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Using simulated data, we compared five methods of phylogenetic tree estimation: parsimony, compatibility, max- 

imum likelihood, Fitch-Margoliash, and neighbor joining. For each combination of substitution rates and sequence 

length, 100 data sets were generated for each of 50 trees, fma total of 5,000 replications per condition. Accuracy 

was measured by two measures of the distance between the true tree and the estimate of the tree, one measure 

sensitive to accuracy of branch lengths and the other not. The distance-matrix methods (Fitch-Margoliash and 

neighbor joining) performed best when they were constrained from estimating negative branch lengths; all com- 

parisons with other methods used this constraint. Parsimony and compatibility had similar results, with compatibility 

generally inferior; Fitch-Margoliash and neighbor joining had similar results, with neighbor joining generally slightly 

inferior. Maximum likelihood was the most successful method overall, although for short sequences Fitch-Margoliash 

and neighbor joining were sometimes better. Bias of the estimates was inferred by measuring whether the independent 

estimates of a tree for different data sets were closer to the true tree than to each other. Parsimony and compatibility 

had particular difficulty with inaccuracy and bias when substitution rates varied among different branches. When 

rates of evolution varied among different sites, all methods showed signs of inaccuracy and bias. 

Introduction 

A number of algorithms for estimating phylogeny 

from DNA sequence data are in use, and it is not always 

clear what the strengths and weaknesses of each method 

are, or which should be preferred in a given situation. 

A number of computer simulation studies of these 

methods have been done (for reviews, see Felsenstein 

1988; Nei 199 1). The majority of these studies have 

involved relatively small numbers of replications-the 

computational load of larger-scale tests has been simply 

too great. Furthermore, the biologically important case 

of unequal substitution rates at different sites in the 

molecule has seldom been explored. 

Advances in both computer and algorithm speed 

have allowed us to simulate and analyze several thousand 

data sets, providing a thorough look at the performance 

of the various methods. In this study,, we compare the 

performance of five major phylogeny algorithms-par- 

simony, compatibility, maximum likelihood, Fitch- 

Margoliash, and neighbor joining-on simulated DNA 

data, including cases of unequal rates of evolution either 
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on different branches of the tree or at different sites in 

the sequence. The model trees used are randomly con- 

structed, presenting a variety of different topologies 

comparable to those seen in real data. A method of tree 

comparison is used that allows the algorithms to be 

scored by how accurately they recover the true topology 

and branch length. We also examine a measure of bias: 

is the cloud of estimated trees produced by generating 

many data sets from the same true tree centered on the 

true tree, or on some other tree? We were able to analyze 

5,000 estimations for each combination of rate and se- 

quence length, - 10 times as many as in most other 

studies, providing a solid database to support conclusions 

about the relative effectiveness of these methods. 

Material and Methods 

All programs used in this study were taken from 

PHYLIP version 3.4 (DNAPARS for parsimony, DNA- 

COMP for compatibility, NEIGHBOR for the neighbor- 

joining method, and FITCH for the Fitch-Margoliash 

method), except for the maximum-likelihood program, 

for which we used a preliminary C language version of 

fastDNAm1 provided us by G. Olsen (this was several 

times faster than PHYLIP’s DNAML program). 

Generation of Phylogenetic Trees 

Phylogenies of 10 taxa were randomly generated 

using a branching process. A single lineage was imagined 
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460 Kuhner and Felsenstein 

to just have split in two. If there is a constant probability 

dt that a lineage will split during the next short time 

interval of length dt, then, when there are k lineages, the 

time until the next one splits will be drawn from an 

exponential distribution with expectation 1 /k. The trees 

were simulated by drawing a time from this distribution 

(the initial value being k = 2) and lengthening each of 

the k branches by this amount and then choosing one 

of the k at random to be the one that splits. After the 

split there are now k + 1 branches, so k is increased by 

1 and the process is repeated. The process stops when 

the split that would create the 11 th branch is about to 

occur (when the time for it has already elapsed). This 

process produces an assortment of trees, some of which 

will be much more difficult for any method to correctly 

reconstruct than others. We feel that this represents the 

range of possible data more accurately than focusing 

attention on a specific model tree. 

For each tree created, multiple independent data 

sets were generated by simulating evolutionary change 

along the tree. The simulation program used the Kimura 

( 1980) two-parameter model of sequence evolution, with 

a transition / transversion ratio of 2.0, to randomly evolve 

DNA sequences according to an input phylogeny. Each 

site evolved independently, starting from a random nu- 

cleotide sampled equiprobably from A, G, C, and T and 

simulating change according to the Markov chain spec- 

ified by the Kimura two-parameter model, with the time 

for the change given by the length of that branch in the 

tree. Changes in different branches were independent, 

starting from the nucleotide that was achieved in the 

common ancestor of the branches. Trees for which some 

sites evolve faster than others were simulated by mul- 

tiplying the branch lengths by a constant before simu- 

lating the “fast” sites. 

Distance Matrices 

Matrices of corrected evolutionary distances were 

generated by PHYLIP program DNADIST, using the 

same Kimura two-parameter model and transition/ 

transversion ratio that were used to generate the data. 

