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ABSTRACT

In the emerging field of computational imaging, rapid prototyping of new camera concepts becomes increasingly
difficult since the signal processing is intertwined with the physical design of a camera. As novel computational
cameras capture information other than the traditional two-dimensional information, ground truth data, which
can be used to thoroughly benchmark a new system design, is also hard to acquire. We propose to bridge this
gap by using simulation. In this article, we present a raytracing framework tailored for the design and evaluation
of computational imaging systems. We show that, depending on the application, the image formation on a sensor
and phenomena like image noise have to be simulated accurately in order to achieve meaningful results while other
aspects, such as photorealistic scene modeling, can be omitted. Therefore, we focus on accurately simulating the
mandatory components of computational cameras, namely apertures, lenses, spectral filters and sensors. Besides
the simulation of the imaging process, the framework is capable of generating various ground truth data, which
can be used to evaluate and optimize the performance of a particular imaging system. Due to its modularity, it is
easy to further extend the framework to the needs of other fields of application. We make the source code of our
simulation framework publicly available and encourage other researchers to use it to design and evaluate their
own camera designs.1
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1. INTRODUCTION

Since conventional imaging sensors are intrinsically two-dimensional, in order to obtain high-dimensional data
from the light of a scene, such as depth or spectral information, optical coding of the light before image acquisition
is necessary. Therefore, the newly emerging computational cameras offer combined optical and digital signal
processing techniques. This enables the design of novel optical imaging systems that allow the acquisition of
different properties of a scene than from a traditional image. For example, hyperspectral snapshot imagers record
a spatially resolved spectrum of a scene, whereas light field cameras capture the scene’s structural information.

Since the design process of a computational camera has to consider both the physical and the digital domain,
the development of new camera systems is more complex than that of traditional ones. Furthermore, due to the
huge amount of possibilities to optically modulate a signal (e.g. by lenses, mirrors, apertures, spectral filters)
there are numerous possible designs for new computational cameras for a given measurement task.2 A simulation
framework can support this process substantially and allows to further assess the system performance.3

In this article, we present a raytracing simulation framework tailored to the design and evaluation of cameras for
computational imaging applications. Using easily accessible reference data from the simulation, the performance
of the overall system can be assessed and optimized. Through the physically correct implementation of the
contributing camera components, including a physical model of the camera sensor, it is ensured that the
system performance is comparable to a real prototype.4 Furthermore, the simulation framework allows for the
implementation of reference systems that do not posses a physical counterpart, for example by directly rendering
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intermediate simulation data like the image depth, surface normal or spectrum, or by simulating technically
impossible aperture stops.

The proposed raytracer is written in C++ and we make the source code publicly available.1 Due to its object
oriented implementation, the raytracer is easily extendable in all of its components. Hence, other researchers can
implement (and contribute) their own camera designs and use the simulated images to evaluate their system.
Furthermore, by exchanging the abstract scene description, researchers can benchmark their newly implemented
computational camera in comparison to existing traditional and computational imaging methods.

The remainder of this paper is organized as follows: We will first introduce related works and the principles of
raytracing in Sections 2 and 3, respectively. We will then give a thorough overview of the proposed simulation
framework, including a detailed presentation of the camera and sensor implementations as well as an overview of
some component and reference implementations, in Section 4. We will summarize and give a brief conclusion in
Section 5.

2. RELATED WORK

A simulation makes it possible to perform a multitude of experiments with a system without the need of an
actual prototype and with parameterizations beyond the intended design or technically feasible implementations.
As all system parameters are known exactly, a simulation can help to thoroughly assess a system, especially
when ground truth data is hard to obtain. Both of these aspects apply to the field of image processing and
computational imaging.

