
Annals of Telecommunications manuscript No.
(will be inserted by the editor)

A Simulation as a Service Cloud Middleware

Shashank Shekhar, Hamzah Abdel-Aziz,

Michael Walker, Faruk Caglar, Aniruddha

Gokhale, Xenofon Koutsoukos

Received: date / Accepted: date

Abstract Many seemingly simple questions that individual users face in their
daily lives may actually require substantial number of computing resources to
identify the right answers. For example, a user may want to determine the right
thermostat settings for different rooms of a house based on a tolerance range
such that the energy consumption and costs can be maximally reduced while
still offering comfortable temperatures in the house. Such answers can be deter-
mined through simulations. However, some simulation models as in this exam-
ple are stochastic, which require the execution of a large number of simulation
tasks and aggregation of results to ascertain if the outcomes lie within specified
confidence intervals. Some other simulation models, such as the study of traffic
conditions using simulations may need multiple instances to be executed for a
number of different parameters. Cloud computing has opened up new avenues
for individuals and organizations with limited resources to obtain answers to
problems that hitherto required expensive and computationally-intensive re-
sources. This paper presents SIMaaS, which is a cloud-based Simulation-as-a-
Service to address these challenges. We demonstrate how lightweight solutions
using Linux containers (e.g., Docker) are better suited to support such services
instead of heavyweight hypervisor-based solutions, which are shown to incur
substantial overhead in provisioning virtual machines on-demand. Empirical
results validating our claims are presented in the context of two case studies.

The final publication is available at Springer via http://dx.doi.org/10.1007/s12243-015-0475-6

Shashank Shekhar, Hamzah Abdel-Aziz, Michael Walker, Faruk Caglar, Aniruddha Gokhale
and Xenofon Koutsoukos
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37235, USA

E-mail: {shashank.shekhar,hamzah.abdelaziz,michael.a.walker.1,faruk.caglar,
a.gokhale,xenonfon.koutsoukos}@vanderbilt.edu

2 Shekhar et al

Keywords Cloud Computing · Middleware · Linux Container · Simulation-
as-a-Service

1 Introduction

With the advent of the Internet of Things (IoT) paradigm [7], which involves
the ubiquitous presence of sensors, there is no dearth of collected data. When
coupled with technology advances in mobile computing and edge devices, users
are expecting newer and different kinds of services that will help them in their
daily lives. For example, users may want to determine appropriate tempera-
ture settings for their homes such that their energy consumption and energy
bills are kept low yet they have comfortable conditions in their homes. Other
examples include estimating traffic congestion in a specific part of a city on a
special events day. Any service meant to find answers to these questions will
very likely require substantial number of computing resources. Moreover, users
will expect a sufficiently low response time from the services.

Deploying these services in-house is unrealistic for the users since the mod-
els of these systems are quite complex to develop. Some models may be stochas-
tic in nature, which require a large number of compute-intensive executions of
the models to obtain outcomes that are within a desired statistical confidence
interval. Other kinds of simulation models require running a large number
of simulation instances with different parameters. Irrespective of the simula-
tion model, individual users and even small businesses cannot be expected
to acquire the needed resources in-house. Cloud computing then becomes an
attractive option to host such services particularly because hosting high per-
formance and real-time applications in the cloud is gaining traction [4, 32].
Examples include soft real-time applications such as online video streaming
(e.g., Netflix hosted in Amazon EC2), gaming (Microsoft’s Xbox One and
Sony’s Playstation Now) and telecommunication management [19].

Given these trends, it is important to understand the challenges in hosting
such simulations in the cloud. To that end we surveyed prior efforts [17, 27, 28,
29] that focused on deploying parallel discrete event simulations (PDES) [16]
in the cloud, which reveal that the performance of the simulation deteriorates
as the size of the cluster distributed across the cloud increases. This occurs due
primarily to the limited bandwidth and overhead of the time synchronization
protocols needed in the cloud [42]. Thus, cloud deployment for this category
of simulations is still limited.

Despite these insights, we surmise that there is another category of simula-
tions that can still benefit from cloud computing. For example, complex system
simulations that require statistical validation or those that compare simula-
tion results under different constraints and parameter values often need to run
repeatedly are suited to cloud hosting. Running these simulations sequentially
is not a viable option as user expectations in terms of response times have to
be met. Hence there is a need for a simulation platform where a large num-
ber of independent simulation instances can be executed in parallel and the

A SIMaaS Cloud Middleware 3

number of such simulations can vary elastically to satisfy specified confidence
intervals for the results. Cloud computing becomes an attractive platform to
host such capabilities [41]. To that end we have architected a cloud-based
solution comprising resource management algorithms and middleware called
Simulation-as-a-Service (SIMaaS).

It is possible to realize SIMaaS on top of traditional cloud infrastructure,
which utilize a virtual machine (VM)-based data center to provide resource
sharing. However, in a scenario where real-time decisions have to be made
based on running a large number of multiple, short-duration simulations in
parallel, the considerable setup and tear down overhead imposed by VMs, as
demonstrated in Section 5.2, is unacceptable. Likewise, a solution based on
maintaining a VM pool that is used by many cloud resource management
frameworks such as [24, 12, 44, 18] is not suitable either since it can lead to
resource wastage and may not be able to cater to sudden increases in service
demand. Thus, a lightweight solution is desired.

To address these challenges, we make the following key contributions in
this paper:

– We propose a cloud middleware for SIMaaS that leverages Linux con-
tainer [30]-based infrastructure, which has low runtime overhead, higher
level of resource sharing, and very low setup and tear down costs.

– We present a resource management algorithm, that reduces the cost to the
service provider and enhances the parallelization of the simulation jobs by
fanning out more instances until the deadline is met while simultaneously
auto-tuning itself based on the feedback.

– We show how the middleware intelligently generates different configura-
tions for experimentation, and intelligently schedules the simulations on
the Linux container-based cloud to minimize cost while enforcing the dead-
lines.

– Using two case studies, we show the viability of a Linux container-based
SIMaaS solution, and illustrate the performance gains of a Linux container-
based approach over hypervisor-based traditional virtualization techniques
used in the cloud.

The rest of this paper is organized as follows: Section 2 deals with rele-
vant related work comparing them with our contributions; Section 3 provides
two use cases that drive the key requirements that are met by our solution;
Section 4 presents the system architecture in detail; Section 5 validates the
effectiveness of our middleware; and finally Section 6 presents concluding re-
marks alluding to lessons learned and opportunities for future work.

2 Related Work

This section presents relevant related work and compares them with our con-
tributions. We provide related work along three dimensions: simulations hosted

4 Shekhar et al

in the cloud, cloud frameworks that provide resource management with dead-
lines, and container-based approaches. These dimensions of related work are
important because realizing SIMaaS requires effective resource management at
the cloud infrastructure-level to manage the lifecycle of containers that host
and execute the simulation logic such that user-specified deadlines are met.

2.1 Related Work on Cloud-based Simulations

The mJADES [35] effort is closest to our approach in terms of its objective of
supporting simulations in the cloud. It is founded on a Java-based architecture
and is designed to run multiple concurrent simulations while automatically ac-
quiring resources from an ad hoc federation of cloud providers. DEXSim [15]
is a distributed execution framework for replicated simulations that provides
two-level parallelism, i.e., at CPU core-level and at system-level. This organi-
zation delivers better performance to their system. In contrast, SIMaaS does
not provide any such scheme; rather it relies on the OS to make effective use
of the multiple cores on the physical server by pinning container processes to
cores. The RESTful interoperability simulation environment (RISE) [3] is a
cloud middleware that applies RESTful APIs to interface with the simulators
and allows remote management through Android-based handheld devices. Like
RISE, SIMaaS also uses RESTful APIs for clients to interact with our service
and for the internal interaction between the containers and the management
solution.

In contrast to these works, SIMaaS applies an adaptive resource scheduling
policy to meet the deadlines based on the current system performance. Also,
our solution uses Linux containers that are more efficient and more suitable
to the kinds of simulations hosted by SIMaaS than the VM-based approaches
used by these solutions.

