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Abstract 

In this paper we consider stochastic programming problems where the objective function is 

given as an expected value function. We discuss Monte Carlo simulation based approaches to 

a numerical solution of such problems. In particular, we discuss in detail and present numer- 

ical results for two-stage stochastic programming with recourse where the random data have a 

continuous (multivariate normal) distribution. We think that the novelty of the numerical ap- 

proach developed in this paper is twofold. First, various variance reduction techniques are ap- 

plied in order to enhance the rate of convergence. Successful application of those techniques is 

what makes the whole approach numerically feasible. Second, a statistical inference is devel- 

oped and applied to estimation of the error, validation of optimality of a calculated solution 

and statistically based stopping criteria for an iterative alogrithm. © 1998 The Mathematical 

Programming Society, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

In  many  practical situations one is required to solve opt imizat ion problems which 

are subject to uncertainty. There are various ways to model  an uncertainty (incom- 

plete information,  data  variability, randomness,  etc.) which lead to different formu- 

lations o f  the associated opt imizat ion problems. In this paper  we focus on a 

particular approach  to such problems, which is based on simulation (Monte  Carlo) 

techniques, and apply it to a specific class of  problems. 

Consider  the optimization problem 

minE{f (x, ~)} (1) 
xcS  
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of  minimization of the expected value function E{f(x, if)} over a set S c R". We as- 

sume that the set S is deterministic and is given explicitly by linear or nonlinear con- 

straints and that ~ is a random vector whose distribution is known. In realistic 

applications, and especially when the random vector ~ has a large dimensionality, 

it is typically impossible to calculate the expected value E{f(x, ~)} in a closed form 

and hence numerical approximations are required. The basic idea of an approach 

that we discuss in this paper is based on Monte Carlo techniques and is quite simple. 

A random sample Z1, • •., ZN of independent replications of the random vector ~ is 

generated and consequently the expected value function is approximated by the av- 

erage function. 

N 

~(x) = N-l ~-~f(x, Zi). (2) 
i--1 

The idea of generation of a random sample and consequent approximation of the 

expectation by the corresponding average is not new, of course, and is the heart of the 

Monte Carlo method. Somewhat recently Monte Carlo simulation based numerical 

techniques started to attract attention in stochastic programming community. We 

can mention in that respect the stochastic subgradient (stochastic quasigradient) meth- 

ods [1,2], and approaches developed in [3,4]. In this paper we consider situations when, 

for a generated sample Z~, . . . ,  ZN, the value, first and possibly second order derivatives 

of the average function fN (X) can be calculated and hence deterministic algorithms of 

nonlinear programming can be applied to minimization offN (X) over S (cf. [5,6]). We 

discuss the problem and report a numerical experience for a particular class of stochas- 

tic programs, namely two-stage stochastic programs with recourse. Although the ideas 

discussed here are concentrated on two-stage stochastic programming with recourse, 

we believe that some of them can be applied to a wider range of  problems. 

We think that the novelty of numerical techniques developed in this paper is two- 

fold. First, it was possible to apply various variance reduction techniques which en- 

hanced the rate of convergence and in fact made the whole approach numerically 

feasible. Second, a statistical inference was developed and applied to estimation of 

the error, validation of optimality of a calculated solution and statistically based 

stopping criteria for an iterative algorithm. 

2. Two-stage recourse problem 

In this section we discuss some basic ideas applied to two-stage stochastic pro- 

gramming with recourse. Stochastic programs with recourse were introduced in 

the fifties by Dantzig [7] and Beale [8]. For  more recent discussions of this class of 

problems and extended bibliography see e.g., [9,2,10,11]. Consider the optimization 

problem 

min cTx + E{Q(x, o~)}, (3) 
x~S 
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where 

Q(x, w) ~- inf{qTy: Wy = h(~a) - T(w)x, y >~ 0}. (4) 

Here h = h(uJ) is an n × 1 random vector and T = T(o~) is an n × m random matrix 

defined on a probability space (f2, W, P). We make the following (stochastic) as- 

sumptions throughout the paper: (i) h and T are independent, and (ii) the distribu- 

tion of the random vector h has a probability density function (pdf) p(.). 

With few exceptions (e.g. [3,4]), existing numerical methods for solution of (3) are 

based on deterministic techniques which deal with afinite number of realizations of 

the corresponding random variables. This, in turn, requires discretization of the un- 

derlying probability measures (distributions) in case these distributions are continu- 

ous. In many situations even a reasonably moderate number of such realizations 

results in huge linear programs which cannot be solved even by modern computers. 

Note that the function Q(x,~o) can be written in the form 

O(x, oJ) = G(h(co) - T(og)x), where 

G(z) = inf{qVy: Wy = z, y ~ 0}. (5) 

By duality arguments (cf. [12]) the function G(.) can be represented in the form 

G(z) = sup{~Tz: wT~ ~< q}. (6) 

For the sake of simplicity we assume that: (i) for every vector z the system 

Wy = z, y >~ O, has a solution (the recourse is complete), and (ii) the system 

wT~ ~< q has a solution (dual feasibility). Under these assumptions, G(-) is a finite 

valued, piecewise linear convex function. We also assume that the expectation 

E{Q(x, ~o)} exists for all x c S. 

Suppose now that a random sample (hi, T1) , . . . ,  (hN, TN), of i.i.d. (independent 

identically distributed) realizations of (h(oJ), T(co)) is generated. Then the expected 

value function g(x) ~- E{Q(x, ~o)} can be estimated by the sample average function 

N 

i=1 

and consequently the program (3) can be approximated by 

rain cTx + ~N(X). (8) 
xcS 

One can solve problem (8) by using deterministic methods of nonlinear program- 

ming and then to use its optimal solution as an approximation of the optimal solu- 

tion of the original problem (3). This approach, known as a stochastic counterpart 

(SC) method or a sample-path optimization, has been discussed and analyzed, for ex- 

ample, in [13,5,14,6]. Of course, an implementation of that idea requires specification 

of a particular algorithm which is used for solving the approximating problem (8). 

Notice that G(.) is a piecewise linear, nondifferentiable convex function. It follows 

that gN(') is also a piecewise linear, nondifferentiable convex function. Nevertheless, 
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we can compute a subgradient of~aN(. ) as follows. Let OG(z) denote the subdifferen- 

tial of G(-) at z. By (6) we have that 

OG(z) = argmax{~Tz: wT~ ~< q}. 

Furthermore, by standard subdifferential calculus we have that 

OxG(h - Tx) = -TT OG(h - Tx). (9) 

Consequently we have that a subgradient of ~aS(. ) is given by 

N 

VgN(X) = - N - I  Z TTVG(hi  - Tix)' (10) 
i=1 

where VG(z) denotes a subgradient of G(.) at z, which in turn is given by any optimal 

solution of the linear programming problem 

m a x  ~Tz 

s.t. wT~ ~<q. 