This program estimates the distance by maximum-like- 

lihood estimation under that model. 

Phylogeny Algorithms 

Five methods were tested: parsimony, compatibil- 

ity, maximum likelihood, Fitch-Margoliash (Fitch and 

Margoliash 1967)) and neighbor joining ( Saitou and Nei 

1987). The programs for the first four methods listed 

used a heuristic search method, which attempts to find 

the best tree by a specific criterion but is not guaranteed 

to do so (programs that perform branch-and-bound 

searches and guarantee finding the optimal tree are very 

slow). The neighbor-joining method always uses a step- 

wise construction approach rather than a search for the 

optimal tree. 

The algorithms that search for optimal trees can 

contain an optional final step, global rearrangement, 

which involves removing each branch in turn and trying 

all possible positions for it; this improves performance 

but approximately triples run time. It was not used for 

the two slowest programs, those for maximum likelihood 

and the Fitch-Margoliash method, as preliminary sim- 

ulations suggested that it would not substantially im- 

prove their performance (data not shown). 

The parsimony method uses the Wagner parsimony 

criterion (Eck and Dayhoff 1966; Kluge and Farris 1969; 

Fitch 197 1). The related compatibility method (Le- 

Quesne 1969) tries to find the tree compatible with the 

largest number of sites, where compatibility is defined 

as not requiring any nucleotide to arise twice on the tree. 

The PHYLIP implementations of these programs do not 

estimate branch lengths. 

The maximum-likelihood method is an extension 

of the method described earlier (Felsenstein 198 la) to 

use base frequencies calculated from the input data and 

uses a model of base substitution that allows not only 

unequal base frequencies but inequality of transition and 

transversion rates. The model is that invented by one of 

us (J.F.) and first described by Kishino and Hasegawa 

( 1989). We supplied it with the correct transition/ 

transversion ratio, 2.0. 

The remaining two methods estimate trees on the 

basis of distance matrices. One uses the least-squares 

criterion of Fitch and Margoliash ( 1967)) which searches 

for the tree minimizing the sum of squared differences 

between the actual distances and those on the tree. The 

power parameter, which controls the relative weighting 

of long versus short distances, was set to 2.0, Fitch and 

Margoliash’s original value, because preliminary simu- 

lations showed this to be most accurate (data not 

shown). The method of assigning branch lengths for a 

given tree topology was not that used in Fitch and Mar- 

goliash’s original program but used alternating least 

squares to find branch lengths that solve the normal 

equations for the least-squares estimate. The method of 

searching among tree topologies was, as we have indi- 

cated, similar to that used in the parsimony, compati- 

bility, and maximum-likelihood programs. 

The neighbor-joining method (Saitou and Nei 

1987, simplified as in Studier and Keppler 1988) is a 

distance-matrix method that sequentially modifies an 

initial star phylogeny in order to minimize the total 

branch length. This approximates the method of mini- 

mum evolution (Rzhetsky and Nei 1992). 

Both of the distance-matrix methods sometimes 

estimate negative branch lengths. Preliminary simula- 
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Phylogeny Algorithm Comparisons 46 1 

tions suggested that they would perform better if negative 

branches were disallowed. In the case of the Fitch-Mar- 

goliash method, disallowing negative lengths affects the 

search among topologies, and so it can change both to- 

pology and branch length accuracy; for the neighbor- 

joining method, only branch length is affected. 

To disallow negative branches in the Fitch-Mar- 

goliash method, we constrained the negative branch to 

length 0 and then did a constrained least-squares solution 

for the two adjacent branches. Since our algorithm uses 

an iterative approach to solve for the least-squares branch 

lengths, such a change at one branch will affect the 

lengths of other branches throughout the tree. 

Neighbor joining is a sequential construction al- 

gorithm and does not allow for this type of global ad- 

justment to remove negative branches. Instead, when a 

negative branch occurred, we immediately set its length 

to 0, adjusting its sibling branch accordingly. 

We considered including the method of minimum 

evolution (Rzhetsky and Nei 1992) in this study, but 

we were unable to find a suitable correction for negative- 

length branches. Without correction, the method’s per- 

formance was poor in preliminary simulations (data not 

shown), but this is not a fair comparison. 

Comparison of Trees 

The success of the algorithms in recovering the cor- 

rect tree was evaluated by two methods, both of which 

compute distances between trees. The first is the dT score 

of Robinson and Foulds ( 198 1 ), which measures the 

number of internal branches that exist in one tree but 

not in the other; for trees of 10 taxa it varies between 0 

(identical topologies) and 14. (This measure is described 

in more detail below.) 

Trees with O-length branches were not treated as 

multifurcating. Rather, we accepted whatever resolution 

of the multifurcation the estimating program produced. 

For the three methods (maximum likelihood, Fitch- 

Margoliash, and neighbor joining) that estimate branch 

lengths, we have developed a distance between unrooted 

trees that is sensitive to the correctness of branch lengths. 

This distance measure, which we call the “branch score” 

(Bs), is the sum of squares of the differences between 

each branch’s length in the true and deduced trees. 