CloudSim [11] is a toolkit for modeling and simulating VMs, data centers
and resource allocation policies without incurring any cost, which in turn helps
to measure the feasibility and tune the performance bottlenecks. EMUSIM [13]
enhances CloudSim by integrating an emulator to achieve the same purpose.
SimGrid [14] is another distributed systems simulator used to improve the algo-
rithms for data management infrastructure. We believe that the contributions
of SIMaaS are orthogonal to these work. These related projects provide the
platforms to evaluate resource allocation algorithms in the cloud while SIMaaS
is a concrete realization of infrastructure middleware that supports different
resource allocations. SIMaaS can benefit from these related work where re-
source management algorithms can first be evaluated in these platforms, and
then deployed in the SIMaaS middleware. Additionally, we believe these re-
lated work do not yet support support Linux container based simulation of
the cloud.

A SIMaaS Cloud Middleware 5

2.2 Related Work on Cloud Resource Management

There has been some work in cloud resource management to meet deadlines.
Aneka [12] is a cloud platform that supports quality of service (QoS)-aware
provisioning and execution of applications in the cloud. It supports different
programming models, such as bag of tasks, distributed threads, MapReduce,
actors and workflows. Our work on SIMaaS applies an advanced version of a
resource management algorithm that is used by Aneka in the context of our
Linux container-based lightweight virtualization solution. Aneka also provides
algorithms to provision hybrid clouds to minimize the cost and meet deadlines.
Although SIMaaS does not use hybrid clouds, our future work will consider
some of the functionalities from Aneka.

Another work close to our resource allocation policy is [10] that employs a
cost-efficient scheduling heuristics to meet the deadline. However, this work is
sensitive to execution time estimation error, whereas our work self-tunes based
on feedback.

CometCloud [24] is a cloud framework that provides autonomic work-
flow management by addressing changing computational and QoS require-
ments. It adapts both application and infrastructure to fulfill its purpose.
CLOUDRB [40] is a cloud resource broker that integrates deadline-based job
scheduling policy with particle swarm optimization-based resource scheduling
mechanism to minimize both cost and execution time to meet a user-specified
deadline. Zhu et al. [44] employed a rolling-horizon optimization policy to de-
velop an energy-aware cloud data center for real-time task scheduling. All these
efforts provide scheduling algorithms to meet deadlines on virtual machine-
based cloud platforms where they maintain a VM pool and scale up or down
based on constraints. In contrast to these efforts, our work uses a lightweight
virtualization technology based on Linux containers which provides significant
performance improvement and mitigates the need to keep a pool of VMs or
containers. We also apply a heuristic based feedback mechanism to ensure
deadlines are met with minimum resources.

In prior work [37, 26], we have designed and deployed multi-layered re-
source management algorithms integrated with higher-level task (re-)planning
mechanisms to provide performance assurances to distributed real-time and
embedded applications. These algorithms were integrated within middleware
solutions that were deployed on a distributed cluster of machines, which can
be viewed as small-scale data centers. These prior works focused primarily on
affecting the application, such as migrating application components, load bal-
ancing, fault tolerance, deployment planning and to some extent scheduling.
We view these prior works of ours as complementary to the current work. In
the present work, we are more concerned with allocating resources on-demand.
A more significant point of distinction is that the prior works focused on dis-
tributed applications that are long running while in current work we are fo-
cusing on applications that have a short running time but where we need to
execute a large number of copies of the same application.

6 Shekhar et al

2.3 Related Work using Linux Containers

The Docker [34] open source project that we utilize in our framework auto-
mates the deployment of applications via software containers utilizing operat-
ing system (OS)-level virtualization. Docker is not an OS-level virtualization
solution; rather it uses interchangable execution enviroments such as Linux
Containers (LXC) and its own libcontainer library to provide Container ac-
cess and control.

Previous work exists on the creation [33] and benchmark testing [39] of
generic Linux-based containers. Similarly, there exists work that use containers
as a means to provide isolation and a lightweight replacement to hypervisors
in use cases such as high performance computing (HPC) [43], reproducible
network experiments [21], and peer-to-peer testing environments [8]. The de-
mands and goals of each of these three efforts focus on a different aspect of the
benefit stemming from the use of containers. For HPC, the effort focused more
on the lightweight nature of containers versus hypervisors. The peer-to-peer
testing work focused on the isolation capabilities of containers whereas the re-
producible network experiments paper focused more on the isolation features
and the ability to distribute containers as deliverables for others to use in their
own testing. Our work leverages or can leverage all these benefits.

3 Motivating Use Cases and Key Requirements for SIMaaS

We now present two use cases belonging to systems modeling that we have
used in this paper to bring out the challenges that SIMaaS should address,
and to evaluate its capabilities.

3.1 System Modeling Use Cases

System modeling for simulations is a rich area that has been used in a wide
range of different engineering disciplines. The type of system modeling depends
on the nature of the system to be modeled and the level of abstraction needed
to be achieved through the simulation. We use two use cases to highlight the
different types of simulations that SIMaaS is geared to support.

3.1.1 Use Case 1: The Multi-room Heating System

In use case 1, we target complex engineering systems which exhibit continu-
ous, discrete, and probabilistic behaviors, known as stochastic hybrid systems
(SHS). The computer model we use to construct a formal representation of a
SHS system and to mathematically analyze and verify it in a computer system
is the discrete time stochastic hybrid system (DTSHS) model [1].

We discuss here a DTSHS model of a multi-room heating system [5] with
its discretized model developed by [2]. The multi-room heating system consists

A SIMaaS Cloud Middleware 7

of h rooms and a limited number of heaters n where n < h. Each room has at
most one heater at a time. Moreover, each room has its own user setting (i.e.,
constraints) for temperature. However, the rooms have an exchangeable effect
with their adjacent rooms and with the ambient temperature.

Each room heater switches independently of the heater status of other
rooms and their temperatures. The system has a hybrid state where the dis-
crete component is the state of the individual heater, which can be in ON
or OFF state, and the continuous state is the room temperature. A discrete
transition function switches the heater’s status in each room based on using a
typical controller which switches the heater on if the room temperature gets
below a certain threshold xl and switches the heater off if the room tempera-
ture exceeds a certain threshold xu.

The main challenge for our use case is the limited number of heaters and
the need for a control strategy to move a heater between the rooms. Typical
system requirements that can be evaluated using simulations are:

– The temperature in each room must always remain above a certain thresh-
old (i.e., user comfort level).

– All rooms share heaters with other rooms (i.e., acquire and relinquish a
heater).

In our model of the system, we have used one of many possible strategies
where room i can acquire a heater with a probability pi if:

– pi ∝ geti − xi when xi < geti.
– pi = 0 when xi ≥ geti.

where geti is control threshold used to determine when room i needs to
acquire a heater. The simulation model for this use case uses statistical model
checking by Bayesian Interval Estimates [45].

3.1.2 Use Case 2: Traffic Simulation for Varying Traffic Density

Use case 2 targets transportation researchers and traffic application providers,
such as Transit Now (http://transitnownashville.org/), who want to
model and simulate different traffic scenarios within a relevant time window
but do not have sufficient resources to do it in-house. We motivate this use
case with a microscopic traffic simulator called SUMO [9] that can simulate
city level traffic. The simulator can import a city map in OpenStreetMap [20]
format to its own custom format. The user can supply various input parameters
such as number of vehicles, traffic signal logic, turning probability, maximum
lane speed and study their impact on traffic congestion.

One such “what if” scenario involves the user changing the number of
vehicles moving in a particular area of the city and studying its impact. In
contrast to use case 1 where all the stochastic simulation instances had nearly
the same execution time in ideal conditions, in this use case, the simulation
execution time varies with the input number of vehicles. Figure 1 illustrates
how the execution time varies with the number of vehicles for a duration of
1000 seconds.