It is important to observe that the expected value function g(.) := E{Q(., e))} is 

differentiable and that, for any given x, V~aN(x ) is a consistent estimator of Vg(x), 

i.e., VgN(x ) converges w.p.1, to Vg(x) as N -+ ec. In order to see that, note initially 

that convexity of the function G(.) implies that g(.) is also convex and its subdiffer- 

ential can be taken inside the expected value (see [15] for details). That is, 

Og(x) = E { O G ( h -  Tx)} =E{-TTOG(h  - rx)}. (11) 

Furthermore, by Rademacher theorem, the set of points where G(.) is not differen- 

tiable has Lebesgue measure zero. It follows that OG(h - Tx) is a singleton with prob- 

ability one (since we assume that h has a density and h and T are independent). 

Consequently g(x) is differentiable at x and, by the Strong Law of Large Numbers, 

the estimator V~aN(x), defined in (10), is a consistent estimator of Vg(x). 

It should be noted that second order derivatives of the expected value function 

g(-) cannot be taken inside the expected value. In fact second order derivatives of 

~,N(X) are zeros whenever they exist. An alternative approach to estimation of 

g(x), which also allows an estimation of its first and second order derivatives, is to 

make a change-of-variables transformation and consequently to apply the likelihood 

ratio (LR) method (cf. [16,6]) as follows. Note first that we can write the expected 

value function g(x) in the form 

and by making the transformation y = r / -  Tx, 
[ 

~ET~ f G(y)p(y-~Yx)dy (13) g(x) 
(gn 
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It follows that (cf. [6]) we can represent g(x) in the form 

g(x )=E r , )  po(Y) dy =Er{Epo{G(Y)L(Y,T,x)}}, (14) 

where p0(Y) is a chosen pdf, referred to as the dominating pdf, Y is a random vector 

whose distribution is determined by the dominating pdf po(y) and 

L(y,  - P ( Y  + 
P00') (is) 

is the so-called LR function. 

In order to simplify the presentation we assume subsequently that only the vector 

h is random while the matrix T is fixed (deterministic). In that case the LR function 

can be written in the form 

LC~ , x) - p(y + rx) 
Po(Y) (16) 

Now let Y1,..., Yx be a random sample, where Y, are generated from the chosen pdf 

po(y). Then, because of (14), we can estimate g(x) by the average function 

N N 

: N - '  = N ' + rx), (17) 
i=1 i=1 

where wi = G(Y~)/po(Yii). Note that the approximating function gN(') is given explic- 

itly provided that values G(YI),..., G(YN) are calculated and the pdfp(-) is given in a 

closed form. For example, if h has a multivariate normal distribution, then p(.) can 

be written in the form 

p(t/) = ke {(" ~)~z '(, ~), (18) 

where/~ and E are the mean vector and the covariance matrix of h, respectively, and 

k is a normalization constant. 

Note also that the function gN(') is smooth, say twice continuously differentiable, 

if the pdfp(.) is smooth. Then under standard regularity conditions, given a point x, 

the gradient Vgu (x) and the Hessian matrix ~72gN(X) provide consistent estimates of 

the gradient Vg(x) and the Hessian matrix V2g(x) of the expected value function 

g(x), respectively (see [6] for details). Moreover, it is possible to reduce the variance 

of the obtained estimates by controlling the choice of the dominating pdfp0(.) (cf. 

[17,6]). Also the required values G(Yi), i = 1,. . . ,  N, can be calculated independently 

of each other which can be convenient for parallel computation. 

3. Computational issues 

Consider the estimator ~N(x), defined in (17), and the corresponding program 

min cTx + ~(X) (19) 
xCc; 
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giving an approximation of the program (3). The above program is different from (8) 

in that the 'straightforward' estimator ~N(x) is replaced by the LR estimator ~N(X). 
An advantage of the LR estimator is that once the sample Y~,..., YN is generated 

from the chosen (and fixed) pdfp0(y), and the values G(Yi) are computed, the LR 

average function gN(') is given explicitly through the LRs L(Y~, .). Consequently 

(19) becomes a smooth nonlinear (deterministic) programming problem. It is tempt- 

ing then to try to solve the obtained problem (19) and to use its optimal solution as 

an estimator of the optimal solution of the expected value problem (3). Unfortunate- 

ly such an approach did not work well in the present case. In order to see why let us 

make a quick analysis of the above problem. 

The expected value function g(x) in convex irrespective of the underlying distri- 

bution while the function gu (x) is given through the corresponding pdfp(.) and can 

be nonconvex. It is possible to show that V2~N(X) converges w.p.1, to V2g(x) uni- 
formly on any compact set C C Nm (e.g. [6]). It is also possible to show that the Hes- 

sian matrices V2g(x) are positive definite, provided the random vector h has a 

positive valued density function and the matrix T has full column rank [18]. It fol- 

lows that w.p.1, for N large enough, the Hessian matrices V2~N(x) are also positive 

definite, and hence ~N(x) in convex, on C. However, such mathematical statements 

should be taken cautiously. Since the pdf p(rt) -~ 0 as q ~ ec, the approximating 

function ~x(X) also tends to zero, even if g(x) ---+ oo as x -+ oc. Therefore )N(X) can- 

not be convex and cannot give a good approximation of g(x) on the whole space 

Nm. We come here to the concept of a (stochastic) trust region, that is a region where 

~N(X) can be trusted to give a reasonably good approximation of g(x). It turns 

out that, typically, such a trust region is too small to be useful for optimization 

purposes. 

Suppose, for instance, that h has a multivariate normal distribution (see (18)) 

with mean # and covariance matrix X and that the pdfp0(.) is also multivariate nor- 

mal with the same covariance matrix and mean/~0. Then the variance Of~x(X ) is giv- 

en by 

2] 
O-2N (X)= var{~N(X) } 

with (see [6, p. 52]) 

(21) 

where 6 =/~(x)-/~0 and /~ (x )= /~ -  Tx. Formulas (20) and (21) show that the 

variance of ~N(x) grows exponentially with 6 whenever the term E,o+2a{G(Y) 2} 
is bounded from below by a positive constant. It follows that the trust region 

tends to be small, thus preventing long steps in the process of minimization of 

~N(x) and therefore making direct solving of (19) not feasible from a practical 

standpoint. 
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Nevertheless the LR estimator gN(X) can be useful in several respects. First, the 

function gN (') is smooth, provided the pdfp(.) is smooth, and hence its second order 

derivatives can be used in order to estimate the corresponding second order deriva- 

tives of g(-). Second, ~?N(') can be employed in conjunction with some variance re- 

duction techniques (see Section 6.2). 

A conceptual idea of the algorithm, implemented in this paper, can be described 

now as follows. Given a current iteration point x ~, a random sample is generated 

from a current pdfff0(. ) and then a few steps of a chosen algorithm (e.g. sequential 

quadratic minimization) are applied to an approximating nonlinear (deterministic) 

programming problem. In this respect both estimators ~?N (') and ~?N ('), and their de- 

rivatives, are used in order to improve the accuracy of approximation and to en- 

hance rate of convergence. Then, for the next iteration point x k+l, a new random 

sample is generated (possibly of a larger size and from a different density p0 k+l (.)), 

the approximating program is updated and a few steps of the algorithm are applied 

to the updated program, etc. As we shall see in Sections 4 and 5, such resampling is 

essential to ensure independence (in the probabilistic sense) between the estimators of 

Vg(x ~) and Vg(x ~+1) (conditionally on the value of xk+l), which is a required condi- 

tion for an application of the statistical optimality tests and implementation of the 

stopping rules described there. The latter argument also suggests the use of resam- 

pling only at last iterations of the algorithm. A framework for proving convergence 

(with probability one) of such an algorithm is discussed in [19]. 