Branches that appeared in one tree but not in the other 

were scored as if compared to a branch of length 0. This 

means that, for a sufficiently short branch, an algorithm 

that does not find the branch will score better than an 

algorithm that assigns it a great length. Like dT, the 

branch score is 0 for identical trees and increases as the 

match worsens. However, it depends on the absolute 

size of the trees being compared, and so branch scores 

cannot be directly compared among trees with different 

substitution rates. The branch score is closely related to 

dT, as dT is the branch score for trees in which all 

branches have length 1. Note that branch-score measures 

differences in topology as well as branch length, though 

it can be 0 for a comparison between two nonidentical 

topologies if all the discordant branches are of length 0. 

A more precise definition of the branch score shows 

that its square root is a metric and thus should be called 

a distance. If we consider the set S of all species, each 

branch in the tree induces a partition of the elements of 

this set, dividing them into two sets-R1 and &-ac- 

cording to whether they are connected to one end of the 

branch or the other. As the trees are unrooted, we do 

not distinguish between the partitions { RI, & > and 

{&, R,}. Now consider the large set (PI, P2, . . . , PN) 

of all possible partitions of S into two sets. For each tree, 

we can define an array B of nonnegative reals ( bl, bz, 

. . . ) bN). The real number bi is the branch length of the 

branch corresponding to partition Pi, unless that branch 

does not exist in the tree, in which case it is 0. Thus 

most elements of B will be 0: for 10 species there are 

5 11 possible partitions, only 19 of which will correspond 

to branches in any one fully resolved tree. 

For each tree, we can imagine calculating the cor- 

responding array B. For two trees whose arrays are B 

and B’, the branch score is simply the squared Euclidean 

distance between these arrays: 

N 

Bs(B, B’) = 2 ( bi-bi)2 . (1) 
i=l 

Robinson and Foulds’s dT is simply the branch score 

where all of the non-0 values of bi and bi are l’s, so that 

the squared difference (bi- b:)2 is 1, if the branch exists 

in one of the two trees and not in the other, and otherwise 

is 0. 

Although we have not made use of them, extensions 

of the branch score are straightforward. To define a score 

for rooted trees, we need only use ordered rather than 

unordered partitions, so that in the partition { Ri , R2 ] 

it is R2 that contains the root, distinguishing it from the 

partition { R2, RI > . If we wish to have a squared distance 

that is sensitive to relative branch lengths rather than to 

absolute branch lengths, we need only divide all the bi 

by their sum. This ensures that two trees that are of the 

same topology and have proportional branch lengths will 

have a branch score of 0; however, this approach may 

run into trouble if some branches are allowed to have 

negative lengths. 

Note that the branch score as we have defined and 

used it is sensitive both to difference in branch lengths 

and also to differences in tree topology, although, if a 

difference in topology occurs in a region that has very 

short branches, it may lead to a low branch score. In 
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462 Kuhner and Felsenstein 

simulations where the substitution rate was not equal at 

all sites, branch lengths of the “true” tree were computed 

by taking an average of the rates across all sites. When 

an algorithm produced multiple tied trees (possible only 

with parsimony and compatibility in this simulation), 

we took the average either of d7’s or of the branch scores 

for all trees produced. 

Bias 

Several studies have addressed the consistency of 

phylogenetic algorithms: does the method converge to 

the true tree with an infinite amount of data? We chose 

instead to explore a related question, which is, perhaps, 

of more importance in actual studies with finite data 

sets: does the method have a systematic preference for 

something other than the true tree with a finite amount 

of data? Such a preference represents a bias in the method 

and can exist even when the method is consistent. We 

chose to measure bias by comparing the differences 

(measured by either dT or branch score) between re- 

constructions of the same tree (based on different data 

sets) with the differences between these reconstructions 

and the true tree. If the reconstructed trees form a cloud 

centered on the true tree, the differences between recon- 

structions should be greater, on average, than the dif- 

ferences between each reconstruction and the truth. If 

the cloud is centered on an incorrect tree, the recon- 

structions may be more similar to one another than to 

the truth. 

To avoid computational burden and lack of inde- 

pendence, we sampled the difference between the first 

and second reconstructions, the third and fourth, and 

so on, producing a set of 50 differences for each series 

of 100 reconstructions. We compared the mean of this 

set of differences with the mean of the 100 differences 

between reconstructions and the true tree, and we scored 

the run as unbiased if the reconstructions were closer to 

the true tree than to one another. This is a conservative 

test for bias; if the cloud of trees is symmetrical around 

the true tree, then, since the individual trees would be 

independently placed in a Euclidean space, the squared 

distance between trees would be expected to be, on av- 

erage, twice as great as the squared. distance to the true 

tree. This means that there is some tendency for this 

measure of bias to conclude that bias is not present. A 

method that is consistent with infinite data may still be 

biased with finite data; conversely, a method that is in- 

consistent with infinite data might not have detectable 

bias with finite data if the difference between its preferred 

tree and the truth were small compared with the error 

in tree estimation based on a small data set. 