8 Shekhar et al

�

���

���

���

���

���

���

� ����� ����� ����� ����� ������ ������

�
�
�
��
��
�
	

�
��

�

��
��

�������
���	�

Fig. 1: Simulation Execution Time

3.2 Problem Statement and Key Requirements for SIMaaS

Based on the two use cases described above, we now bring out the key require-
ments that must be satisfied by SIMaaS. Addressing these requirements forms
the problem statement for our research presented in this paper.

• Requirement 1: Ability to Elastically Execute Multiple Sim-

ulations – Recall that the simulation model for use case 1 is stochastic,
which means that every simulation execution instance may yield a differ-
ent simulation trajectory and results. To overcome this problem, we have to
use the statistical model checking (SMC) approach based on Bayesian statis-
tics [44, 45]. SMC is a verification method that provides statistical evidence
to check whether a stochastic system satisfies a wide range of temporal prop-
erties with a certain probability and confidence level or not. The probability
that the model satisfies a property can be estimated by running several differ-
ent simulation trajectories of the model and dividing the number of satisfied
trajectories (i.e., true properties) over the total number of simulations. Thus,
SMC requires execution of a large number of simulation tasks.

On the other hand, although the simulation models for use case 2 are not
stochastic, the result of the simulation will often be quite different depending
on the parameters supplied to the model. For example, varying the number of
vehicles on the road, number of traffic lights, number of lanes, and speed limits
will all generate different results. A user may be interested in knowing the
results for various scenarios, which in turn requires a number of simulations to
be executed seeded with different parameter values. In addition, the service will

A SIMaaS Cloud Middleware 9

be used by multiple users who need to execute different number of simulations,
which is not known to the system a priori. This requirement suggests the need
to elastically scale the number of simulation instances to be executed.

In summary, the two use cases require that SIMaaS be able to elastically
scale the number of simulations that must be executed.

• Requirement 2: Bounded Response Time – In both our use cases,
the user expects that the system respond to their requests within a reasonable
amount of time. Thus, the execution of a large number of simulations that are
elastically scheduled on the cloud platform, and result aggregation must be
accomplished within a bounded amount of time so that it is of any utility to
the user. Moreover, use case 2 illustrates an additional challenge that requires
estimating the expected execution time for previously unknown parameters
and ensuring that the system can still respond to user request in a timely
manner.

In summary, SIMaaS must ensure bounded response times to user requests.

• Requirement 3: Result Aggregation – Both our use cases highlight
the need for result aggregation. In use case 1, there is a need to aggregate the
results from the large number of model executions to illustrate the confidence
intervals for the results. In use case 2, the user will need a way to aggregate
results of each run corresponding to the parameter values. Since SIMaaS is
meant to be a broadly applicable service, it will require the user to supply the
appropriate aggregation logic corresponding to their needs.

In summary, SIMaaS needs an ability to accept user-supplied result aggre-
gation logic, apply it to the results of the simulations, and present the results
to the user.

• Requirement 4: Web-based Interface – Since SIMaaS is envisioned
as a broadly applicable cloud-based, simulation-as-a-service, it will not know
the details of the user’s simulation model. Instead, it will require the user to
supply a simulation model of their system and various parameters to indicate
how SIMaaS should run their models. For example, since use case 1 requires
stochastic model checking, it will require a large number of simulation tra-
jectories to be executed. Thus, SIMaaS will require the user to supply the
simulation image and specify how many such simulations should be executed,
the building layout, the number of heaters, the strategy used and so on. Simi-
larly, for use case 2, SIMaaS will need to know how the model should be seeded
with different parameter values and how they should be varied, which in turn
will dictate the number of simulations to execute and their execution time.
Finally, the aggregated results must somehow be displayed to the user.

In summary, SIMaaS should provide a web-based user interface to the users
so they can supply both the simulation model and the parameters as well as
receive the results using the interface.

10 Shekhar et al

4 SIMaaS Cloud Middleware Architecture

A cloud platform is an attractive choice to address the requirements high-
lighted in Section 3.2 because it can elastically and on-demand execute the
multiple different simulation trajectories of the simulation models in parallel,
and perform aggregation such as SMC to obtain results within a desired con-
fidence interval. The challenge stems from provisioning these simulation tra-
jectories in the cloud in real-time so that the response times perceived by the
user are acceptable. To that end we have architected the SIMaaS cloud-based
simulation-as-a-service and its associated middleware as shown in Figure 2.
The remainder of this section describes the architecture and shows how it
addresses all the requirements outlined earlier.

Fig. 2: System Architecture

4.1 Dynamic Resource Provisioning Algorithm: Addressing Requirements 1
and 2

Requirement 1 calls for elastic deployment of a large number of simulation
executions depending on the use case category, which needs dynamic resource
management. Requirement 2 calls for timely response to user requests. Thus,
the dynamic resource management algorithm should be geared towards meet-
ing the user needs.

For this paper, we define a QoS-based resource allocation policy that al-
locates containers for each requested simulation model such that its deadline
is met and its cost, i.e. the number of assigned containers is minimized. We

A SIMaaS Cloud Middleware 11

assume that the user provides the following inputs to our allocation algorithm:
simulation model, number of simulations and their corresponding simulation
parameters, and the estimated execution time using some of the simulation
parameters.

Formally, we define the requested execution of the simulation model as a
job. Each job is made up of several different tasks representing an execution
instance of that simulation job. At any instant in time k, J(k) is the set of
jobs which our allocation algorithm handles. Furthermore, for the jth job,
Jj(k) ∈ J(k), we define its deadline as DLj , the number of containers it uses
as Bj(k), its i

th simulation task as Tij(k), the simulation parameter of its ith

task as θij and finally, the expected execution time of its ith task with its
corresponding parameter θij as Eθij (Tij(k)).

The primary objective of our allocation algorithm is to minimize the re-
source usage cost considered in terms of the number of containers used to serve
the user simulation request, while maintaining the user constraint stated as
meeting the deadline. To formalize this objective, we define it as the following
optimization problem:

min
Bj

c(K) =
∑

j

∑

k

Bj(k) = c(K − 1) +
∑

j

Bj(K)

subject to ∀j ∈ J(k),
Rj(k)

Bj(k)
=

∑

i Eθij (Tij(k))

Bj(k)
≤ DLj

where, c(k) is the cost function at time instant k, and Rj(k) is the jth

job’s total execution time which is equal to the summation of the execution
time Eθij (Tij(k)) for all the unserved tasks Tij(k). This constraint equation
calculates the total time a job would take to finish if its simulations’ execu-
tions have been parallelized using Bj(k) containers. Therefore, it bounds the
selection of Bj(k) such that each job finishes before or by the deadline. To
tackle this problem, we developed a simple heuristic shown in Algorithm 1 for
efficiently selecting the minimum Bj(k) such that each job finishes its required
simulation tasks by their deadline.

Formally, we calculate Bj using the following formula. To simplify the
notation, we will omit the time index k throughout the remainder of this
section:

Bj =
Rj

DLj

Two major challenges arise when calculating Bj based on the above for-
mula. First, it is difficult to calculate analytically Rj in a mathematically
closed form because a task’s execution time varies based on many dynamic
factors such as performance interference, overbooking ratio, etc. Second, the
execution times of a job’s tasks are not necessarily identical when they have
different simulation parameter θij , as demonstrated in Figure 1. Therefore,
the above formula is not accurate and we may need to increase the value of
Bj calculated above in order to meet the deadline. Moreover, scheduling the
job’s tasks Tij in the reserved containers Bj is a non-trivial task.