3.1, Increasing sample sizes 

An important issue concerns the size of the sample used to compute the estimators 

(7) and (17) as well as their derivatives. Numerical experiments indicate that well 

controlled choice of the sample sizes can significantly reduce the computational time 

and improve the accuracy of obtained solutions. At first steps of the algorithm, when 

the current iteration point is far from the optimal, there is no need to have high pre- 

cision estimates. On the other hand, at each iteration the employed estimates, of the 

expected value function and its derivatives, should be accurate enough in order for 

the algorithm to proceed in significant improvement of a current solution. That is, at 

each iteration, on one hand we would like to use a small sample in order to save com- 

putational time, on the other hand the sample should be large enough in order for 

the algorithm to proceed. The required compromise can be achieved by techniques 

of statistical testing, of the employed estimates of the gradient of g(x), which we des- 

cribe now. 

Consider a feasible point x c S, representing a current iteration point of the algo- 

rithm. Let 7N(x) be an estimator of the gradient Vg(x) such that 7N(X) -~ Vg(x) 

w.p.1., as N -+ ec, and 7N(X) has approximately (asymptotically) a multivariate nor- 

mal distribution with the mean vector Vg(x) and a covariance matrix ~2N. For exam- 

ple, if the gradient of g(x) is estimated by the gradient olN(x):= V)N(x) or 

3'N(X) := V~.v(x) of the corresponding average function, then asymptotic normality 
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of ~X (X) follows by the Central Limit Theorem. Note that in this case the covariance 

matrix ~2N can be estimated by SN/N, where SN is the sample covariance matrix. It 

follows that the random variable 

' 

has approximately (asymptotically) a chi-square distribution with m degrees of free- 

dom, where m is the dimensionality o fx  and of 7N (X) (see, e.g., [20]). Consequently an 

(approximate) 100 (1 - ~ ) %  confidence region for grg(x) is given by the following 

ellipsoid 

where r := X2,(~)/N and y2(c~) is the constant corresponding to the significance level 

0C 

The size of the above ellipsoid Er(x) is determined by the constant r, which in 

turn is inversely proportional to the sample size N. Suppose now that the feasible 

set S is defined by a finite number of linear constraints. Then our criterion for the 

choice of  N is to find an ellipsoid of maximal size r = r N satisfying the following 

property. Consider the null space S of the matrix generated by constraints defin- 

ing the set S which are active at the point x. This linear space is contained in the 

set of feasible directions tangent to S at the point x. Let P be the orthogonal pro- 

jection onto 5 a. The property that we want the above confidence region (ellipsoid) 

E,.(x) to satisfy is that for any z ~ L(x) ,  vector P(c + z) forms an acute angle with 

P(c+ 7N(X)). Such choice of the sample size N guarantees that, with given confi- 

dence 100(1-  ~)%, the projection P(c + Vg(x)), of the gradient of the objective 

function of the problem (3), forms an acute angle with P(c + 7N(X)), and hence 

the estimated direction, at least approximately, is a direction of descent for the 

'true' problem (3). 

We proceed now as follows. We need to compute r~ = max{r: ~(r) ~> 0}, where 

~(r) = rain aTp(c + z), 
z~E (x) 

and a := P(c + 7N(X)). By solving the K K T  conditions for the above problem it can 

be shown that 

/ , ,  1 / 2  

Ill(r) = glT a -- r l / 2 ( a T s N a )  , 

and hence the optimal r} is 

rN T 1 = ( a T a ) e ( a  SNa ) . (22) 

Consequently the new sample size is computed as 

N' = m a x / ~ , N  ~ . (23) 
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It should be noted that when N is not large enough, SN can be a poor estimator 

of the corresponding covariance matrix and hence the above computation can lead 

to a very large value of the new sample size N'. For an actual implementation we 

suggest that the 'jump' from N to N' should be limited by a constant factor, say 

ten times. 

4. Validation analysis 

Suppose that we are given a point x* which is suggested as an approximation of an 

optimal solution x0 of the program (1). Can we evaluate the quality of this approx- 

imation? Closely related to this question is a choice of stopping criteria for a consid- 

ered algorithm. In this section we discuss some statistical tests for validation of  

optimality of the solution x* (cf. [21]). The discussion of this section is quite general 

and is not restricted to the considered example of stochastic programming with re- 

course. 

Suppose that the expected value function f(x) := E{f(x, ~)} is differentiable at the 

point x*. Also, assume that the feasible set S is defined by constraints as follows 

S={xcNm: Ci(x)=O, i=l , . . . ,k ,  ci(x))O, i=k+l , . . . , l } ,  (24) 

where ci(x) are (deterministic) continuously differentiable functions. By the first or- 

der (KKT) optimally conditions we have that if x0 is an optimal solution of  the prob- 

lem (1), then (under a constraint qualification) there exist Lagrange multipliers 2i 

such tht 2~ ) O, i E J(xo), and 

v f % )  - ; yc/x0) -- 0, (25) 
id(x o) 

where J(x) = {i: ci(x) = 0, i = k + 1 , . . . ,  l} denotes the index set of inequality con- 

straints active at x and I(x) = { I , . . . ,  k} U J(x). Consider the polyhedral cone 

C(x)= {zeRm: z= ~ ~iVci(x), ~i)O, i~ J(x)}. (26) 
iC[(x) 

Then the KKT optimality conditions (25) can be written in the form Vj(x0) c C(xo). 
Suppose now that the gradient Vf(x*) can be estimated by a (random) vector 

Z~.(x*) such that 7n(x*) -~ Vf(x*) w.p.1., as N ~ oc, and 7n(x*) has (asymptotically) 

a multivariate normal distribution with the mean vector Vf(x*) and a covariance 

matrix f2n. By using the estimator 7N(x*), we can test the hypothesis: 

Ho: Vf(x*) C C(x*) against the alternative, Ht:  Vf(x*) ~ C(x*). (27) 

In order to test the (optimality-conditions) hypothesis H0 we suggest the following 

procedures. Suppose that the covariance matrix Q.v is nonsingular, and hence is pos- 

itive definite, and that a consistent estimator ~x of Qn is available. Then we define 

our first test statistic as follows 
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T 1 = rain ('7 (x*)-z)V{2~vl(Tx(X*)-z) • (28) 
zcC(x*) \ N 

This statistic is an asymptotic analogue of  Hotelling's test statistic which is used in 

multivariate analysis (e.g. [20]). It is possible to show (see, e.g. [20]) that if all La- 

grange multipliers corresponding to the inequality constraints active at x* are positive 

(strict complementarity condition), then the test statistic T1 has approximately (asymp- 

totically) a noncentral chi-square distribution with m - s degrees of freedom, where 

s = card(I(x*)) = k + card(d(x*)), 

and the noncentrality parameter 

~c = rain (Vf(x  *) - Z)Tf2NI(Vf(x ~) -- z). (29) 
zcC(x*) 

In particular, under H0 we have that ~c = 0 and hence the null distribution of T~ is 

central chi-square with m -  s degrees of freedom. Therefore for a calculated value 

Tl of the test statistic we can calculate the p-value, that is p = Prob{;g],_, ~> T1 }. This 

p-value gives an indication of the quality of  the suggested solution x* with respect to 

the stochastic precision. A large (close to one) p-value means that such precision was 

reached, so the algorithm cannot proceed further, whereas a small (close to zero) p- 

value indicates that either the current solution is far from the optimal or the deter- 

ministic error starts to dominate. Such test should then be combined with other cri- 

teria, for instance a test of  significance of reduction in the value of the function, as 

described in Section 5. 

