≈

Nα
∑

n=1

anα(t;μ)φ
n
α(x), (19)

where φn
T and φn

α denote the temperature and curing degree basis functions, respectively.

Coefficients anT are to be determined by solving a reduced system, which will be formed by

Galerkin projection onto the reduced basis φn
T . On the other hand, coefficients anα are to

be determined by integrating the kinetic equation only in a subset of mesh nodes, denoted

by {xnα}
Nα

n=1. This means that the kinetic equation may be integrated at only Nα locations

(very few in practice) leading to important computational time savings. With the reduced

basis for the curing degree at hand, these nodes are chosen straightforwardly as explained

in “The Discrete Empirical Interpolation Method” section.

The nonlinear terms in the thermo-kinetic model, namely the specific heat and the

curing function, also need a special treatment in order to build an efficient reduced solver.

According to “The Discrete Empirical InterpolationMethod” section, a reduced basis has

to be formed for both specific heat and curing function.

Observe that the reduced basis for the curing degree can also be used to approximate the

curing function. This is because the snapshots of the curing rate, α̇(x, t;μm) (equivalently,

f kin(x, t;μm)), are linear combination of the snapshots of the curing degree α(x, t;μm).

Therefore, it is clear that the space spanned by both basis would be the same, and in

consequence the curing function is approximated using the curing degree basis:

f kin(x, t;μ) ≈

Nf
∑

n=1

anf (t;μ)φ
n
f (x) with φn

f (x) ≡ φn
α(x) (Nf = Nα). (20)

As a corollary, the DEIM points for approximating the curing function will also be the

same than those for the curing degree, i.e. {xn
f
}
Nf

n=1 ≡ {xnα}
Nα

n=1. Coefficients an
f
are to be

determined by solving an interpolation problem, as shown in “The Discrete Empirical

Interpolation Method” section.
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Regarding the specific heat approximation, the snapshotsCp(x, t;μm) are obtained sim-

ply by evaluating Eq. (4) using the temperature and curing degree snapshots. Therefore,

we introduce the following approximation:

Cp(x, t;μ) ≈

NC
∑

n=1

anC (t;μ)φ
n
C (x), (21)

where φn
C denote the specific heat basis functions.With the the reduced basis at hand, the

corresponding DEIM points can be computed; we denote them by {xnC}
NC
n=1. Coefficients

anC are to be determined by solving an interpolation problem, as explained in “TheDiscrete

Empirical Interpolation Method” section.

Assembling the reduced ordermodel

Let us first focus on the heat equation. We first introduce the approximations of the

nonlinear terms, i.e. the specific heat and kinetic rate, given by Eqs. (20) and (21):

ρ

⎧

⎨

⎩

NC
∑

n=1

anC (t;μ)φ
n
C (x)

⎫

⎬

⎭

∂T

∂t
= λ∇2T + ρ�H

{

Nα
∑

n=1

anf (t;μ)φ
n
α(x)

}

. (22)

Remark 2 (On the approximation of the kinetic rate) As explained in “Training stage and

reduced basis extraction” section, the kinetic rate is approximated using the basis for the

curing degree, and so in the right-hand side of Eq. (22) we use φn
α . However, it is worth to

remark for the sake of clarity that we keep the coefficients an
f
, which are obviously not the

same than anα .

Using a standard finite element discretization on the mesh, it results in the following

discrete matrix form:

⎧

⎨

⎩

NC
∑

n=1

anC (t;μ)Mn

⎫

⎬

⎭

Ṫ + KT =

{

Nα
∑

n=1

anf (t;μ)bn

}

, (23)

whereMn are the differentmassmatrices, each one related to a specific heat basis function,

φn
C (x); K is the conductivity matrix (not to be confused with the permeability tensor,

although no distinct notation is used); and bn are the different source vectors related to

each curing function basis φn
α .

By performing theGalerkin projection of Eq. (23) onto the reduced basis for the temper-

ature, denoted in its discrete form by�T , and taking into account that discrete equivalent

of Eq. (19) is T = �TaT , we get:

⎧

⎨

⎩

NC
∑

n=1

anC (t;μ)M̃n

⎫

⎬

⎭

ȧT + K̃ aT =

{

Nα
∑

n=1

anf (t;μ)b̃n

}

, (24)

with the following definitions for the reduced operators: M̃n = �t
TMn�T ∈ R

NT×NT ,

K̃ = �t
TK�T ∈ R

NT×NT and b̃n = �t
Tbn ∈ R

NT×1. The transpose is denoted by •t .