12 Shekhar et al

Input: J , α
while TRUE do

Wait for(max(feedback event, minimum period));
foreach Jj ∈ J do

// Update only jobs with new feedback data

if (HasFeedback(Jj)) then

// Update the estimated error factor

Fj ←− UpdateErrorFactor(E∗

θij
(Tij)) ;

// Update the estimated execution time function

UpdateExecutionTimeFunction(Fj);
// Update the number of containers with their scheduling

extraContainersNeeded ←−BestFitDecreasing(DLj) - Bj ;
if extraContainersNeeded > 0 then

Reserve(extraContainerNeeded, Jj);
// Avoid frequent resource allocation and de-allocation

else if extraContainersNeeded < threshold then

Release(extraContainerNeeded, Jj);
end

end

end

end

Algorithm 1: QoS-based Resource Allocation Policy

To overcome the first challenge, we make our heuristic calculation of Bj

based on an estimated execution time E′

θij
(Tij) of each task Tij and periodi-

cally update this estimation and consequently the Bj calculation based on the
feedback of the actual executed time E∗

θij
(Tij). This simple feedback mech-

anism allows us to maintain our algorithm objective mentioned above while
tolerating the effect of estimation errors, and handling the dynamic change
of our system environment (e.g. performance interference). Furthermore, our
algorithm has to wait for at least a minimum period of time even if there is
a new feedback, in order to enhance the algorithm’s performance by avoiding
high frequent recalculation. In addition to this, we recalculate Fj and E′

θij
(Tij)

in every iteration and the algorithm is executed only for jobs that have new
feedback data.

In order to estimate the execution time Rj of the jth job, we use an initial
execution time function Eθij (Tij) as an initial function to our estimator. Since
the user provides the estimated execution time for only a few parameters,
we use a regression algorithm based on sequential exponential kernel [36] to
build the initial function of Eθij (Tij) using the data point provided by the
user. Then, we update this function by an error factor Fj calculated using
the feedback data. The calculation of the error factor Fj and the estimated
execution time function E′

θij
(Tij) are shown in the following equation:

E′

θij
(Tij) = Eθij (Tij)× (1 + Fj)

such that:

Fj = E[∆Eθij (Tij)/Eθij (Tij)] + α×

√

V ar
[

∆Eθij (Tij)/Eθij (Tij)
]

A SIMaaS Cloud Middleware 13

∆Eθij (Tij) = Eθij (Tij)− E∗

θij
(Tij)

where α ≥ 0 is an estimator parameter that determines how pessimistic
is our estimator because Fj covers more errors as α increases. For example,
when α = 1, 2, 3, Fj will approximately estimate the worst-case scenario of
68%, 95%, and 99.7% of the feedback error values, respectively. For a real-
time implementation of error factor calculation, we use an online algorithm
developed by Knuth [25] to calculate E[.] and V ar[.] incrementally, in order to
avoid saving and inspecting the entire feedback data every time a new feedback
entry has arrived.

To overcome the second challenge, we used best fit decreasing bin packing
algorithm [23], where, we pass DLj to this bin packing algorithm as its bin’s
size input, and the estimated task execution times E′

θij
(Tij) as its items’ size

input. Therefore, the number of slots produced by the bin packing algorithm
represents the required containers Bj and the distribution of the tasks Tij in
each slot represents the tasks’ schedule over the containers.

Note that the system resources constraints limit the number of jobs in J
that can be serviced at the same time. Therefore, we use an admission control
algorithm shown in Algorithm 2 to maintain a reliable service. The admission
control algorithm is used to accept any new incoming user request which can be
handled using the remaining available resources without missing its and other
running jobs deadline. It basically estimates the number of containers needed
to serve the new request such that it finishes by its deadline. Then, it checks
whether there are idle containers available to serve it or not. The algorithm
has two administrator configurable parameters (β ≥ 1) and (γ ≥ 0) which
add a margin of resources to overcome the estimation error and to maintain
another margin of resources for other running jobs to be used by the above
allocation algorithm.

Input: availableCapacity, newJob
Output: Accepted/Rejected
containersNeeded ←−BestFitDecreasing(DLnewJob);
if containersNeeded ×β < availableCapacity −γ then

Accept newJob;
else

Reject newJob;
end

Algorithm 2: Admission Control Algorithm

4.2 Dynamic Resource Provisioning Middleware: Addressing Requirements 1
and 2

The second aspect of dynamic resource management is the middleware infras-
tructure that encodes the algorithm and provides the service capabilities. The
middleware aspect is described here.

14 Shekhar et al

4.2.1 Architectural Elements of the SIMaaS Middleware

The central component of the SIMaaS middleware shown in Figure 2 that is
responsible for resource provisioning and handling user requests is the SIMaaS
Manager (SM). All the coordination and decision making responsibilities are
controlled by this component. It employs the strategy design pattern; thus it
has a pluggable design that is used to strategize the virtualization approach
to be used by the hosted system. The strategy pattern also allows the SM
to swap the scheduling policy if needed, however, we use a single scheduling
policy during the life-cycle of SIMaaS to avoid conflicts.

A cloud platform typically uses virtualized resources to host user applica-
tions. Different types of virtualization include full virtualization (e.g., KVM),
paravirtualization (e.g., Xen) and lightweight containers (e.g., LXC Linux con-
tainers). Since full and para virtualization require the entire OS to be booted
from scratch whenever a new virtual machine (VM) is scheduled, this boot
up time incurs a delay in availability of new VMs, not to mention the cost
of the application’s initialization time. All of these impact the user response
time. Since Requirement 2 calls for bounded response time, SIMaaS uses the
lightweight containers, which suffice for our purpose.

The life cycle of these containers is managed by the Container Manager
(CM) shown in the Figure 2. The pluggable architecture of SM allows CM
to switch between various container providers, which can be Linux container
or hypervisor-based VM cloud. The Linux container is the default container
provider of CM. Specifically, we use the Docker [34] container virtualization
technology since it provides portable deployment of Linux containers and pro-
vides a registry for images to be shared across the hosts with significant per-
formance gains over hypervisor-based approaches. Thus, the CM is responsible
for keeping track of the hosts in the cluster and provision the running and tear-
ing down of the Docker containers. It downloads and deploys different images
from the Docker registry for instantiating different simulations on the cluster
hosts.

Our earlier design of the CM leveraged Shipyard [38] for communicating
with the Docker hosts, however, due to sluggish performance we observed, we
had to implement a custom solution with a reduced role for Shipyard. Over-
coming the reasons for the sluggish performance and reusing existing artifacts
maximally is part of our future investigations when we also evaluate other
container managers such as Apache Mesos, Google Kubernetes and Docker
Swarm.

4.2.2 Resource Instrumentation and Monitoring

Recall that meeting user-specified deadlines is an important goal for SIMaaS
(Requirement 2). These deadlines must be met in the context of either the
stochastic model checking that requires multiple simultaneous runs of the
stochastic simulation models or simulations executed under a range of param-
eter values. Thus, SIMaaS must be cognizant of overall system performance

A SIMaaS Cloud Middleware 15

so that our resource allocation algorithm can make effective dynamic resource
management decisions. To support these system requirements, effective system
instrumentation is necessary.

Since SIMaaS uses Linux containers, we leveraged the Performance Monitor
(PerfMon) package from the JMeter Plugins group of packages on Linux. Perf-
Mon is an open-source Java application which runs as a service on the hosts to
be monitored. Since the monitored statistics are required by the Performance
Manager (PM) component instead of a visual rendition, we implemented a
custom software to tap into PerfMon via its TCP/UDP connection capabil-
ities. PerfMon is by no means the only option available but it sufficed our
needs.

PerfMon depends on the SIGAR API and uses it for gathering system
metrics. The metrics available are classified into eight broad catagories. These
catagories include: CPU, Memory, Disk I/O, Network I/O, JMX (Java Man-
agement Extensions), TCP, Swap, and Custom executions. We are currently
not using the JMX, TCP, or Swap metrics, but they are available for use if
needed. Each of these catagories have parameters to allow customization of the
desired returned metrics, e.g., Custom allows for the returning of any custom
command line execution. We use this to execute a custom script that returns
the process id and container id pairs of each running Docker container. This
allows us to monitor each individual container’s performance precisely.

4.3 Result Aggregation: Addressing Requirement 3

Stochastic model checking as in use case 1 requires that results of the mul-
tiple simulation runs be aggregated to ascertain if the specified probabilistic
property is met or not. Similarly, as in use case 2, multiple simulation runs for
different simulation parameters result in different outcomes, which must be
aggregated and presented to the user. To accomplish this and thereby satisfy
Requirement 3, a key component of our middleware is the Result Aggregator
(RA). RA receives the simulation results from the Docker containers. It uses
ZeroMQ messaging queue service for reliable result delivery. It has two roles:
first, it sends feedback to the SM about the completion of task for decision
making. Second, it performs the actual result aggregation.