Results 

Throughout this study, “low” evolutionary rate 

to a rate of 0.1. Time is scaled in units such that the 

average time that elapses in a lineage until it branches 

is 1 .O mutation per site. Thus, a substitution rate of 0.0 1 

per unit time is equivalent to having 0.0 1 times as great 

a probability that a single base changes as that the lineage 

splits. Note that, in a tree of 10 species, the expectation 

of the sum of all branch lengths is 1.93, when the branch 

lengths are given in terms of the probability of a lineage 

splitting. (This number is the sum of the expected times 

from each split to the next, which have expectations of 

72, 73, ’ ’ ’ 7 &.) A substitution rate of 0.01 thus means 

that, in a tree of average total length, the average number 

of changes per site will be 0.0 193. The number of changes 

reconstructed by a parsimony algorithm may be slightly 

less than that, owing to the minimization step of the 

algorithm. 

Performance of the five algorithms was evaluated 

under a number of conditions: uniform clocklike evo- 

lution with a high or low rate; unequal rates on different 

branches (half the branches high, half low); and unequal 

rates at different sites (half the sites high, half low). Fifty 

random trees were generated for each condition; for each 

tree, 100 replicate data sets were generated for each of 

four length categories ( 100, 300, 1,000 and 3,000 bp), 

resulting in 5,000 phylogeny estimations for each com- 

bination of condition and length. 

For the case of unequal rates on different branches, 

the simulation program that assigned rates to branches 

did so with a 50% probability of a high rate ( 10 times 

as high as the low rate). Thus the number of branches 

that had high and low rates would vary from tree to tree. 

In the tables, the mean dT or branch scores for the 

condition / length combination are presented, followed 

by the difference of each method’s score from the mean. 

(Note that a lower score indicates better performance.) 

Asymptotically, with very large amounts of data, one 

can show that the branch score will decline inversely 

with the number of sites. This behavior is very nearly 

realized for many of the tables discussed below. 

Bias scores are presented separately; each score is 

based on 50 independent data trees, for each of which 

the 100 data sets generated were scored as showing or 

not showing bias. The number shown is the number of 

trees that appeared biased, so that a method that was 

always found to be biased would have a score of 50. 

It should be noted that all of the methods except 

neighbor joining use a heuristic search that is not guar- 

anteed to find the maximal tree, and details of the way 

this search is done could influence the programs’ success. 

It is possible that different implementations of the al- 

gorithms would give different results, although we sus- 

pect that the results presented here are not strongly de- 

corresponds to a rate of 0.01, and “high” corresponds pendent on the success of the heuristic search. A 
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Phylogeny Algorithm Comparisons 463 

Table 1 Uniform Rates 
Comparison of Methods under Low (0.01) Substitution Rate 

Tables 1 and 2 show the relative performance of 

the algorithms under a clocklike model of evolution. On 

the whole, the algorithms were quite successful at esti- 

mating the correct tree; under the lower rate, 1,000 bp 

were required to reduce the average errors per tree to 

< 1 (dT<2.0), while under the higher rate only 300 bp 

were needed. Accuracy of the branch length estimates 

increased smoothly with increasing sequence length. 

Under both uniform rates parsimony was some- 

what more successful than compatibility, while the dis- 

A. Accuracy of Topologies 

ALGORITHM 

SITES MEAN dT Pars Comp ML F-M N-J 

100 . . . 7.945 0.03 0.06 -0.66 0.22 0.35 

300 . . . . . . . 4.463 0.12 0.17 -0.4 1 0.02 0.10 

1,000 . 1 .I337 0.11 0.14 -0.20 -0.04 -0.02 

3,000 . . . . . 0.736 0.02 0.04 -0.07 0.01 0.00 

B. Trees (of 50) Showing Bias in Topology 

ALGORITHM 
Table 2 

Comparison of Methods under High (0.1) Substitution Rate 
SITES Pars Comp ML F-M N-J 

A. Accuracy of Topologies 
100 . . . . 0 0 0 0 0 

300 . . 0 0 0 0 0 

1,000 . . . . . 1 0 0 1 0 

3,000 . 2 1 0 0 0 

ALGORITHM 

SITES MEAN dT Pars Comp ML F-M N-J 

100 . . 2.767 -0.01 0.29 -0.18 -0.06 -0.05 

300 . . . . 1.333 0.02 0.16 -0.19 0.00 0.01 

1,000 . . . . . 0.659 0.02 0.09 -0.12 0.01 0.01 

3,000 . 0.383 -0.01 0.02 -0.07 0.03 0.03 

C. Accuracy of Branch Lengths 

ALGORITHM 

SITES MEAN Bs ML F-M N-J 

B. Trees (of 50) Showing Bias in Topology 
100 . . . . . 95.972 1.12 -0.10 -1.02 

300 . . . . . 32.965 0.10 -0.04 -0.06 

1,000 . . . . . 9.807 -0.05 0.02 0.03 

3,000 . . . 3.279 -0.02 0.01 0.01 

ALGORITHM 

SITES Pars Comp ML F-M N-J 

D. Trees (of 50) Showing Bias in Branch Lengths 
100 . . . . . . 0 0 0 0 0 

300 . . . . . . 0 0 0 0 0 

1,000 . . . . . 2 1 1 0 0 

3,000 . . . . 1 3 0 0 1 

ALGORITHM 

SITES ML F-M N-J 

100 . . . . 0 0 0 

300 . . . . 0 0 0 

1,000 . . . . . 0 0 0 

3,000 . . . . . 0 0 0 

NOTE.-Part A gives both mean dT for the five algorithms and the difference 

between each algorithm’s dT score and the mean. Part B gives the number of 

trees (of 50) in which the mean dT distances between estimated and true trees 

were smaller than those among estimated trees, a measure of whether the estimated 