Recall that coefficients anC and an
f
are computed, at each time, by solving a linear system

of size NC and Nα , respectively, as explained in “The Discrete Empirical Interpolation

Method” section.
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Finally, the reduced version of the kinetic equation is trivial thanks to its locality. In

order to compute the coefficients anα at each time, we are integrating Eq. (1b) at the DEIM

points related to the curing degree:

α̇(xnα , t;μ) = f kin(T (xnα , t;μ),α(x
n
α , t;μ)) with 1 ≤ n ≤ Nα , (25)

which of course gives Nα uncoupled ODEs. In discrete form:

˙̃α(t;μ) = f kin(T̃(t;μ), α̃(t;μ)), (26)

where ˙̃α, T̃, α̃ ∈ R
Nα×1. Coefficients anα(t;μ) in Eq. (19) are computed by solving the

following interpolation problem:

α(xmα , t;μ) =

Nα
∑

n=1

anα(t;μ)φ
n
α(x

m
α ) with 1 ≤ m ≤ Nα . (27)

Implementation details and results

We report hereafter the details for the numerical implementation of the full-order solver,

used for computing the snapshots:

• The Finite Element mesh is composed of 116, 136 HEX8 elements, with 147, 245

nodes.

• A first-order semi-implicit integration scheme was applied. The simulated time is 2 h

of process, with 20,000 time steps.

• A Preconditioned Conjugate Gradient is used as linear solver.

• The typical running time, for a single parameter execution, is 5 h on a 64bit machine

with the following specifications: 2.9 GHz Intel Core i5 with 16 Gb 1867MHz DDR3,

running under MacOS X 10.10.5.

Concerning the snapshots generation, we considered random perturbations around

the nominal parameters: μnominal = (α0 = 0, T0 = 288K, Tc = 438K, Vf 0 = 57%).

The amplitude of the perturbations is in the following ranges: α0 ∈ [0, 0.05] (+5%),

T0 ∈ [273, 303] K (±5%), Tc ∈ [416, 460] K (±5%), Vf 0 ∈ [50, 64]% (±7%). Reduced basis

of the following dimension (i.e. number of degrees of freedom of the ROM) were found:

NT = 10, Nα = 7 and NC = 5, which proves the pertinency of using low dimensional

approximations for the thermo-kinetic model. We report hereafter the details for the

numerical implementation of the ROM solver:

• A variable order (1–5) Numerical Differentiation Formula (MATLAB ode15s) time

integrator was used. The simulated time is 2 h and the number of time steps varies

adaptively.

• The typical running time is in the range 1–10 seconds depending on the process

conditions, using the samemachinedescribedpreviously. It is important to emphasize

that the simulation took few seconds to completion instead of themany hours needed

when solving the full order problem.

• The random access memory (RAM) consumption was measured by running 5 simu-

lations, each one of them for a different set of process parameters selected randomly.

The simulation timewas set to 1 h. In such conditions, the averagedmemory required
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is 236Mb.More details about the RAMconsumption of the final implementation will

be given in “A Simulation App for the OGV manufacturing process” section.

• A posteriori validation of the reduced model was carried out by comparing results

with full-order FEM simulations for sets of randomly generated process parameters.

The observed relative error measured in the maximum norm is typically of the order

of 10−5.

Figures 4 and 5 depict the first fourmodes (themost significant ones) of the temperature

and the curing degree. Figure 6 shows the time evolution of the weights related to the

temperature and degree of curing modes.

Figure 7 represents the temperature solution issued from the reduced simulation, at

four different times, after recombining the basis functions with the reduced coordinates.

Fig. 4 First four most significant temperature modes: φ1
T (x) (top-left); φ

2
T (x) (top-right), φ

3
T (x) (bottom-left)

and φ4
T (x) (bottom-right)

Fig. 5 First four most significant curing degree modes: φ1
α (x) (top-left); φ

2
α (x) (top-right), φ

3
α (x) (bottom-left)

and φ4
α (x) (bottom-right)
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Fig. 6 Time evolution of the temperature (left) and curing degree (right) reduced coordinates, anT (t ;μ),

related to the first five temperature modes (i.e. n ≤ 5) during the first 100 s of the simulation, corresponding

to a randomly chosen parameter set

Fig. 7 Temperature fields at four different times from the thermo-kinetic ROM: t = T/4 (top-left); t = T/2

(top-right); t = 3T/3 (bottom-left) and t = T (bottom-right)

The consolidation simulation module

The PGD method was applied in order to reduce the computational complexity of the

consolidation model. Recall that the consolidation model is nonlinear itself, because the

permeability tensor depends on the fiber volume fraction. However, as explained in “Con-

solidationmodel” section, the permeability tensor can be assumeduniform, i.e. not varying

through the domain. In consequence, observe that the problem could be linearized by sim-

ply considering the permeability tensor as an extra-coordinate in the PGD framework. A

similar approach was already addressed in the context of nonlinear soil dynamics [44].