Since the aggregation logic is application-dependent, it is supplied by the
user when the service is hosted, and is activated when the simulation job
completes. For use case 1, the aggregation logic is a Bayesian statistical model
checking which produces a single string result. On the other hand, use case 2
aggregation logic parses and collates the XML files produced as the result of
simulation runs.

16 Shekhar et al

4.4 Web Interface to SIMaaS - SIMaaS Workflow and User Interaction:
Addressing Requirement 4

Finally, we discuss how the user interacts with SIMaaS, which is a web-based
interface, and the workflow triggered by a typical user action. The interface
to the Simulation Manager of SIMaaS is hosted on a lightweight web server,
CherryPy [22] to interact with the user and also to receive feedback from other
SIMaaS components. The interaction involves two phases. In the design phase
a user interacts with the SIMaaS interface and provides the initial configura-
tion which includes the simulation executables and the aggregation logic. A
container image is generated after including hooks to send the temporary re-
sults. This image is then uploaded to a private cloud registry accessible to the
container hosts. The aggregation logic is deployed in the Result Aggregator
component that can collect the temporary simulation results and generate the
final response.

Fig. 3: SIMaaS Interaction Diagram

The execution phase is depicted in Figure 3, wherein, time bounded, on-
demand simulation jobs are performed. The user can use a RESTful API
(or a web-form if deadline is not immediate) to supply name-value pairs of
parameters. The following parameters are supplied by all the users:

A SIMaaS Cloud Middleware 17

– Simulation Model Name: A simulation model name is required to identify
the container image and aggregation logic.

– Number of Simulations: The number of simulation instances to run.
– Deadline: The deadline for the job
– Required Resources: Number of CPUs to be allocated for each container.

Other types of resources will be added in future.
– Simulation Command: The command to initiate the simulation.
– List of (Execution Time Parameter, Estimated Execution Time): This is

a small set of the execution time parameter values and the corresponding
execution times that is used to generate the regression curve for estimating
the unknown execution time for remaining parameters.

The following parameters are specific to the use case:

– Use Case 1 - Number of Heaters: The number of heaters active in the
building (explained in section 3.1.1)

– Use Case 1 - Sampling Rate: The rate at which data is sampled for tem-
perature simulation.

– Use Case 1 - Strategy: The model strategy to be used.
– Use Case 1 - Confidence Level: A confidence value for the Bayesian Aggre-

gator (explained in section 3.1.1).
– Use Case 2 - SUMO Configuration File: A configuration file used by SUMO

simulation for selecting the inputs and deciding the output details.
– Use Case 2 - List of Vehicle Counts: Different vehicle counts to be simu-

lated.

We note that the simulation execution time is also a user input, however,
this value can be determined in a sandbox environment, wherein executing
a single simulation instance gives the value for a constant time simulation
(such as use case 1) or by executing a subset of simulation instances from a
different range of parameters (such as use case 2) and using a regression curve
to estimate the execution time for others.

The request is then forwarded and processed by the SM. It validates the in-
put and applies admission control as explained in Algorithm 2 using a resource
allocation and scheduling policy, and checks if sufficient resources are avail-
able. If not, then it immediately responds to the user with a failure message.
In future, based on the criticality of the request, some jobs may be swapped
for a higher priority job. If the job can be scheduled, then it allocates the re-
sources and contacts the CM to run the simulation containers. The containers
log the result to RA that keeps sending feedback to the SM and performs the
aggregation when the desired number of simulation results are received. The
SM also runs a service, applying Algorithm 1 at a configurable interval, to
determine if the deadline will be met based on the current performance data,
and accordingly contacts the CM to acquire additional resources and run the
containers. Once the simulation completes, the RA responds to the user with
the result. Currently it uses a shared folder. However, going forward we plan to
implement either an interface that can send the response as an asynchronous
callback or send a notification to the user about the availability of the result.

18 Shekhar et al

5 Experimental Validation

This section evaluates the performance properties of the SIMaaS middleware
and validates our claims in the context of hosting the use cases described in
Section 3.1.

5.1 Experimental Setup

Our setup consists of ten physical hosts each with the configuration defined
in Table 1. The same set of machines were used for experimenting with both
Linux containers and virtual machines. Docker version 1.6.0 was used for Linux
container virtualization and QEMU-KVM was used for hypervisor virtualiza-
tion with QEMU version 2.0.0 and Linux kernel 3.13.0-24.

Table 1: Hardware & Software Specification of Physical Servers

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Disk Space 500 GB

Operating System Ubuntu 14.04 64-bit

Even though our solution is designed to leverage the Linux containers in-
stead of virtual machines, since we did not have access to large number of
physical machines yet had to measure the scalability of our approach, we tested
our solution over a homogeneous cluster of 60 virtual machines deployed as
docker hosts for running the simulation tasks, i.e., the docker containers were
spawned inside the VMs. The same set of physical machines were used to host
the VMs with configuration as defined in Table 2.

Table 2: Configuration of VM Cluster Nodes

Kernel Linux 3.13.0-24
Hypervisor Qemu-KVM

Number of Virtual Machines 6
Overbooking Ratio 2.0

Guest CPUs 4
Guest Memory 4 GB

Guest OS Ubuntu 14.04 64-bit

Note that the SM, CM, RA and PM components of the SIMaaS middle-
ware reside in individual virtual machines deployed on a separate set of hosts,
each with 4 virtual CPUs, 8 GB memory and running Ubuntu 14.04 64-bit
operating system in our private cloud managed by OpenNebula 4.6.2. The

A SIMaaS Cloud Middleware 19

Simulation Manager was deployed on CherryPy 3.6.0 web server. The con-
tainer manager used Shipyard version v2 for managing the docker hosts. The
performance monitor relied on a customized Perfmon Server Agent 2.2.3.RC1
residing in each docker host to collect performance data. The Result Aggre-
gator utilized ZeroMQ version 4.0.4 for receiving simulation results from the
docker containers.

5.2 Validating the Choice of Linux Container-based SIMaaS Solution

We first show why we used the container-based approach in the SIMaaS so-
lution instead of traditional virtual machines. This set of experiments affirm
the large difference in startup times for containers in Linux container-based
cloud and virtual machines in hypervisor-based traditional cloud. In [31], the
authors showed that there is a high start up time required on different popular
public clouds. We tested similar configurations in our private cloud, managed
by OpenNebula and running QEMU-KVM hypervisor. We used overbooking
ratios of 1, 2 and 4 with a minimal image from use case 1. While the startup
time were in the order of sub-seconds for our Linux container host, they were
176, 300 and 599 seconds, respectively, for the hypervisor host. The large start
up time can be ascribed to the time taken in cloning the image as the VM file
system and booting up of the operating system.

Another set of experiments were performed to compare the performance
of a host running simulations using Linux container versus virtual machines.
Table 3 shows that the Linux container host performs better in most of the
cases as it does not incur the overhead of running another operating system
as a VM does.

Table 3: Comparison of Simulation Execution Time

Overbooking
Ratio 1

Overbooking
Ratio 2

Overbooking
Ratio 4

Linux Container
(Physical Server - 4s)

4.74s 7.19s 13.32s

Virtual Machine
(Physical Server - 4s)

5.17s 9.71s 19.05s

Linux Container
(Physical Server - 50s)

50.5s 98.29s 180.45s

Virtual Machine
(Physical Server - 50s)

52.4s 97.56s 202.5s

5.3 Workload for Container-based Experimentation

The workload we used in our experiments consists of several jobs correspond-
ing to user requests, each having a number of simulation instances as a bag

20 Shekhar et al

of independent tasks. The simulations are containerized as docker images on
Ubuntu 14.04 64-bit operating system. The jobs are based on both the use cases
described in section 3.1, however, we created several variations of these use
cases by changing the execution parameters. The building heating stochastic
simulation jobs have near constant execution time, but we used three varia-
tions of it by using different sampling rates of 10, 5, and 2 milliseconds. The
smaller the sampling rate, better is the accuracy of the simulation results at
the expense of longer execution times. The traffic simulations jobs also had
several variations based on the range of the vehicle count.