An alternative test statistic can be written in the form 

T * 

T a -- min ( 7 ~ ( x * ) - z )  (TN(X)--z) .  (30) 
z~C(x*) 

This test statistic is simply the squared Euclidean distance from 7N(X*) to the cone 

C(x*). From a numerical point of view, T2 is more convenient than T1 since it does 

not involve inversion of the covariance matrix ¢)N, which in some cases can be nearly 

singlular (ill-conditioned). If  the strict complementarity condition holds, then under 

H0 the asymptotic distribution of  T2 is given by the distribution of a weighted sum of 

chi-square variables (see e.g. [22]). That is, ~ has approximately the same distribu- 
m 

tion as the distribution of the random variable ~i=i ~i~, where XI , . . .  ,X,~ are inde- 

pendent random variables, each having a chi-square distribution with one degree of 

freedom, c~i are eigenvalues of  the matrix Pg2N, P is the projection matrix 

P =Ira-A(ATA)-IA T and A is the m x s matrix whose columns are formed from 

the gradient vectors Vci(x*), i c I(x*). In this case, thep-value can be approximately 
• i " m computed by replacing the dlstr butlon of ~i=i c ~  by that of  cz~ + b, where c, v and 

b are chosen in such a way that cx~ + b and ~ m  c~iX, have the same first three mo- 

ments. This type of procedure is called Pearson's approach, see [22] for details. 

Let us make the following remarks. By accepting (i.e. by failing to reject) H0 

hypothesis we do not claim that H0 actually holds, i.e. that x* is an exact optimal 
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solution of (1). Accepting of H0 simply means that, given the available stochastic 

precision, we cannot separate x* from x0. Together with the corresponding confi- 

dence intervals, the above p-value gives a good indication of the quality of a calcu- 

lated approximation x* of the 'true' optimal solution x0. 

It should be remembered that the mentioned null distributions of the test statistics 

T1 and 1) are asymptotic. Consider, for example, cases where s = m, i.e. the number 

of equality and active inequality constraints is the same as the number of decision 

variables, and suppose that the strict complementarity condition holds. Then if 

~N(x*) is sufficiently close to Vf(x*), we have that 7N(x*) ~ C(x*), since in that case 

Vf(x*) c i n t  C(x*). Therefore in such cases T1 and T2 should be zero with probability 

tending to one, as the sample size tends to infinity, and hence asymptotically T1 and 

T2 are considered to be identically zero. Of course, for a finite sample size these sta- 

tistics are not identically zero. Nevertheless even in such extreme cases statistics 1,1 

and T2 usually give a good indication for a quality of a suggested solution. 

Note that without the strict complementarity condition the (asymptotic) distribu- 

tions of T~ and 1"2 are more involved. In such cases asymptotic analysis of 1"~ is related 

to the so-called chi-bar-squared distributions (see [23,24]). In general this problem 

requires further investigation. 

5. Statistical inference 

In this section we briefly discuss some asymptotic results associated with the ap- 

proximating program (19). The same considerations hold for problem (8) as well. Let 

vN be the optimal value and 2N be an optimal solution of the program (19) and let v0 

be the optimal value and x0 be the optimal solution of the limiting (expected value) 

program (3) (x0 is assumed to be unique). We discuss subsequently statistical prop- 

erties of VN and 2N considered as estimators of their 'true' counterparts v0 and x0, res- 

pectively. We assume throughout this section that v~ and 2N are consistent 

estimators in the sense that with probability one v N - - - ~  V 0 and 2 N --> X 0 as N -+ oc. 

Simple conditions ensuring such consistency are that gu converge w.p.1, to g uni- 

formly on S (i.e. the uniform version of the strong Law of Large Numbers holds) 

and that 2,v stay w.p.l, in a bounded subset of S (see, e.g. [6]). 

By the Central Limit Theorem we have that for any fixed x c S, 

N ~ / 2 [ ) x ( x ) - g ( x ) ]  ~ N(0,0-2(x)), (31) 

where ' 3 '  stands for convergence in distribution and N(0, 0 -2) denotes a normal dis- 

tribution with mean zero and variance a 2. Note that the sample, which is used for 

generating the approximation function, can be also used for calculation of an estima- 

tor ~'~,(x) (sample variance) of 0-2(x). 

Consider the optimal value vx. Under mild regularity conditions the following as- 

ymptotic result holds (cf. [6, pp. 266 268, 25]), 



312 A. Shapiro, 72 Homem-de-Mello / Mathematical Programming 81 (1998) 301-325 

The corresponding asymptotic variance o-2(x0) can be estimated by 52 = 52N(2N). 

Consequently a confidence interval for the 'true' optimal value v0 can be written in 

the form 

[VN--Z /2N 1/25N, VN-t-z /2N-l/25N], 

where the constant z~/2 is related to a chosen confidence. For example, z~/2 -- 1.96 

approximately corresponds to the probability (confidence) of 95 %.  

This confidence interval is especially convenient because of its simplicity and gen- 

erality. For a current estimate )dS o f  X0, this interval is simply the confidence interval 

for the value.f(Xu) of the true objective function (recall that here f ( x )  -- cTx + g(x)). 

It is also closely related to the following question. Suppose that we are given two it- 

eration points x k and x/c+1 in S. Is it possible to verify that x k+l is a significantly better 

solution of (3) than x/c? We can approach this problem by testing the hypothesis: 

H0: f(x/c) =f(x/c+l) against the alternative, H,: f(x/c) >f(x/c+'). 

For that purpose the following asymptotic analogue of the standard t-test can be 

applied. Suppose that two independent samples of sizes NI and N2 are generated and 
~/X k f g(x/c) and g(x/c+l) are estimated by gN 1 (X/c) and gN, ~ I), respectively. We then reject 

H0, and hence conclude that x k+l is a significant improvement over x ~, if 

!. ) 1/2 
+ z ~ - -  + - (33) + < )  > + +' ) 

N I ~ 

Observe that the above test requries (stochastic) independence between estimators 

gSl (xk) and ~N2(Xk+I). However, such a condition may not always hold, as it happens 

in the case of the sample-path optimization discussed in Section 2. Nevertheless we 

can still test the above hypothesis H0 by using a paired t-test as follows. Suppose that 

the same sample size N is used for calculation Ofgx(X k) and ~N(Xk+J). We have then 

that the difference gs(xk)--gX(X k+l) can be represented as the average 

W := N r ~iml W, of appropriate independent random variables ~ ,  i = I , . . .  ,N 
- =  _ _  N ~,. 