trees are centered around the true tree. Parts C and D give similar information- 

using branch score X IO’, rather than dT-for the three algorithms that calculated 

branch lengths. Note that both dT and branch score increase with increasing 

inaccuracy; the method with the most negative difference from the mean was 

the most accurate. Pars = parsimony; Comp = compatibility; ML = maximum 

likelihood; F-M = Fitch-Margoliash; N-J = neighbor joining; and Bs = branch 

score. 

preliminary test in which an exact branch-and-bound 

search was used with the parsimony criterion showed 

no differences, in behavior, from the heuristic search 

tested here (data not shown). 

C. Accuracy of Branch Lengths 

ALGORITHM 

SITES MEAN Bs ML F-M N-J 

100 . . . . . . . 1,708.245 -25.4 1 -4.03 29.44 

300 . . . . . . 553.576 -23.98 7.93 16.06 

1,000 . . . . . 162.536 -8.99 3.30 5.69 

3,000 . 54.298 -3.06 1.25 1.82 

D. Trees (of 50) Showing Bias in Branch Lengths 

ALGORITHM 

SITES ML F-M N-J 

100 . . 0 0 0 

300 . 0 0 0 

1,000 . . . . . 0 0 0 

3,000 . . . 0 0 0 

NOTE.-See Note to table 1. 
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464 Kuhner and Felsenstein 

tance methods ( Fitch-Margoliash and neighbor joining) 

had nearly identical results. The distance methods were 

slightly inferior to parsimony both with short sequences 

with low rates and with long sequences with high rates 

and were slightly superior in the other cases. Both were 

somewhat less accurate than maximum likelihood. The 

parsimony and compatibility methods showed signs of 

bias with longer sequences, perhaps owing to occasional 

generation of trees with very long branches, as such 

branches are known to be erroneously grouped together 

by parsimony ( Felsenstein 1978 ) . For low evolutionary 

rates all methods were equally successful at estimating 

branch lengths, while for higher rates maximum likeli- 

hood was slightly more successful; all three methods were 

unbiased. 

Unequal Rates per Branch 
SITES 

Table 3 shows results for unequal substitution rates 

on different branches. A randomly chosen 50% of 

branches evolved at the high rate, while the remainder 

evolved at the low rate. The ratio between high and low 

rates was IO-fold, which happens to be the same as the 

ratio between the rates used in tables 1 and 2. Thus, if 

the accuracy with which a branch length could be con- 

structed depended only on the latter’s own length, we 

would expect the means from table 3 to be midway be- 

tween those from tables 1 and 2. They are in fact quite 

close to this, though generally a little higher (reflecting 

the difficulties caused by unusually long or short 

branches). 

100 0 0 0 0 0 

300 . . . . . . 0 0 1 0 0 

1,000 5 3 0 0 0 

3,000 . . . . 8 9 0 0 1 

SITES MEAN Bs ML F-M N-J 

This case was expected a priori to be difficult for 

the parsimony method (Hendy and Penny 1989; Zhar- 

kikh and Li 1993 )-and, presumably, also for the closely 

related compatibility method. Both of them performed 

relatively poorly, with parsimony slightly superior to 

compatibility. However, even with such grossly unequal 

substitution rates both methods produced less than one 

error per tree, on average, with >, 1,000 bp. As expected, 

both methods had trouble with bias. 

100 . . . 669.892 -15.97 1.42 14.56 

300 . . . . . . . 224.530 -7.18 1.46 5.72 

1,000 67.032 -2.56 0.65 1.90 

3,000 . . . . . 22.260 -0.93 0.27 0.66 

D. Trees (of 50) Showing Bias in Branch Lengths 

SITES ML F-M N-J 

The Fitch-Margoliash method was somewhat more 

successful than neighbor joining, with this type of data, 

and maximum likelihood was more successful than ei- 

ther of these distance methods. These methods were 

generally unbiased. The same pattern held in the branch 

length estimates. 

100 . . 0 0 0 

300 . . . . . . . 0 0 0 

1,000 0 0 0 

3,000 . . . . . 0 0 0 

NOTE.-see Note to table I. 

The compatibility method was designed to deal with 

cases in which some characters (in this case, sites) evolve 

so quickly that they are meaningless. With long se- 

quences compatibility was as successful as the distance 

methods and was much better than parsimony; however, 

with shorter sequences it was inferior to parsimony, per- 

haps because it discarded too much of the limited data 

available. 