The simulations for each job may have different resource requirements that
will be provided by the user. For these experiments, we have considered CPU-
intensive workloads and modeled the user input as three resource types with
1, 2 or 4 CPUs per container, which is an indication of how much CPU share
that container gets. Thus, we convert these values to CPU share per host as
the docker container input.

We generated a synthetic workload to measure the system performance. We
conducted two sets of experiments. The first set of experiments were conducted
to measure the efficacy of our algorithm using a single type of job on a ten
physical host cluster, whereas the second set of experiments were performed
to demonstrate the scalability of our algorithm using a 60 virtual-host cluster
with different types of jobs arriving at different points in time. We applied the
Poisson distribution with λ of 1 for a duration of two hours to find the job
arrival distribution. The number of tasks per job was uniformly distributed
from 100 to 500. The deadline per job was also varied as a uniform distribution
from 5 minutes to 20 minutes.

5.4 Evaluating SIMaaS for Meeting Deadlines and Resource Consumption

We evaluate the ability of the SIMaaS middleware to meet the user-specified
deadline and its effectiveness in minimizing the resources consumed. In use
case 1 described in section 3.1.1, the user provides the approximate number
of simulations needed for stochastic model checking as an input to attain the
desired confidence level for the output [45]. For the second use case describe in
3.1.2, the number of simulations is a user input. These studies were conducted
for different resource overbooking ratios, simulation count, deadlines, simula-
tion duration, and execution times. Overbooking refers to the number of times
the capacity of a physical resource is exceeded. For example, suppose each con-
tainer is assigned a single CPU; thus for a 12-core system, an overbooking ratio
of 2 translates to 24 containers running on the host. This strategy is cost ef-
fective when the guests do not consume all the assigned resources all at the
same time. We run the scheduling policy defined in Algorithm 1 at an interval
of 2 secs that dynamically allocates extra hosts if the deadline cannot be met
with the assigned hosts.

A SIMaaS Cloud Middleware 21

Test 1 – Determining the Error Estimation Parameter (α): These experiments
were performed on the ten physical host cluster with use case 1 as the sim-
ulation model with the following parameters: a deadline of 2 minutes, 500
simulation tasks, one CPU per container and overbooking ratio of 2 per host.
The purpose of these tests was to determine the error estimation parameter
– α for our system. This value is used to calculate the error factor, explained
in Section 4.1, that plays a crucial role in meeting the deadline and allocat-
ing container slots. Recall also that our algorithm attempts to minimize the
number of containers while meeting deadlines on a per simulation job basis.

Fig. 4: Container Count and Deadline Variation with α

Figure 4 depicts the simulation results for α values 0, 1, 1.5, 2 and 3.
We observe that values of 0 and 1 were too low and the system missed the
deadline. A value of 1.5 was found to meet the deadline as well as causing
less peak resource usage. This value can be made dynamic based on the user
urgency and strictness of the deadline.

Test 2 – Studying Variations in Container Count (Bj) with Error Factor (Fj):
These tests were conducted to study the impact of changing the feedback based
error factor (Fj) on the container count (Bj) as well as the input simulation
execution time. From Figure 5, we observe that initially, the resource consump-
tion varies according to the error factor. Later, the resource consumption stays
constant after the error estimate reaches a steady state. We conclude that the

22 Shekhar et al

error estimate becomes accurate and close to the real value we get from the
feedback. However, as the simulation moves towards completion, resources get
released as lesser number of simulations remain to be executed.

(a) 5 seconds simulation execution time (b) 10 seconds simulation execution time

(c) 15 second simulation execution time (d) 20 second simulation execution time

Fig. 5: Variation in Error Factor (Fj) and Container Count (Bj)

Another observation we make from the results is that a pessimistic ex-
ecution time estimate (here 20s) results in more initial resource allocation.
Resource allocation has its own cost. For example, we measured the cost of
deployment of simulation from the private registry to the docker hosts for both
of our use cases. For the image deployment of heater simulation of use case 1,
it took 135.1 sec and for the SUMO simulation deployment of use case 2, it
took 34.6 sec. These values are network-dependent but are incurred one-time
per host which can be done as a setup process.

Since resource allocation incurs cost, an optimistic estimate is better be-
cause the system can adjust itself. However, if the estimate is too optimistic,
the system may not be able to finish the job within the user-defined deadline.

Test 3 – Validating the Applicability of the Feedback-based Approach: The goal
of applying Algorithm 1 is to spread the load per job over the deadline period
so that multiple jobs can run in parallel while meeting their deadlines. In other
words, the system does not schedule a job (and its tasks) immediately upon

A SIMaaS Cloud Middleware 23

a request but delays it such that the load is balanced yet ensuring that the
deadline will be met.

Figure 6 compares a scenario where we do not apply the feedback-based
approach and instead allocate resources based on a fixed expected execution
time. Estimating an accurate execution time is not a trivial task and may
not even be realistically feasible. The execution time does not just depend on
the input parameter and hardware; it is also dependent on the performance
interference due to other processes running on the shared resource. Too little
a value, and we miss the deadline while too high value will result in wastage
of resources. We observe from the results that the feedback based approach
meets the deadline in all the cases while minimizing the resource consumption
by releasing the containers if not needed.

�

��

��

��

��

��

��

��

	�

�

���

� �� ��� ��� ��� ��� ���

N
u

m
b

e
r

o
f

c
o

n
ta

in
e

rs
 (

B
j)

Simulation Duration (sec)

���������� ��� ��������

(a) 5 seconds simulation execution time

�

��

��

��

��

��

��

��

	�

� �� �� �� 	� ��� ��� ���

N
u

m
b

e
r

o
f

c
o

n
ta

in
e

rs
 (

B
j)

Simulation Duration (sec)

������ ��� ���
������

(b) 10 seconds simulation execution time

�

��

��

��

��

��

��

��

	�

�

� �� �� �� 	� ��� ��� ���

N
u

m
b

e
r

o
f

c
o

n
ta

in
e

rs
 (

B
j)

Simulation Duration (sec)

�� ����������� ��������

(c) 15 second simulation execution time

�

��

��

��

��

���

���

� �� �� �� �� ��� ��� ���

N
u

m
b

e
r

o
f

c
o

n
ta

in
e

rs
 (

B
j)

Simulation Duration (sec)

��	
������ ���
������

(d) 20 second simulation execution time

Fig. 6: Comparison of Feedback vs No Feedback Approaches

Test 4 – Varying Host Overbooking Ratios: This set of experiments were per-
formed to measure the capabilities of the system to handle multiple parallel
requests made to the hosts with varying overbooking ratios, and study their
performance while executing the containers. Table 4 shows the results of the
experiments where we varied the overbooking ratio from 0.5 to 6. The specified
deadline was 4 minutes and expected simulation time was 10 seconds.

24 Shekhar et al

Table 4: System Performance with Varying Host Overbooking Ratios

Overbook-

ing Ratio

Max
Con-
tainer
Count

Max
Hosts
Ac-

quired

Simulation
Duration
(in sec)

Measured
Execu-

tion Time
per Sim
(in sec)

Turnaround
Time per
Sim (in
sec)

Measured
Over-

head(%)

0.5 29 5 239.4 9.31 10.48 12.57
1 41 4 233.6 9.53 11.52 20.88
2 59 3 231.3 15.62 18.59 19.01
4 114 3 213.3 28.72 32.76 14.07
6 160 3 Deadline

Missed
41.62 46.9 12.67

We measure the container count and the actual number of hosts acquired
by the system to meet the deadline. The system’s goal is to minimize this
number to keep the economic cost within the bounds. We also measure the
simulation duration observed by the system user after the system finds the de-
sired solution, the average turnaround time per simulation from the instant it
gets requested till the results get logged, the actual simulation execution time
per simulation and the corresponding system overhead. This overhead includes
the performance interference overhead, resource contention and the time con-
sumed in data transfer at different components of the SIMaaS workflow as
shown in Figure 3.