Hence, in this scenario, we would have a parametric pressure field in the form: P(x,K).

And more importantly, the computation of such parametric would now involve a linear

problem. This can be understood by thinking of the parametric solution as being a linear

solver inside a fixed-point nonlinear scheme.

However, there is an additional difficulty concerning the parametrization of the viscosity

field. A low-dimensional parametrization of such field is sought by following a similar
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approach to that one explained in “The thermo-kinetic simulation module” section. In

fact, we are seeking for an approximation of the inverse of the viscosity field, see Eq. (5),

as follows:

η−1(x, t;μ) ≈

Nη
∑

n=1

anη(t;μ)φ
n
η (x), (28)

where φn
η denotes the basis functions for the inverse of the viscosity, computed from snap-

shots η−1(x, t;μm), 1 ≤ m ≤ M, by simple evaluation of Eq. (7). Observe that coefficients

anη can be seen in fact as the coordinates of the inverse of the viscosity on the reduced basis,

at every instant and choice of parameters. We are therefore introducing them as extra-

coordinates in the PGD parametric solution, i.e. P(x,K, aη). Such parametric solution is

now able to provide the pressure field, not only for every possible permeability tensor, but

also for every viscosity field living in the reduced basis φn
η . Of course, we hope Nη to be

small enough.

We shall explain in next section how to compute the coefficients aη in order to be able

to evaluate the parametric solution.

Remark 3 (On the dependence of the pressure field on the closure rate) Simulating the

closure cycle of the press requires obtaining the pressure field, for a given viscosity field,

permeability tensor (i.e. fiber volume fraction) and an imposed closure rate. However,

it is worth to remark that the closure rate does not need to be considered as an extra-

coordinate of the parametric solution, because of the linearity of the problem to be solved.

In other words, the pressure field depends linearly on the closure rate.

The parametric solution of the flow problem, Eq. (29), within the PGD framework to

obtain a separated representation of the parametric pressure field:

P(x,K, aη) =

NP
∑

n=1

φn
x (x)φ

n
K (K)φ

n
a (aη). (29)

Even if such solution is related to amultidimensional problem, its linearity makes possible

to compute it very efficiently by means of the PGD.

Implementation details and results

We report hereafter the details corresponding to the calculation of the PGD parametric

pressure solution:

• The samemesh already described in “Implementation details and results” section was

used.

• The inverse of the viscosity is parametrized usingNη = 3 coordinates, corresponding

to the first three modes φ1
η(x), φ2

η(x) and φ3
η(x) that can represent the 95% of the

solution.

• The FE mesh for the viscosity in the phase-space (a1η , a
2
η , a

3
η) is made of 6, 307 TET4

elements and 1387 nodes.

• TheFEmesh for the permeability phase-space k11, k22, k33 ismade of EDGE2 elements

1D × 1D × 1D, 100 nodes each.

• The PGD convergence criterion was set to 10−3 on the relative norm of the residual.
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Typical execution times are not reported for the consolidation ROM because they are

completely negligible: evaluating the parametric pressure is straightforward.

Figure 8 depicts the first four modes (the most significant ones) of the inverse of the vis-

cosity respectively, although only three were kept as explained before. The time evolution

of the three associated coefficients, a1η(t), a
2
η(t) and a3η(t), describes a closed curve in the

3D espace defined by them, as depicted in Fig. 9, since both the initial and final states are

characterized by a uniform high viscosity field.

Finally Fig. 10 shows for four different rheologies expressed from vector aη in the vis-

cosity phase-space as well as their four associated pressure fields.