Unequal Rates per Site 

Table 4 shows results for substitution rates varying 

by site. Half the sites evolved at the low rate, and the 

other half evolved at the high rate. This case allowed for 

fairly accurate estimation with short sequences-com- 

parable to the results in table 3-but lengthening the 

sequences produced much less improvement in accu- 

racy. All methods showed signs of bias. 

Table 3 

Comparison of Methods When Substitution Rate Varies 

by Branch 

A. Accuracy of Topologies 

ALGORITHM 

SITES MEAN dT Pars Comp ML F-M N-J 

100 . . . . . . . 4.980 0.15 0.37 -0.45 -0.09 0.02 

300 . . . 3.079 0.15 0.33 -0.37 -0.13 0.03 

1,000 . . . . . 1.660 0.14 0.21 -0.3 1 -0.07 0.03 

3,000 0.889 0.18 0.21 -0.29 -0.09 -0.02 

B. Trees (of 50) Showing Bias in Topology 

ALGORITHM 

Pars Comp ML F-M N-J 

C. Accuracy of Branch Lengths 

ALGORITHM 

ALGORITHM 

Maximum likelihood was inferior to the distance 

methods, with very short sequences, but was consider- 

ably superior to any other method, with long sequences, 
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Phylogeny Algorithm Comparisons 465 

Table 4 per site drastically violate the assumptions both of max- 
Comparison of Methods When Substitution Rate Varies imum likelihood and of the distances that form the basis 
by Site of the distance-matrix methods. 

A. Accuracy of Topologies Correction of Negative Branch Lengths 

ALGORITHM Table 5 shows the results for one case, high constant 

mutation rate, comparing the performance of the dis- 
SITES MEAN dT Pars Comp ML F-M N-J tance methods with and without correction for negative 

100 . . . . 4.492 0.05 0.47 -0.05 -0.28 . 
_. 19 branch lengths. The Fitch-Margoliash method was cor- 

300 . . . . 3.115 0.16 0.34 -0.35 -0.12 -0.03 rected by holding the negative branch or branches at 0 

1,000 . . . . . 2.367 0.26 0.21 -0.68 0.08 0.13 and making a constrained least-squares fit. Since this 
3,000 . 2.072 0.32 0.14 -0.8 1 0.13 0.22 was done at each step in tree estimation, it could influ- 

B. Trees (of 50) Showing Bias in Topology 
ence the final choice of topology, and table 5 shows that 

topology as well as branch length was estimated more 

ALGORITHM accurately with this correction. The neighbor-joining 

method was corrected by setting the length of any branch 
SITES Pars Comp ML F-M N-J estimated as negative to 0 and then reducing its sibling 

100 . 9 4 0 7 
6 branch by the same amount. This does not change the 

300 . . . . . 21 10 5 21 17 
topology, but it makes a small improvement in branch 

1,000 26 26 11 26 27 length estimation. Results with other mutation rates were 

3,000 . . . . 29 29 15 27 29 comparable (data not shown). 

C. Accuracy of Branch Lengths Speed of Algorithms 

SITES MEAN Bs 

ALGORITHM 
An accurate algorithm may be effectively useless if 

it is too slow. For comparison purposes, we determined 

ML F-M N-J the run time of each algorithm on 10 data sets of 300 

100 . . . . 44,128.535 -2,148.75 1,207.2 1 941.54 
bp each, simulated under the low substitution rate, with 

300 . . . . . . 39,979.094 -2,498.87 1,255.88 1,242.98 

1,000 . . . . . 38,728.660 -2,454.44 1,169.76 
3,000 Table 5 . . . 38,362.602 -2,397.06 1,120.55 ~$~*~~ , . 

Comparison of Distance Methods With and Without 

D. Trees (of 50) Showing Bias in Branch Lengths Correction of Negative Branch Lengths 

SITES ML 

ALGORITHM 

F-M N-J 

A. Accuracy of Topologies 

ALGORITHM 

100 . . . 33 38 38 SITES MEAN dT F-M F-M corr N-J N-J corr 

300 . . . . . 38 40 39 
1,000 . . 40 42 42 100 . . . . . . . 2.444 0.61 -0.23 -0.19 -0.19 

3,000 . . . 42 44 44 300 . . . . . . . 1.065 0.53 -0.18 -0.17 -0.17 

1,000 0.48 0.20 -0.06 -0.07 -0.07 

NOTE.-see Note to table 1. 3,000 0.28 0.11 -0.03 -0.04 -0.04 

B. Accuracy of Branch Lengths 

and gave better branch length estimates. It was also less 

often biased than the other methods. Unequal rates per 
ALGORITHM 

site violate a fundamental assumption of the likelihood SITES MEAN Bs F-M F-M corr N-J N-J corr 

algorithm used (Felsenstein 198 1 a), but it appears that 

the method is fairly robust to violation of this assump- 100 . . . . . . . 1,795.483 292.69 -133.48 -72.60 -86.6 1 

tion. However, the likelihood results were still inferior 
300 . . . . . . . 583.620 73.52 -28.11 -22.36 -23.05 

to those of table 3, suggesting that unequal rates per site 
1,000 169.589 6.20 -3.65 -1.27 -1.27 
3,000 . . . . 54.133 0.79 -0.59 0.10 0.10 

do interfere with tree estimation. 