From the results we can conclude that for CPU-intensive applications –
simulations tend to fall in this category – the non-overbooked system provides
the best results, however, the number of hosts needed is also high, which in
turn increases the economic cost. A highly overbooked system too has high
cost and will be unable to meet the deadlines due to performance overhead
and should be avoided. Based on empirical results, a lower overbooked scenario
provides ideal trade-off as it needs less number of hosts and is able to meet
the deadlines. We also note that the system overhead remains at a reasonable
level of less than 21% during the experiments.

Based on the experiments, we illustrate in Figures 7, the CPU utilization
and memory utilization for use case 1. The simulations have a low memory
footprint but the CPU utilization is quite high. This conforms to our ear-
lier result that having no or low overbooking for the host will provide better
performance. The results were similar for use case 2.

Test 5 – Varying Number of Simulations: The purpose of these tests is to
demonstrate the scalability of SIMaaS middleware with increasing number
of simulations that are needed as the fidelity of statistical model checking
increases. The tests were executed with a deadline of 600 seconds while other
parameters were kept the same as in previous experiments. Table 5 shows the
results, which illustrates that the system is able to scale to 5,000 simulations
for a job without significant overhead.

A SIMaaS Cloud Middleware 25

�

��

��

��

��

���

���

� �� �� 	
 �	 ��� ��� ��� ��
 ��	 ��� ���

�
�
��
�

����	
����

��������������� �������������

(a) CPU Utilization Variations with Simu-
lation Count

�

�

�

�

�

��

��

��

� �� �� 	
 �	 ��� ��� ��� ��
 ��	 ��� ���

�
�
��
�

����	
����

��������������� ���������������

(b) Memory Utilization Variations with
Simulation Count

Fig. 7: Use Case 1: CPU Utilization Variations with Simulation Count

Table 5: System Performance with Varying Number of Simulations

Number
of Simu-
lations

Max
Con-
tainer
Count

Max
Hosts
Ac-

quired

Simulation
Duration
(in secs)

Measured
Execution
Time per

Sim (in sec)

Turnaround
Time per
Sim (in
ms)

Measured
Over-

head(%)

500 18 1 513.8 4.81 7.79 61.95
1000 33 2 547.1 5.26 11.45 117.68
2500 71 3 588.5 5.52 11.02 99.64
5000 137 6 591.4 5.49 10.72 95.26

Test 6 - Varying Simulation Execution Time: For these experiments, we vary
the sampling rate parameter of use case 1 and use a deadline of 10 minutes
to increase the simulation execution time of our simulation model. Table 6
measures and presents the simulation performance for varying execution time.
We observe that the overhead reduces significantly as the duration of the
container execution increases, which is attributed mainly to less percentage of
time spent in scheduling and start up of containers.

Table 6: System Performance with Varying Simulation Duration

Sampling
Rate (in

ms)

Max
Con-
tainer
Count

Max
Hosts
Ac-

quired

Simulation
Duration
(in secs)

Measured
Execution
Time per

Sim (in sec)

Turnaround
Time per
Sim (in
ms)

Measured
Over-

head(%)

10 6 1 526.3 4.69 5.87 25.91
5 11 1 533.0 9.35 10.48 12.09
1 108 9 526.0 63.91 66.81 4.53

Test 7 – Scalability Test and Admission Control with Incoming Workload:
These are scalability experiments with the workload described in Section 5.3

26 Shekhar et al

with 60 docker hosts and an incoming request flow generated using Poisson
distribution. The system applied admission control and informed the users
about the decision to accept the request. Table 7 summarizes the results for
the tests.

Table 7: Scalability Test Summary

Number of Jobs 103
Test Duration 1h:47min:57s

Number of Simulations Performed 15873
Hosts Utilized 54 / 60
Jobs Rejected 1

Number of Jobs that Missed Deadline 1

We observed that one job with deadline of 618 seconds missed it by 1.39
seconds. This failure can be eliminated with stricter error estimation parameter
(α), explained in Section 4.1. SIMaaS scaled to 54 virtualized hosts during the
experiments. In future, we would like to experiment with a larger cluster to
test the system’s scalability limit.

6 Conclusions

This paper described the design and empirical validation of a cloud middle-
ware solution to support the notion of simulation-as-a-service. Our solution is
applicable to those systems whose models are stochastic and require a poten-
tially large number of simulation runs to arrive at outcomes that are within
statistically relevant confidence intervals, or systems whose models result in
different outcomes for different parameters.

Many insights were gained during this research as follows and resolving
these form the dimensions of our future investigations:

– Several competing alternatives are available to realize different aspects of
cloud hosting. Effective application of software engineering design patterns
is necessary to realize the architecture for cloud-based middleware solutions
so that individual technologies can be swapped with alternate choices.

– Our empirical results suggest that an overbooking ratio of 2 and α value
of 1.5 provided the best configuration to execute the simulations. However,
these conclusions were based on the existing use cases and the small size of
our private data center. Moreover, no background traffic was considered.
Our future work will explore this dimension of the work as well as determine
a mathematical bound for the optimal configuration.

– In our approach the number of simulations to execute for stochastic model
checking were based on published results for the use case. In future there
will be a need to determine these quantities through modeling and empirical
means.

A SIMaaS Cloud Middleware 27

– We have handled basic failures in our system where a container is scheduled
again if it does not start, however we need advanced fault tolerance mecha-
nism to handle failure of hosts and various SIMaaS components. Our prior
work [6] has explored the use of VM-based fault tolerance, however, for the
current work we will need container-based fault tolerance mechanisms.

– We did not consider a billing model for the end users in our work but such
a consideration should be given to generate revenues for such a service and
also so that the user does not abuse the system.

– As most of the cloud providers are rolling out Linux container-based ap-
plication deployment, we need to design a hybrid cloud to leverage it.

– Currently our middleware architecture is realized as a centralized deploy-
ment in our small-scale private data center. In large data centers, we will
require a distributed realization of the various entities of our middleware.
This will give rise to a number of distributed systems issues, and addressing
these form the dimensions of our future work.

All the scripts and source code, and experimen-
tal results of SIMaaS are available for download from
http://www.dre.vanderbilt.edu/~sshekhar/download/SIMaaS.

Acknowledgments.

This work was supported in part by the National Science Foundation CAREER
CNS 0845789 and AFOSR DDDAS FA9550-13-1-0227. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of NSF and AFOSR.

References

1. Abate A, Prandini M, Lygeros J, Sastry S (2008) Probabilistic Reachabil-
ity and Safety for Controlled Discrete Time Stochastic Hybrid Systems.
Automatica 44(11):2724–2734

2. Abate A, Katoen JP, Lygeros J, Prandini M (2010) Approximate Model
Checking of Stochastic Hybrid Systems. European Journal of Control
16(6):624–641

3. Al-Zoubi K, Wainer G (2011) Distributed Simulation using RESTful Inter-
operability Simulation Environment (RISE) Middleware. In: Intelligence-
Based Systems Engineering, Springer, pp 129–157

4. Alamri A, Ansari WS, Hassan MM, Hossain MS, Alelaiwi A, Hossain
MA (2013) A Survey on Sensor-cloud: Architecture, Applications, and
Approaches. International Journal of Distributed Sensor Networks 2013

5. Alur R, Pappas G (2004) Hybrid Systems: Computation and Control: 7th
International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-
27, 2004, Proceedings, vol 7. Springer

6. An K, Shekhar S, Caglar F, Gokhale A, Sastry S (2014) A Cloud Mid-
dleware for Assuring Performance and High Availability of Soft Real-time

28 Shekhar et al

Applications. Elsevier Journal of Systems Architecture (JSA) 60(9):757–
769, DOI http://dx.doi.org/10.1016/j.sysarc.2014.01.009