Online simulation strategy: simulation modules coupling

We summarize in this section the operation of the reduced models, with the help of

Fig. 11. Suppose that the reduced coordinates of the temperature and the curing degree

are known from the previous time step; we denote aT (tj−1) and aα(tj−1), respectively. Note

that at time t0, these reduced coordinates are obtained from the initial conditions for both

temperature and curing degree. Then:

Fig. 8 First four most significant inverse viscosity modes: φ1
η (x) (top-left); φ

2
η (x) (top-right), φ

3
η (x)

(bottom-left) and φ4
η (x) (bottom-right)

Fig. 9 Trajectory of coefficients anη(t) (left) and parametric domain ensuring positive viscosities (right)
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Fig. 10 Four examples showing arbitrary viscosities in the phase-space and their corresponding pressure

field. For each example: (i) pressure field in the OGV part (left); (ii) reduced coordinates of the viscosity (red

point) in the positive viscosities phase space (right)

DEIM
Thermo-kinetic 

ROM 

Vf (tj) = Vf (tj−1)

Semi-implicit Linearization

aC(tj−1)

af (tj−1)aα(tj−1)

aT (tj−1)

aα(tj)

aT (tj)

aη(tj)

U̇ (tj)

Vf (tj)
K (tj)

∆Vr (tj)

F (tj)

∆U̇

∆Vf

U̇ +1 = U̇ + ∆U̇

V +1

f = Vf + ∆Vf

Press Control Algorithm

F (tj) − Flim ≤ 0

P (tj) ≡ U̇ (tj)P (x,K (tj),aη(tj))

Consolidation ROM

DEIM

Thermo-kinetic Module

x
Consolidation Module

Fig. 11 Schematics showing the operation of both thermo-kinetic and consolidation simulation modules

based on ROM, as well as their coupling
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1. We evaluate both the specific heat and the curing function at the previous time step,

i.e. a semi-implicit scheme is used. The reduced coordinates of both specific heat and

curing function, denoted by aC (tj−1) and af (tj−1) respectively, are computed using

DEIM.

2. With those reduced coordinates at hand, the thermo-kineticROM,Eqs. (24) and (26),

can be assembled as explained in “The thermo-kinetic simulation module” section.

3. By performing a time increment, the reduced coordinates of both temperature and

curing degree can be obtained at time tj .

4. Then, the reduced coordinates of the viscosity, aη, can be computed by evaluating

the chemo-rheology model and using DEIM.

5. With the previous information at hand, the consolidation module can be run. It

involves solving anonlinearproblembecauseof thepress control system, see “Process

description” section. The nonlinear iterations are indexed by ℓ.We start by assuming

that the closure rate is the same than in the previous time increment, i.e. U̇ℓ=0(tj) =

U̇ (tj−1). Similarly, we consider V ℓ=0
f

(tj) = Vf (tj−1).

6. Using Eq. (8), the permeability tensor can be computed.

7. With the permeability tensor and the reduced coordinates of the viscosity, the para-

metric PGD solution can be particularized. Recall that this solution has been com-

puted for unitary velocity and so it must be scaled by the actual velocity. We denote

by Pℓ(tj) the pressure field at time tj and iteration ℓ.

8. The velocity field can be then computed using Eq. (5). Integrating on the free bound-

ary S , see Fig. 3, the volume of resin drained can be computed, �V ℓ
r . Note that

knowing the loss of resin it is trivial to compute the current fiber volume fraction.

9. On the other hand, from the pressure field it is possible to obtain the vertical com-

ponent of the reaction force to be applied by the press so as to maintain the actual

closure rate. The press force can be computed by integrating the pressure field on

the upper boundary S+, see Fig. 3. However, note that this force only represents the

fluid part, i.e. the resin, but it does not take into account the fiber contribution. In

order to account for this extra contribution, we consider the Kim’s model.

10. With the press force, Fℓ(tj) at hand, the press control can be checked. A Newton-

Raphson algorithm is used in order to compute both closure rate and fiber volume

fraction correction, denoted by �U̇ and �Vf .

11. From the corrections, both closure rate and fiber volume fraction can be updated. At

convergence, we set: U̇ (tj) ← U̇ℓ∗
(tj) and Vf (tj) ← V ℓ∗

f
(tj), assuming the algorithm

converges after ℓ∗ iterations.

12. Observe that the semi-implicit linearization allows excluding the thermo-kinetic

module from the nonlinear problem. Otherwise, at each nonlinear iteration, it would

be required to come back to the thermo-kinetic module, to recompute the specific

heat, to solve the thermo-kinetic ROM, and so on.