(see (17)). Consider the sample variance s 2 (N 1) ~ i = 1 ( ~ - W )  2 of 

~11,..,, WN. Then we reject H0 if 

cT(x k --X/c+') + W > z X 1/2s. (34) 

Consider now the estimator Xx of X0. Its (asymptotic) distributional properties are 

discussed, for example in [26,27]. The following is a particular case of more general 

results. Suppose that the function f ( x )  is twice differentiable at x0, that the feasible 

set S is defined by constraints as in (24), that the constraint functions c~(x) are twice 

differentiable, that the gradients Vc~(x0), i ~ I(xo), are linearly independent and that 

the strict complementarity condition holds, i.e., 2~ > O, i ~ J(xo). Let 20 and '~X be the 
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Lagrange multipliers vectors of the true and the approximating problems, respective- 

ly. Then it is possible to show (cf. [6, p. 303]) that, under mild additional conditions, 

N1/Z(xs-Xo, 2N-  20) ~ N(0,F) ,  

where 

A ~ 0 A T 0 ' 

(35) 

H = V2xL(xo, ,to), with L(x, )~) = f(x)  + ~i=l )oici(x) being the Lagrangian of the true 

program, A is the m × s matrix whose columns are formed from the gradients 

Vci(xo),i ~ I(xo), and • is the asymptotic covariance matrix of N1/2[V~x(xo)- 

Vg(x0)]. 

All quantities involved in the calculation of the matrix F can be estimated from 

the generated sample and hence asymptotic variances of the components of )~N c a n  

be evaluated. 

Note that, under the above assumptions, second order necessary conditions, for 

the 'true' problem at the point x0, can be written in the form: xXHx >>, 0 for all 

x E R m satisfying ATx = 0. The corresponding second order sufficient conditions 

are that x~Hx > 0 for all x ¢ 0 satisfying AVx = 0 (e.g. [28]). Under the above second 

order necessary conditions, the second order sufficient conditions are equivalent to 

nonsingularity of the (m + s) x (m + s) matrix 

Therefore nonsingularity of B implies local uniqueness of the optimal solution x0. 

Large variances of the components of 2N may indicate instability, or even non- 

uniqueness, of x0. 

6. Implementation 

In this section we study implementation aspects of the techniques discussed in the 

previous sections and applied to the two-stage recourse problem (3) and (4), in which 

only the vector h is random and has a normal distribution with mean # and covari- 

ance matrix X. We describe in this section a detailed algorithm, some variance reduc- 

tion techniques and present numerical results obtained for a small-sized test 

problem. 

6.1. The algorithm 

Observe initially that (3) and (4) can be rewritten as 

min c~rx + E{Q*(t,t~))}, 
x~S,t "/;r 

(36) 
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where 

O*(t, co) = inf{qTy: Wy = h(o~) - t, y >/0}. (37) 

Despite the apparent increase in the dimension of the problem (which now has 

(x, t) as its vector of unknowns), this change-of-variables transformation has some 

advantages. First, the expected value function g(.) := E{Q*(., co)} is strictly convex, 

whereas E{Q(., co)} (with Q(x, co) defined in (4)) is convex but is not strictly convex if 

the matrix T is singular. Consequently, for a large sample size the estimate of  the 

Hessian matrix will indeed be positive definite, as discussed in Section 2. Further- 

more, often the matrix T has more columns (which is the number of decision vari- 

ables) than rows (the number of  random variables). It follows that the Hessian of 

g(.) has smaller dimension than the Hessian ofE{Q(-, ~o)}, and typically is much bet- 

ter conditioned, which is important for computations. 

Let p(-, 12) be the normal-distribution pdf  (see (18)) of h with mean 12 and covari- 

ance matrix Z (we do not write explicitly p(., 12) as a function of Z since the covari- 

ance matrix is not changed in the process of  iterations). It is clear that p(-, 12 - t) is 

the pdf  of h - t, and hence the expected value function g(t) := E{Q*(t, o))} can be 

written as 

g(t) = ~ G(y)p(y, # - t) dy. (38) 
, J  

Nn 

As discussed in 

the derivatives of g(t) through the derivatives of p(y, 12 - t). That is, 

[ a(y) 
Vg(t) = j P(Y'~o) Vp(y ,  12 - t)p(y, 12o) dy 

= -Euo{G(g)L(g,  12- t , # o ) Z - ' ( g -  # + t) } , (39) 

and 

Section 2, given a so-called reference parameter 12o, we can compute. 

G(,) 2 
V2g( t )  = P(Y' #o) vt'  p(y' 12 -- t)p(y, 120) dy (40) 

where 

_ p ( y ,  12,) 

L(y, I~,, 122) P(Y' 122) 

is the LR function. It is interesting to note that we can take 120 = 12 - t in (39) and 

(40), in which case we have L(Y, 12- t,120 ) = 1. 

Consider again the generic algorithm described in Section 3. Suppose that at the be- 

ginning of iteration k we have at hand a pair (x ~, ?).  As discussed there, the basic idea 
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is to generate a random sample YI~,..., YN k, from the pdfp(. ,  # - ?) ,  and then to apply 

one step of a deterministic optimization algorithm to the approximating problem 

rain ~fkN(X, t):= eXx + g~(t)} (41) 
xcS,t=Tx ~ 

where 
N 

g~(t) : -N-1 Z G(Y[)L(Yi ~, I t -  t, tt - t k ) .  (42) 
i=1 

Observe that given a sample Z I , . . . ,  ZN from the original pdfp( . ,  #), we can take y k 

to be simply equal to Zi - ? ,  i.e., it is not necessary to generate new random num- 

bers. Of course, in this case Y[ and Yi ~+1 are highly correlated. 

The deterministic optimization algorithm used in our implementation is a combi- 

nation of successive-linear and successive-quadratic approximations for convex func- 

tions. Both methods are well known in nonlinear programming and are described in 

[29], for example. The idea is to minimize the linear approximation of each fN k (X, t) 

until two consecutive values f ( x  ~, ?) and f ( x  k+l , ?+1) are sufficiently close to each 

other in the sense of the statistical paired t-test described in Section 5. From that it- 

eration on we use a sequential quadratic programming method. It is clear that in ei- 

ther case we have to impose bounds on x in order to avoid a large error due to the 

respective approximation (linear or quadratic), in other words, it is necessary to use 

yet another type of trust regions for each optimization step. In [29] one can find a 

more detailed description of trust region methods, including a standard algorithm 

for updating the size of the region depending on the quality of the approximation. 

Below is a detailed description of the algorithm. We adopt the notation gu(t ~) to 

mean the random variable defined in (42), viewing Y~,. . . ,  YN k, as i.i.d, random vari- 

ables with pdfp(.,/~ - t~). A realization of this random variable is denoted by g~N(tk). 
A similar notation is used for the gradient and Hessian of gN(t~). 

Algorithm 

Let/3 and A ° be pre-specified constants. 

x ° := initial guess (not necessarily feasible); t o := rx°; 

k:=  O; 

N := small sample size; 

Generate a sample Z l , . . . ,  ZN from p(., #). 

Compute y0:= Z i -  t °,i = I , . . . , N .  

Compute g°(t°) ,Vg°(t°)  and 2 0 0 V gN(t ) using Z1,. . . ,ZN. 