None of the three methods that estimated branch NOTE.-For explanation of structure of table, see Note to table I. 

lengths gave reasonable results in this case, and all were 
F-M = uncorrected Fitch-Margoliash method (allowing negative length 

severely biased. This is not surprising, as unequal rates 
branches): F-M corr = corrected Fitch-Margoliash method; N-J = uncorrected 

neighbor-joining method; and N-J corr = corrected neighbor-joining method. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/1
1
/3

/4
5
9
/1

1
0
4
3
2
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



466 Kuhner and Felsenstein 

10 and 15 taxa. We also timed the distance-matrix-gen- 

eration program DNADIST, since construction of dis- 

tance matrices is a necessary step in using the distance 

methods on sequence data. The results are presented in 

table 6. Even with the overhead needed to make distance 

matrices, NEIGHBOR is much faster than the other al- 

gorithms, while fastDNAm1 is extremely slow (the vast 

majority of this study’s computing time was consumed 

by fastDNAm1 runs). fastDNAm1 has since been made 

much faster by algorithmic improvements (G. Olsen, 

personal communication), but for large data sets other 

methods may be more practical. 

Table 6 

Relative Speed of Algorithms 

TIMES 

6) 

ALGORITHM a 10 Taxa 15 Taxa 

NEIGHBOR . . 0.08 0.2 

DNAPARS . . 3.5 14.9 

DNACOMP . 5.6 21.3 

FITCH . . 6.6 39.7 

DNADIST (C) . 17.1 41.8 

fastDNAm1 (C) 102.4 539.9 

Discussion 

Comparison with Other Studies 

Previous studies have in general been smaller, with 

< 1,000 replications per condition (Tateno 1985)) as 

opposed to our 5,000; most have been closer to lOO- 

500 replications per condition. Many studies examined 

methods other than the five analyzed here; we restrict 

attention to studies that include at least two of the same 

methods. The studies discussed examined trees of 4-32 

taxa. With more taxa, all methods are expected to be- 

come less accurate; it is difficult to predict how the num- 

ber of taxa will affect the relative accuracy of methods. 

A number of studies (Li et al. 1987; Sourdis and 

Nei 1988; Jin and Nei 1990) have compared neighbor 

joining and parsimony. Although their results differ in 

detail, the general result was that neighbor joining is 

more accurate than parsimony, especially in the case of 

unequal rates per branch. This is in agreement with our 

results. 

Hasegawa and Yano ( 1984) compared parsimony 

and maximum likelihood, and they found results similar 

to ours, with likelihood slightly better with equal rates 

per branch and substantially better with unequal rates 

per branch. 

Saitou and Imanishi ( 1989) compared Fitch-Mar- 

goliash, neighbor joining, parsimony, and maximum 

likelihood. Their results were generally similar to ours, 

with two exceptions. In Saitou and Imanishi’s study, 

maximum likelihood performed slightly worse than 

neighbor joining when rates were equal and performed 

slightly better when rates varied by branch. We found 

maximum likelihood to be more accurate than neighbor 

joining, even with equal rates. 

Saitou and Imanishi ( 1989) also found the Fitch- 

Margoliash method to be less accurate than neighbor 

joining, whereas we found it to be slightly superior in 

most cases. This is apparently due to a difference between 

their and our implementations of the Fitch-Margoliash 

method. Saitou and Imanishi used a program that made 

one pass through the tree when estimating branch lengths 

(N. Saitou, personal communication ) , whereas FITCH 

a All programs are Pascal versions from PHYLIP 3.4-except for DNADIST, 

for which the slightly faster C version from PHYLIP 3.5 was used, and fastDNAm1, 

for which the C code was provided by Gary Olsen. 

b Measured on a DECstation 5000/200 by using 10 data sets of 300 bp, 

except for the measurement for NEIGHBOR with 10 taxa, which was estimated 

using a run with 100 data sets to avoid rounding error. All other times are rounded 

to the nearest 0.1 s. 

makes multiple passes. This difference in implementa- 

tion of the Fitch-Margoliash algorithm may account for 

its weaker performance in their simulations. 

Branch Length Estimation 

Even in cases where there was substantial difference 

in their ability to estimate topology, all three of the 

methods that estimated branch length did almost equally 

well at branch length estimation. This is probably be- 

cause the branch score is mainly dominated by the ac- 

curacy of the long branches. All three methods were ap- 

proximately equally good at reconstructing long 

branches; the difference visible in their dT scores involves 

ability to reconstruct short branches. None showed signs 

of bias, except in the case of unequal rates per site. 

General Success of Algorithms 

In the most favorable case studied (high uniform 

substitution rate with sequences of length 3,000), the 

most successful algorithm produced an error - 1 tree in 

6. Clearly the general structure of the tree is quite ac- 

curately recovered with such data. 