A Simulation App for the OGVmanufacturing process

The Simulation App for the OGVmanufacturing process is a process-specific application

that allows the user to simulate almost in real time different process conditions and

visualize the simulation results. Here we understand by real time simulation the one able

to provide the results with no perceptible delay after the user makes its request, i.e. in the
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order of half a second. However, since the Simulation App is designed to be used directly

in the manufacturing facility, the input and output delays are also relevant. As it will be

explained later, both input and output interfaces were designed so as to enhance the user’s

reactivity by restricting the input data to the bare minimum, while only relevant output

information is displayed. Typically, a standard user takes no more than one minute in

order to set up a new simulation, while the time consumed in visualizing and interpreting

the results depends mostly on the user’s knowledge and experience.

The user interacts with the Simulation App through a basic graphics user interface

(GUI). In order to demonstrate the feasibility and potentiality of this kind of applications,

we developed a demonstration version in theMATLAB® environment usingGUIDEunder

MacOS X 10.10.5. This allows creating the GUI very easily. The MATLAB Application

CompilerTM was used in order to create a standalone executable file that could run outside

MATLAB® and be easily transferred to the final user for demonstration purposes. The

standalone version of the Simulation App has been tested on Microsoft Windows® 7 OS.

Other proper implementations are of course possible although not explored in this paper,

as they are outside of its scope.

The concept of a Simulation App offers several potentialities. Since the application is

process-specific, rather than implementing a general purpose visualisation environment,

it is possible to first identify the set of quantities of interest as output and then implement

a simple and specific visualization interface. For example, if we know in advance that

the maximum pressure gradient is an important indicator for defects, as it is the case in

OGVmanufacturing processes, we can include a functionality that displays themaximum

pressure gradient and its location, at each time step. Then, the user can access to this

information by simply activating a checkbox.

A similar discussion can be addressed regarding the data input. In a general purpose

simulation software, a number of simulation parameters must be entered as user input.

Although these have a significant impact within the modeling and simulation framework,

they have little significance for the process designer. In order to get to these, the user

must convert process parameters (physical measures, material properties) into simula-

tion parameters (boundary and initial conditions, model adjustments) before running the

simulation. The Simulation App is designed to perform this conversion automatically

according to rules provided beforehand. For instance, the initial fiber volume fraction is

computed from process parameters, such as the following: area baseline plykit (stack of

composite layers), the resin and fiber mass density, the mass of the convex and concave

stack and the fiber areal weight (FAW) and the volatile content, see Fig. 12. Therefore,

the process designer only enters process parameters, which are the real meaningful infor-

mation to them, without the need of expertise in multi-physics modeling or numerical

methods. The difference between process and simulation parameters is kept transparent

to the user in the GUI. By consequence, a Simulation App is not only simulation tool but

it also integrates the process knowledge via process-specific inputs and outputs.

The Simulation App is composed of three modules:

1. Pre-processing This module performs two basic operations: data loading and param-

eters conversion. Data loading simply reads all pre-computed data required to run

the reduced model. This operation only needs to be done once after launching the

application, and it is performed in theGUI via the LoadData button. Parameters con-
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Fig. 12 Simulation App pre-processing tabs: Parameters tab (left), Data Tab (center) and Simulation Tab

(right)

version gathers data entered by the user and computes the simulation parameters.

This operation is performed in the GUI via two different tabs: the Parameters Tab,

in which some default values that normally do not change are proposed (e.g. resin

and fiber specific weight), and the Data Tab, in which process parameters are defined

(e.g. temperature cycle, closure rate, etc.) (see Fig. 12). The conversion operation is

launched by the Update button, and the initial degree of curing and the initial fiber

volume content, both being simulation parameters, are computed.

2. SimulationThismodule is driven by a principal function that governs the interaction

between the two reducedmodels explained in previous sections: POD reducedmodel

for the thermo-kinetic simulation and PGD reduced model for the consolidation

simulation. Basically, thismodule takes all data defined in the pre-processingmodule

and runs the ROM model in the time interval of interest defined by the user, as

explained in “Online simulation strategy: simulationmodules coupling” section. The

user can also choose the number of equally spaced time frames at which the solution

wants to be accessed. Additionally, the user can also demand to access to the solution

at particular time frames of interest, such as minimum viscosity time frame, see

Fig. 12 for details.

3. VisualizationThismodule allows accessing to both field data and quantities of inter-

est, at any desired time frame. This operation is performed by the GUI via two dif-

ferent tabs: the Display Tab and the Quantities of Interest Tab. In the Display Tab,

seven scalar fields can be visualized: curing degree, temperature, viscosity, pressure

and the three components of the pressure gradient. They are simultaneously dis-

played on the external boundary of the part as well as in five sections, see Fig. 13.