Repeat 

Compute linear/quadratic approximation: 

Let lk(x, t):= c T x  + g~(t k) + Vg~.(tk)T(t - tk). 
Letq~(x,t)  : eTx+g~( t~)+Vg~( tk )T( t  -- tk)+½(t---tk)VV2gk, ,( t  k),(t - tk). 

Compute size of trust region for nonlinear algorithm (only if k ~> 1): 

Let R/~:= L,NFFk-IFxk , tk l) .fk( , tk)]/[[# l ( x k  1 ; t k 1) _ qk l(xk tk)]" 

If R i~ < 0.25 {no or insufficient decrease}, 
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then Ak:= lit k -  t k 1]]~/4, 

else i fR k > 0.75 and I17 - ?-* I1~ = zxN ~ {b ind ing  cons t ra in t } ,  

then A k := 2A k-l, 

else A k := A k-1. 

Compute next point: 

Solve 

min lk(x,  t) (or qk(x ,  t))  subject to x • S,  Tx = t and l i t -  tk[[~ ~< A k. 

L e t  (x k+l, t k+l)  : =  solution of the above problem. 

k : = k + l ;  

Compute y k := Zi - ?,  i = 1, . . .  ,N. 

Compute gkN(tk), Vgf(t  k) and V2gkN(? ) using YI~,..., Y~. 

Test need for resampling and optimality: 

If  fkN(Xk , t ~) and fN k-1 (x k-l, t k-l) satisfy the paired t-test for proximity (see 

(34)), 

then Generate a new sample Z1, . . . ,  ZN from p(., p). 

Recompute Y[ := Zi - t k, i = 1, , N ,  gkN(tk), Vg~(t k) a n d  ~72,~k (t k~ 
• "" 6 N  1" 

Compute new sample size N I according to (22) and (23). 

If  N I > N, then 

Extend sample Z1, .  . . , ZN to Z 1 , . .  •, ZN,. 

Compute Y,? := Zi - tk, i ~ N +  1 , . . .  , NI ; N := N' .  

Update values of gk m (tk), Vgkx(t k) and V2gkx (?). 

Test optimality of xk: 

Compute C(x k) as defined in (26). 

Let V k denote the random variable c + T T V g N ( t k ) .  

Let T 2 denote the random variable min~c(~ ) [[ V k -z l l  ~. 

If  strict complementarity holds for x k, then 

Compute v k := c + TTVgkN(tk) ,  V := min~cc(x~ ) lip k - z l l  2. 

If P(T2 > v) >~ fi {if p-value is large enough}, then stop. 

Until {stopping criterion is satisfied}. 

6.2. Var iance  reduc t ion  t echn iques  

Another important topic refers to the quality of the estimators of the gradient and 

the Hessian of the objective function f ( x )  at each iteration point x = x ~. These esti- 

mators should be accurate enough for the algorithm to proceed in significant reduc- 

tion in the value of the objective function. Obviously that may not happen if the 

employed estimators are poor. Indeed, some numerical experiments have shown that 

if the variance of those estimators is too large, then the algorithm may not converge 

even when started at a point relatively close to the optimizer. Also, a bad estimator 

of the gradient can result in misleading conclusions obtained from the statistical op- 

timality test described in Section 4. Furthermore, we are also interested in determin- 

ing sharp bounds for the expected value function at each iteration in order to detect a 

significant reduction in the value f ( x  I~+1) (see Section 5) and ultimately to determine 
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good bounds for the optimum value. In order to overcome those difficulties we have 

implemented some techniques for variance reduction. Note that it suffices to study 

the function g(.) rather than f ( . ) ,  since they differ only by a deterministic term. In 

what follows we describe methods used for reducing the variance of estimators of 

the gradient, the Hessian and the value, respectively, of the expected value function 

g(.) at the iteration points. 

6.2.1. Obtaining smaller variance estimators of  the gradient Vg(t) 

The following are techniques of linear control variables (e.g. [6]). Consider the ex- 

pression for Vg(t) given in (39), and suppose that we want to estimate the gradient at 

t = ?.  For the sake of simplicity, let us assume that #0 = # - ?- Define the random 

vector Z = z~ -1 (Y - p + tk), where Y ~ N(# - ?,  X). Then, Z ~ N(0, S -1 )  a n d  hence 

for any c~ ~ R we can write 

V : = V g ( t  ~ ) = - E  tk { G( Y)Z } = - E  tk { ( G( Y ) - c~)Z}, 

which yields the unbiased estimator 

N 

V(c~) = - U  -1 Z (G(Yi )  - •)Z. (43) 
i=1 

The goal is to choose e in such a way that the components of/~(c~) have smaller vari- 

ances than the components of the original estimator ~Tg N (tk), which is equal to 1?(~) 

for ~ = 0. This can be accomplished by choosing e* that minimizes the trace of the 

covariance matrix Cov(/?(~)). Some algebraic manipulations show that 

~, = Trace [Cov(G(Y)Z,Z)] _- E,,_,k(G(Y) ZsZ} 

Trace [Cov Z] Trace IS l] , 

which can be consistently estimated by 

~* = N 1XN,G(Y~)gZ (44) 

Trace IS -1 ] 

Our numerical experience shows that these techniques are in general very effective, 

allowing variance reductions in the order of up to a thousand times in some cases. 

Further improvement is achieved by estimating Vg(t k) through the subgradients 

of G(h - ?),  as discussed in Section 2 (see (10)). Let 

N 

V ' =  N I ~ S  i, 
i=l 

where S, is a subgradient of G(.) at ~, i.e. Si is an optimal solution of (6) for z = ~. 

Then l~' is an unbiased estimator of Ag(/') and so is 
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for any 2 E ~. Similarly as above, we can choose 2 so as to minimize the trace of the 

covariance matrix Cov(/~(2)). This optimal choice is given by 

2' = Trace [Cov(/? - V ~', V~)] = E{((" - ps)Tp~.} 

Trace [Cov( l? -  ps)] E{ (1? -  ps )T(~_  ~s)}' 

(where /? = V(~*)), which can be estimated from the values ~~ = Si and 

= ( G ( Y ) - a * ) Z ,  i =  1 , . . . , N .  

Again, our computational experience has shown that typically when x k is far from 

the optimizer, the function G(. - Tx k) is almost linear and therefore the subgradient 

estimator/?s is extremely accurate. As x ~ gets close to the optimizer the gain in vari- 

ance reduction decreases. 

6.2.2. Obtaining smaller  variance es t imators  o f  V2g(t) 

Techniques of linear control variates can be also used to obtain a smaller-variance 

estimator of A2g(t) in a similar fashion. Here we consider the expression given in 

(40), and define the random matrix X = Z Z  v, where Z = 2; J(Y - /~  + ?)  as before. 