7. Atzori L, Iera A, Morabito G (2010) The Internet of Things: A Survey.
Computer networks 54(15):2787–2805

8. Bardac M, Deaconescu R, Florea AM (2010) Scaling Peer-to-
Peer Testing using Linux Containers. In: Roedunet International
Conference (RoEduNet), 2010 9th, IEEE, pp 287–292, URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5541555

9. Behrisch M, Bieker L, Erdmann J, Krajzewicz D (2011) SUMO-Simulation
of Urban MObility-an Overview. In: SIMUL 2011, The Third International
Conference on Advances in System Simulation, pp 55–60

10. Van den Bossche R, Vanmechelen K, Broeckhove J (2011) Cost-efficient
Scheduling Heuristics for Deadline Constrained Workloads on Hybrid
Clouds. In: Cloud Computing Technology and Science (CloudCom), 2011
IEEE Third International Conference on, IEEE, pp 320–327

11. Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011)
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms. Soft-
ware: Practice and Experience 41(1):23–50

12. Calheiros RN, Vecchiola C, Karunamoorthy D, Buyya R (2012) The Aneka
Platform and QoS-driven Resource Provisioning for Elastic Applications
on Hybrid Clouds. Future Generation Computer Systems 28(6):861–870

13. Calheiros RN, Netto MA, De Rose CA, Buyya R (2013) EMUSIM: An
Integrated Emulation and Simulation Environment for Modeling, Evalu-
ation, and Validation of Performance of Cloud Computing Applications.
Software: Practice and Experience 43(5):595–612

14. Casanova H, Giersch A, Legrand A, Quinson M, Suter F (2013) SimGrid:
A Sustained Effort for the Versatile Simulation of Large-scale Distributed
Systems. arXiv preprint arXiv:13091630

15. Choi C, Seo KM, Kim TG (2014) DEXSim: An Experimental Environment
for Distributed Execution of Replicated Simulators using a Concept of
Single-simulation Multiple Scenarios. Simulation p 0037549713520251

16. Fujimoto RM (1990) Parallel Discrete Event Simulation. Communications
of the ACM 33(10):30–53

17. Fujimoto RM, Malik AW, Park A (2010) Parallel and Distributed Simu-
lation in the Cloud. SCS M&S Magazine 3:1–10

18. Gao Y, Wang Y, Gupta SK, Pedram M (2013) An Energy and Deadline
Aware Resource Provisioning, Scheduling and Optimization Framework
for Cloud Systems. In: Proceedings of the Ninth IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthe-
sis, IEEE Press, p 31

19. Garćıa-Valls M, Cucinotta T, Lu C (2014) Challenges in Real-Time Vir-
tualization and Predictable Cloud Computing. Journal of Systems Archi-
tecture

20. Haklay M, Weber P (2008) Openstreetmap: User-generated Street Maps.
Pervasive Computing, IEEE 7(4):12–18

A SIMaaS Cloud Middleware 29

21. Handigol N, Heller B, Jeyakumar V, Lantz B, McKeown N (2012)
Reproducible Network Experiments using Container-based Emulation.
In: Proceedings of the 8th international conference on Emerging
networking experiments and technologies, ACM, pp 253–264, URL
http://dl.acm.org/citation.cfm?id=2413206

22. Hellegouarch S (2007) CherryPy Essentials: Rapid Python Web Applica-
tion Development. Packt Publishing Ltd

23. Kenyon C, et al (1996) Best-Fit Bin-Packing with Random Order. In:
SODA, vol 96, pp 359–364

24. Kim H, El-Khamra Y, Rodero I, Jha S, Parashar M (2011) Autonomic
Management of Application Workflows on Hybrid computing Infrastruc-
ture. Scientific Programming 19(2):75–89

25. Knuth DE (1969) The Art of Computer Programming, Vol. 2: Seminu-
merical Algorithms, Revised Edition

26. Lardieri P, Balasubramanian J, Schmidt DC, Thaker G, Gokhale A, Dami-
ano T (2007) A Multi-layered Resource Management Framework for Dy-
namic Resource Management in Enterprise DRE Systems. Journal of Sys-
tems and Software: Special Issue on Dynamic Resource Management in
Distributed Real-time Systems 80(7):984–996

27. Ledyayev R, Richter H (2014) High Performance Computing in a Cloud
Using OpenStack. In: CLOUD COMPUTING 2014, The Fifth Interna-
tional Conference on Cloud Computing, GRIDs, and Virtualization, pp
108–113

28. Li Z, Li X, Duong T, Cai W, Turner SJ (2013) Accelerating Optimistic
HLA-based Simulations in Virtual Execution Environments. In: Proceed-
ings of the 2013 ACM SIGSIM conference on Principles of advanced dis-
crete simulation, ACM, pp 211–220

29. Liu X, He Q, Qiu X, Chen B, Huang K (2012) Cloud-based Computer Sim-
ulation: Towards Planting Existing Simulation Software into the Cloud.
Simulation Modelling Practice and Theory 26:135–150

30. LXC (2014) Linux Container. URL https://linuxcontainers.org/, last
accessed: 10/11/2014

31. Mao M, Humphrey M (2012) A performance study on the vm startup time
in the cloud. In: Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, IEEE, pp 423–430

32. Mauch V, Kunze M, Hillenbrand M (2013) High Performance Cloud Com-
puting. Future Generation Computer Systems 29(6):1408–1416

33. Menage PB (2007) Adding generic process containers to the linux kernel.
In: Proceedings of the Linux Symposium, Citeseer, vol 2, pp 45–57, URL
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-45-58.pdf

34. Merkel D (2014) Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux J 2014(239), URL
http://dl.acm.org/citation.cfm?id=2600239.2600241

35. Rak M, Cuomo A, Villano U (2012) Mjades: Concurrent Simulation in the
Cloud. In: Complex, Intelligent and Software Intensive Systems (CISIS),
2012 Sixth International Conference on, IEEE, pp 853–860

30 Shekhar et al

36. Rasmussen CE, Williams CKI (2005) Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press

37. Shankaran N, Kinnebrew JS, Koutsoukas XD, Lu C, Schmidt DC, Biswas
G (2009) An Integrated Planning and Adaptive Resource Management
Architecture for Distributed Real-time Embedded Systems. Computers,
IEEE Transactions on 58(11):1485–1499

38. Shipyard (2014) Shipyard Project. URL
http://shipyard-project.com/, last accessed: 10/11/2014

39. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L (2007)
Container-based Operating System Virtualization: A Scalable,
High-performance Alternative to Hypervisors. In: ACM SIGOPS
Operating Systems Review, ACM, vol 41, pp 275–287, URL
http://dl.acm.org/citation.cfm?id=1273025

40. Somasundaram TS, Govindarajan K (2014) CLOUDRB: A Framework for
Scheduling and Managing High-Performance Computing (HPC) Applica-
tions in Science Cloud. Future Generation Computer Systems 34:47–65

41. Tao F, Zhang L, Venkatesh V, Luo Y, Cheng Y (2011) Cloud Manufactur-
ing: A Computing and Service-oriented Manufacturing Model. Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture p 0954405411405575

42. Vanmechelen K, De Munck S, Broeckhove J (2012) Conservative Dis-
tributed Discrete Event Simulation on Amazon EC2. In: Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), IEEE Computer Society, pp 853–860

43. Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose
CA (2013) Performance Evaluation of Container-based Virtualiza-
tion for High Performance Computing Environments. In: Paral-
lel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, IEEE, pp 233–240, URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498558

44. Zhu X, Chen H, Yang LT, Yin S (2013) Energy-Aware Rolling-
Horizon Scheduling for Real-Time Tasks in Virtualized Cloud Data Cen-
ters. In: High Performance Computing and Communications & 2013
IEEE International Conference on Embedded and Ubiquitous Comput-
ing (HPCC EUC), 2013 IEEE 10th International Conference on, IEEE,
pp 1119–1126

45. Zuliani P, Platzer A, Clarke EM (2013) Bayesian Statistical Model Check-
ing with Application to Stateflow/Simulink Verification. Formal Methods
in System Design 43(2):338–367