The section view is necessary to appreciate, for instance, the temperature evolu-
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Fig. 13 Simulation App post-processing: Display tab. Curing degree field after 3.05 min (top). Temperature

field at after 20.30 min (mid). Pressure field after 60 min (bottom)

tion inside the part, which may be higher than in the external boundary due to the

exothermic kinetics. Additionally, the location and magnitude of the maximum and

minimum of each field can be visualized. In the Quantities of Interest Tab, the time
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Fig. 14 Simulation App post-processing: quantities of Interest tab. Closure rate (top), fiber volume rate (mid)

and part mass evolution (bottom) during the simulated time, 60 min

evolution of nine process indicators can be visualized: closure rate, press force, fiber

volume fraction or part mass, for instance. See Fig. 14 for details. These are the real

meaningful information upon which a process designer can evaluate if the process

setting is operating as desired or not.
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The RAM consumption of the MATLAB® implementation of the Simulation App was

measured. Opening the application requires 239 Mb, whereas the amount of memory

increases up to 504 Mb after loading data. The amount of memory required for running

the simulationdepends on the simulation timespan aswell as on theprocess parameters. In

the conditions already described in “Implementation details and results” section, 236 Mb

are required on average, which brings the total to 740Mb. However, the most demanding

operation in terms of memory consumption is the Visualization module, which requires

up to 1160 Mb. In general, the memory consumption could be drastically reduced in a

proper (non demonstrator) implementation of the application. Some parts of the code

could also be optimized, for instance, by avoiding reconstruction of the entire fields, since

only some slices and the external surface are visualized.

ROM-based Simulation Apps can be a powerful tool for complex composite processes

to increase the entitlement yield by adapting for the variation that comes from material

chemistry and physical properties in addition to thermal and pressure histories applied

during the process. Typical entitlement yield is limited because of the inherent varia-

tions and multi-physics interactions. Part quality loss is due to either (i) internal defects,

(ii) not meeting dimensional requirements or (iii) poor internal fiber matrix structure.

A successful manufacturing process must minimize all three quality components. The

Simulation App can be implemented in the manufacturing process seamlessly to make

real-time decisions regarding process adaptation possible overcoming inherent variation

and truly increasing the entitlement yield of the process. As an example, the Simulation

App will take real process measurements as inputs which capture the incoming variation

in the pre-processing section and provide quantities of interest e.g. maximum pressure

gradient that can be relate to quality. If the quality does not meet requirements, pre-

computed sensitivity results can be used to identify corrective process change to bring it

within requirements. The corrective process change can be as simple as choosing among

predefined process cycles. All this can be made possible only because of real-time models

capable of reflecting physics of the entire process.

Conclusions

In this paper we have introduced the Simulation App concept, a process-specific simula-

tion tool based on reduced order modeling techniques. Using a combination of them, we

were able to reduce from several hours to few seconds the computational time of a cou-

pledmulti-physics and strongly nonlinear model describing themanufacturing process of

a composite outlet guide vane. Defining a coupling strategy between the different reduced

order models was an essential part of this work. In particular, we presented an approach

based on an appropriate parametrization of the coupling fields. The use of such fast

simulation in a real-time decision making environment being possible, process-specific

pre-processing and visualization functionalities were added, leading to the Simulation

App concept.

It has also been demonstrated that the Simulation App provides several advantages over

general-purpose simulation software, especially if simulation wants to be used directly in

the manufacturing facility. In addition to the computational time reduction, the process

specificity of the Simulation App makes it possible to conceive simple yet functional

graphic interfaces, for both data input and visualization. The process designer is asked
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to enter only process parameters while the simulation parameters are limited to the bare

minimum. Similarly, the visualization module was designed so as to display only the

relevant information, mainly the process indicators upon which decisions are made. Note

that, by definition, process indicators are specific to a particular process, which is contrary

to the spirit of general-purpose software. Therefore, the Simulation App establishes a link

between process parameters and process indicators through a comprehensive numerical

simulation which includes not only the physics and their couplings but also technological

constraints such as the control loop of the process, if any.

Finally, even if the Simulation App has been presented on a case study of industrial

interest, it is easy to imagine building similar tools for other manufacturing processes

involving different physics, materials and technology.
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