Then, X has a central Wishar t  distribution Win(l, Z 1) and hence, since E X  = S 1, 

it follows that we can write for all fl C 

u :  V ' g ( t  : - z - ' ) }  : e - - z ' ) }  

This yields the unbiased estimator 

N 
U(fl) = N ' Z ( O ( Y )  - fi)(X, - 2; '). (45) 

i--1 

As with the estimator of the gradient V(a), we want to minimize the sum of the vari- 

ances of the components of U(fi) .  Clearly, this is equivalent to minimizing 

Trace [Cov(Vec(U(fl)))l, where Vec(A) is the vector operator which maps a matrix 

Am×n into a single vector amn×l formed by stacking columns of A. The optimal value 

fl* is given by 

ft. = T r a c e [ C o v ( V e c ( G ( Y ) ( X  - Z - l ) ) ,  V e c ( X -  Z 1))] 

Trace[Cov(Vec(X))] 

e { T r a c e  [ C ( r ) ( X  - Z - ' ) 2 ] }  

(Trace IX 1])2 + Trace [2; 2]' 

which can be estimated by using the values ~ and ~ , i  = 1, . . .  ,N, and taking the 

corresponding average. In our experiments the reduction obtained with this tech- 

nique was in general of the same order as the reduction obtained for the gradient. 

6.2.3. Obta&ing  smal ler  varh2nce es t imators  o f  g( t)  

Techniques used to obtain a better estimator of g(t)  for  t = t k differ completely 

from the ones discussed above. The main reason for the dissimilarity stems from 

the fact that, contrary to the gradient and Hessian, the value of  the function does 
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not play a significant role in finding descent directions, which means that there is no 

need for a high precision of the estimator ofg( t  k) when t k is far from the optimizer. On 

the other hand, when t k is close to the optimizer, it is important to determine smaller 

confidence intervals in order to detect significant reduction in the value g(t k) at suc- 

cessive iterations and also to determine good bounds for the optimum value if the 

current iteration t k is accepted as an optimal solution. 

With this idea in mind, suppose that the current point (x k, t ~) is a candidate for the 

optimal solution in the sense that t ~ is close enough to the previous point t * i (see the 

algorithm in Section 6.1). Consider the estimator gN (t*), given in (42), computed with 

the sample Y1,..., YN from the pdfp( . ,  #-- tk) .  Alternatively, given a parameter/~0, 

consider the estimator gN(t*,#0) computed in the same way as gN(t ~) except that 

the sample is taken from the pdfp( . ,#0) .  As was shown in Section 2, the variance 

of  BN(t k, #0) is given by 

0-2(#0) = N -1 lEo { G(y)2L(y, # - t k, #0 )2 } - g(t) 2] 

= N I [E t k { G ( y ) 2 L ( y , # -  tk,#o)} - g(t):]. 

The goal is to choose go in order to minimize a2(#o). As discussed in [6], o-2(.) is 

strictly convex and therefore has a unique minimizer if;. Note that the term g(t) 

can be dropped from this minimization problem as it is constant with respect to 

g0. By applying again the underlying idea of stochastic counterpart  we can then min- 

imize the approximation 

N 

0 ( # o )  2 - = t * , g 0 ) .  
i=1 

In our implementation we used a sequential quadratic programming method to solve 

this subproblem and find #;. 

We can also combine the above procedure with the linear control variate tech- 

niques as follows. Let L denote the random variable L(Y, I t - t * , # ; ) ,  where 

Y ~ N(#;, 22). Then, L has a lognormal distribution with mean 1 and variance 

e ~ - 1, where 

,~ = ( # - -  ? - -  # ; ) T s - '  ( #  - -  t ~ - -  # ; ) .  

Note that for any p E R we can write 

R:= g(t ~) = E ;{G(Y)L} = E ;{G(Y)L - p(L - 1)}, 

so that the estimator 

N 

R(D) = N 1 Z  G(Yi)Li - P( t i  - l )  (46) 
i=1 

is unbiased. Again, we can find p* that minimizes the variance of/~(p), that is 
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p ,  = C o v ( G ( Y ) L , L  - 1) _ _ E { G ( Y ) L ( L  - 1)} 

V a r L  e ~ - 1 

As  before ,  p* can  be e s t i m a t e d  by  c o m p u t i n g  G(Yi)Li(Li  - 1), i = 1 , . . .  ,N ,  a n d  tak-  

ing  the  c o r r e s p o n d i n g  ave rage .  Th i s  s t ra tegy  has  also been  i m p l e m e n t e d  in ou r  a lgo-  

r i thm.  

6.3. N u m e r i c a l  resu l t s  

W e  tes ted the  m e t h o d  d iscussed  in this w o r k  on  a co l l ec t ion  o f  test  p r o b l e m s  p r o -  

v ided  to us by  Dr .  Jf inos M a y e r  f r o m  U n i v e r s i t y  o f  Zur ich .  Since the  resul ts  o b t a i n e d  

fo r  m o s t  p r o b l e m s  were  s imi la r  (in the  sense o f  precis ion) ,  we  chose  one  o f  t h e m  as a 

r ep re sen t a t i ve  in o r d e r  to i l lus t ra te  the  type  o f  analys is  t h a t  can  be  m a d e  and  des-  

c r ibe  the  resul ts  ob ta ined .  

T h e  p r o b l e m  has  the  genera l  f o r m a t  g iven  by (3) a n d  (4) (except  t ha t  the m a t r i x  T 

is de te rminis t ic ) ,  wi th  the  set S g iven  by {x: A x  = b, x ~ 0}. T h e  d a t a  fo r  c , A ,  b, W,  q 

a n d  T were  r a n d o m l y  p r o d u c e d  by  a g e n e r a t o r  a n d  are  as fo l lows:  

c I0.73 -2.16 -0.31 9.00 -5,33 4.30 5.80 6.17 -0.09 2.65] T, 

I 0 -4.19 0 0 0 4.12 0 0 -3.53 0 ] 

1 
-0.34 -1.88 0 0 0 0 -1.32 0 0 -4.54 

A = / 0 3.04 8.34 3 .41  -7.90 0 0 6.45 0 9.80 , 

L o o 
0 -9.97 0 0 0 5.26 0 0 -0.89 

-0.92 0 6.57 0 0 2.05 0 2.17 -2.3! 

b = [ - 1 . 2 4  2.79 8.00 1.94 2.611 T, 

0 

0 

0 

0 

0 

-2.30 

0 

W =  0 

0.18 

-6.37 

8.49 

0 

0 

0 

0 

0 0 -0.07 0 0 0 0 0 0 

0 9.17 5.48 0 0 0 -7,35 0 0 

0 0 0 0 7.93 -7.41 0 0 0 

4.36 0 0 0 9.69 0 5.35 0 0 

0 0 -1.60 0 0 0 0 0 7.43 

0 0 5.38 2.96 0 0 0 0 3.74 

5.13 0 0 2.15 1.65 0 0 -5.73 2.09 

0 0 -2.74 0 0 0 0 -2.58 0 

0 0 -5.49 -7.52 -8.92 0 0 0 8.96 

0 0 -3.05 0 0 0 0 0 -5.88 

8.96 3.45 0 2.41 -10.36 0 2.69 0 0 

0 -6.02 0.29 0 0 7.41 -0.69 5.27 0 

-18.45 0 0 0 0 0 0 3.05 16.36 

0 0 1.80 0 0 0 0 0 0 

0 -6.60 0 0 0 0 0 0 0 

q - - j 0 .  0. 4.80 5.99 9.46 7.01 0. 6.46 2.88 0. 0. 4.95 0. 0. 1.29] 7 , 
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T =  

-8.42 0 0 0 0 0 6.91 0 -2.07 0 

-5.23 0 0 0 0 0 0 0 0 0 

-2 .14 0 0 0 1.16 0 0 0 0 0 

1.19 0 0 0 0 0 0 -6.05 0 -4 .82 

0 0 5.48 0 0 0 0 -4.75 0 0 

2.38 0 2.90 0 0 -0.88 0 0 0 0 

0 0 0 0 0 0 0 1.04 0 0 

2.61 0 0 -0.91 0 0 0 0 -4.93 0 

-5,79 0 0 0 0 0 0 0 9.60 0 

-2,64 0 0 0 0 0 0 0 0 0 

The vector h has a normal distribution with mean vector 

/~ = [-3.88 1.12 -4.63 5.04 2.05 5.19 -5.53 3.80 1.81 -9.291T. 