We tested three departures from this most favorable 

case. Lowering the substitution rate, so that there was 

very little variability in the input data, tended to down- 

play differences among methods-all methods were ap- 

proximately equally good at recovering the true tree with 

relatively invariable data. Varying the rate across 

branches caused substantial problems for the parsimony- 

based methods while leaving likelihood and distance 

methods fairly accurate. It is noteworthy that the distance 

methods did not show signs of bias (by our conservative 

test), with short sequences, despite the result of Zharkikh 

and Li ( 1993) showing that neighbor joining (and, pre- 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/1
1
/3

/4
5
9
/1

1
0
4
3
2
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Phylogeny Algorithm Comparisons 467 

sumably, other distance algorithms) may be biased with 

short sequences, owing to errors in distance-matrix es- 

timation. 

Varying the rate among sites, on the other hand, 

caused all methods to become biased-apparently pre- 

ferring another tree or trees to the true tree. This is caused 

by failure to correct for the additional multiple hits and 

convergence events that occur at quickly evolving sites. 

Since functional DNA is known to show rate variation 

among sites, this is an important consideration. 

Several approaches could be taken to deal with un- 

equal rates at different sites. In the parsimony-based 

methods, sites could be weighted to emphasize those 

with lower rates. Compatibility itself is an example of 

such a method, in which 0 weight is given to any site 

that requires more than the minimum number of 

changes. In this study, compatibility was fairly successful 

with unequal rates. Successive character weighting (Far- 

ris 1969) or threshold methods (Felsenstein 198 1 b), 

giving lessened but not 0 weight to sites that are not fully 

compatible with the tree, might be more successful, since 

they would not discard the potential information in the 

rapidly evolving sites. Preliminary testing of Farris’s ap- 

proach has been reported by Fitch and Ye ( 1992)) but 

little is yet known about the usefulness of threshold or 

iterative-weighting parsimony methods. 

The difficulties encountered by the distance-matrix 

methods, with unequal rates per site, are probably due 

to nonadditivity of the estimated distances. It is straight- 

forward to show, for the simple case of two species, that, 

if data are generated using a mixture of two Kimura 

two-parameter models with different mutation rates, the 

estimated distance between the two species will be biased 

downward. With large numbers of sites the estimated 

distance will converge with certainty to this incorrect 

value. Thus, branch length estimation is biased in the 

two-species case, and there is no reason to believe that 

adding additional species will improve matters. Since 

branch length estimation is intimately involved with to- 

pology estimation for both of the distance-matrix meth- 

ods considered here, branch length bias leads inevitably 

to topology inaccuracy. 

One cure would be to have a distance that allowed 

for a mixture of rates of substitution at different sites. 

Jin and Nei ( 1990) describe a method for constructing 

distance matrices that assumes a gamma distribution of 

rates, and they show that this corrected method gives 

better results than the uncorrected method when sites 

are evolving unequally, even when the underlying dis- 

tribution is not close to a gamma distribution. Olsen 

( 1987) proposes a similar method, using a log-normal 

distribution. With properly corrected distance matrices, 

the distance methods should regain their consistency on 

this type of data. 

One can also correct for heterogeneity of rate of 

substitution at different sites, in maximum-likelihood 

methods. J. Felsenstein and G. Churchill (unpublished 

data) have developed a maximum-likelihood method in 

which several classes of sites with evolutionary rates in 

a fixed ratio are assumed, and the likelihood is then cal- 

culated over all possible classes for each site. This could 

improve the performance of the likelihood method (at 

the cost of approximately multiplying its run time by 

the number of classes assumed). It requires an arbitrary 

decision about the number and relationship of rate 

classes, but the equal rate assumption of the current 

methods is equally arbitrary. An alternative method 

(Yang 1993) assumes that rates come from a gamma 

distribution. This approach is quite slow, but it may 

have room for algorithmic improvement. 

We hope in future studies to be able to evaluate 

the success of these approaches at correctly inferring the 

phylogeny when rates vary across sites. In the meantime, 

what can be said about the use of phylogeny algorithms 

on real data sets? In cases where the rates per site and 

per branch are expected to be reasonably equal, all of 

the methods analyzed in this study perform quite well 

and can be expected to recover a correct or nearly correct 

tree from an adequately large data set. The suspicion of 

unequal rates among taxa is a strong reason not to use 

the parsimony or compatibility methods, and trees pro- 

duced by parsimony or compatibility should be taken 

somewhat skeptically if unequal rates among taxa are 

likely to exist (though it is worth noting that the “fast” 

rate in our simulations was 10 times higher than the 

slow rate, a fairly extreme difference). When rates are 

unequal among sites, as in protein-coding sequences, all 

methods encounter difficulties (with maximum likeli- 

hood being the least affected). One possible test for such 

difficulties would be to construct trees independently for 

silent and nonsilent codon positions. If these trees do 

not agree with the tree from the entire data set, the latter 

should be regarded with skepticism. Our results suggest 

that adding additional sites is not very helpful in im- 

proving the estimates when per-site rates are unequal; 

either restricting attention to only one class of sites (silent 

or nonsilent) or using one of the correction methods 

described above may be more useful. 
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