The components of h are independent with standard deviations 

o-=[0.15 0.01 0.21 0.25 0.04 0.27 0.31 0.14 0.03 

The initial point chosen was x ° = [1, 1 , . . .  II T. 

0.86] T. 

Table 1 shows the results obtained. At the end of each iteration k, we list the ten 

components of the current solution x k, the value of the estimate J~(x ~, ?), the half- 

width of a 95 % confidence interval (A) for f~ (x k, ?)  and the value of the statistic 

T2 = minzcc(xk) IlVfNk(X k, ?)  -- zl122 with its corresponding p-value, which is an indica- 

tion of the proximity of x k to the optimal solution (see Section 4). The last column 

displays the sample size used for that iteration. 

For  reasons of space, we list only the iterations (except for the first one) where a 

new sample was generated, i.e., whenever the current point x ~ was 'close' enough to 

the previous point x k-1 in the sense of the paired t-test described in Section 5. Note 

also that on those iterations a reference parameter optimization was performed to 

reduce the variance of the estimator fN (X ~, t ~) (see discussion under the topic 'Vari- 

ance reduction techniques'). Finally, a limit of 5000 was imposed on the maximum 

sample size used. 

Observe that the p-value obtained in the last iteration indicate that the corre- 

sponding solution can be accepted as optimal (i.e., the hypothesis 'x 2~ is optimal' 

is not rejected) with a level of significance approximately equal to 0.77, which is a 

strong evidence of optimality. We can then compute individual 95 % confidence inter- 

vals for each component of the optimal solution by using the distributional result 

given in (35), obtaining lower and upper bounds for these components. One should 

note, however, that those bounds are only an indication of the involved stochastic 

error, since their calculation is based on the assumption that the deterministic error 

(the bias) of the current estimators is significantly smaller than the stochastic error 

measured by the corresponding variances. Table 2 displays these results. 

For  the sake of comparison, we also list the solution obtained by Jfinos Mayer. He 

provided an optimal point as well as lower and upper bounds for the optimim value. 

Those results are very close to what we have obtained, as Table 3 shows. 
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Table 1 

Evolution of the algorithm 

Iter. Xl x2 x3 x4 x5 x6 x7 x 8 

1 0.913392 0.000000 0.145255 0.449450 0.436054 0.064256 0.000000 0.516616 

14 0.534576 0.000000 0.142719 0.464959 0.090342 0.49869 0.000000 0.045191 

15 0.533611 0.000000 0.142713 0.463483 0.088718 0.053764 0.000000 0.043880 

21 0.522541 0.000000 0.142639 0.462186 0.053281 0,057888 0.000000 0.000000 

Iter. x9 Xlo fN(X k, t k) A TzStat.value p-Value N 

1 0,426984 0.547548 20.910082 0.166250 147.177979 0.0000 50 

14 0.410195 0.575877 15.290671 0.109019 86.200317 0.0000 390 

15 0.414740 0.575949 15.305968 0.022129 20.644712 0.0000 3900 

21 0.419552 0.576777 15.186682 0.017366 0.161485 0.7699 5000 

Table 2 

Bounds for the optimal solution found 

Lower bound Estimate Upper bound 

Xl 0.504499 0.522541 0.540583 

x2 0.000000 0.000000 0.000000 

x3 0.142518 0.142639 0.142760 

x4 0.457614 0.462186 0.466758 

x5 0.049780 0.053281 0.056782 

x6 0.047220 0.057888 0.068556 

xv 0.000000 0.000000 0.000000 

xs 0.000000 0.000000 0.000000 

x9 0.407103 0.419552 0.432001 

xw 0.575428 0.576777 0.578126 

Table 3 

Solution obtained with Jfinos Mayer's software 

Estimate 

xl 0.518506 

x2 0.000000 

x 3 0.142612 

x 4 0.463797 

x5 0.054323 

x6 0.053981 

x7 0.000000 

xs 0.000000 

x9 0.414994 

Xl0 0.577079 

Lower bound for the optimmn value: 14.992770. 

Upper bound for the optimum value: 15.682196. 
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7. Conclusions 

Although tested for a relatively small number of problems, the obtained numeri- 

cal results are quite encouraging given the level of precision obtained. In particular, 

it was possible to derive sharp bounds for each component of the optimal solution, 

which to our knowledge is not found in previous works in the literature. It also ap- 

pears that the constructed statistical optimality test is a good indication of the qual- 

ity of the obtained solution. Another interesting feature of the algorithm is its 

relative insensitivity to the number of decision variables, which makes it a promising 

method for large problems. Indeed, we have tested the algorithm for problems with 

up to 90 decision variables and 10 random variables, and 30 decision variables and 

20 random variables. In most cases the results, although not as sharp as the example 

in Section 6, match the ones obtained with other solvers. 

There are however a number of important theoretical and practical issues which 

can be a subject of further investigation. The conceptual idea of the SC method dis- 

cussed in Section 3 requires a careful selection of a corresponding deterministic non- 

linear programming algorithm. For instance, instead of the linear/quadratic 

approximation technique used in our implementation, one could apply some sort 

of bundle-type method (cf. [5]), where the objective function is approximated by 

piecewise linear functions, and then later use say Newton-type methods employing 

quadratic approximations. A careful tuning of a chosen deterministic algorithm 

could be problem dependent and requires a further investigation. 

Another important practical issue is how to divide the computational effort be- 

tween successive steps of an iterative procedure. We have provided in this work some 

guidelines for the update of the sample size at each iteration, but a careful study of 

the technique presented is so far an open question. For the stochastic approximation 

(SA) method a different type of analysis is given in [30]. It is possible to show [31] 

that in smooth cases the considered SC and SA methods converge asymptot ical ly  

at the same rate (provided the SA method is employed with asymptotically optimal 

stepsizes). This may suggest an approach to asymptotic analysis of that problem. 

Stopping criteria for the type of algorithms considered here are statistical in na- 

ture and are closely related to validation analysis discussed in Section 4. Validation 

analysis has also an independent interest. It appears that such analysis should be dif- 

ferent in nondifferentiable cases (cf. [32]). As mentioned earlier nondifferentiable 

cases appear naturally in stochastic programming with recourse and queueing sys- 

tems [33]. This requires further theoretical and numerical investigations. 
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