Early works on camera simulation focus on effectively generating synthetic images that can support users in
their tasks, e.g. in the creation of an action plan for an industrial robot5 or the design of a vision system.6 Here,
the process of projection and rasterization was used to generate images that can be immediately interpreted by
a human user. More recent works use simulated images of a conventional camera as input for different image
processing algorithms. Butler et al. use the publicly available raw data from an animated short film for testing and
evaluating algorithms for optical flow estimation.7 By varying the simulation complexity, the authors can analyze
the influence of different phenomena of geometrical optics like depth-of-field on the image processing algorithms.
Irgenfried et al. use raytracing to compare the results of different image segmentation algorithms using both
simulated and real images.8 The authors outline the importance of using a physically correct simulation method
in order to get a meaningful comparison of the results generated from synthetic and real images. However, they
use an empiric noise model to increase the variance of the simulated images. Retzlaff et al. also use raytracing to
generate data for the training of a classifier of colored glass shards for an industrial sorting system.9 They achieve
similar classification rates on real glass shards when using a classifier trained with synthetic data compared
to using a classifier trained with real data. In his dissertation, Meister analyzes the meaningfulness of results
of image processing systems when using synthetic images as input.10 One of his results is that it is of high
importance to accurately simulate the physical phenomena that cause the features in the image on which the
used image processing algorithms highly depend on. For example, when evaluating an algorithm for optical flow
estimation, phenomena like motion blur have to be accurately simulated. On the other hand, phenomena that do
not affect these features but increase the overall realism of the synthetic image can be omitted.

With the emergence of computational imaging systems, the focus of image simulation also shifts towards
testing and optimization of a camera design. Brady and Gehm test their concept of a hyperspectral camera using
compressive sensing techniques by simulating the camera system as idealized convolution of a hyperspectral input
image with a spectrally coded aperture.11 In order to simulate medical imaging techniques based on X-rays,
Tabary et al. use raytracing amongst other simulation methods.12 Birch et al. simulate a lensless imaging system
with a random refracting element using a raytracing framework.13 The random refracting element acts as analog
compressive sensing method. Thus, a human interpretable image can be reconstructed after image acquisition.14

By using a simulation, iterations to the camera concept can be easily tested and thus, the effort during the system
design can be reduced significantly as there is no need to recalibrate a real prototype.
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3. PRINCIPLES OF RAYTRACING

In the scope of geometrical optics, light is described as rays whose optical path lengths, according to Fermat’s
principle, attain an extremum. Since, in conventional cameras, the dimensions of the optical elements are usually
much larger than the wavelength of the incident light, geometrical optics is well suited to describe the imaging
process of cameras, but as such is lacking the description of many essential properties of light. By means of an
extension of geometrical optics (see Figure 1), properties such as color and intensity, which can only be described
within wave optics (or higher order theories such as quantum electrodynamics), can heuristically be incorporated
into geometrical optics: The light field or plenoptic function Lλ,t(x, y, z, φ, θ) describes the optical radiance at
point (x, y, z) in direction (φ, θ) of wavelength λ at time t in units Wm−2 sr−1 nm−1. In homogeneous media that
are free of occluders, the radiance along a ray is constant. The spatial dependency of the light field can hence be
reduced by one dimension, resulting in the so-called 4D light field Lλ,t(u, v, a, b), where the coordinates (u, v, a, b)
correspond to a certain parametrization of the spatial dependency of the light field, of which there are numerous.2

In the context of raytracing, the light field is used to simulate the image formation process of cameras.15

Within the simulation, the scene (and the camera) are assumed to be static. Non-static cameras, for example
cameras utilizing a digital micromirror device, or scenes with moving objects, have to be synthesized in a serial
fashion. Furthermore, due to the limitations of the underlying physical theory, simulation of phenomena associated
with higher order theories, such as diffraction, interference or polarization, is not possible within a raytracing
framework. However, just like color and intensity have been heuristically incorporated into geometrical optics, it is
in fact possible to approach this in a similar fashion by assigning each ray a phase or polarization state16,17,18,19

(this shall too not be part of the proposed framework). Therefore, the raytracing framework is most suited
for raytracing that do not utilize these higher order effects, which in fact covers a vast portion of classical and
computational cameras utilizing lenses, apertures, dispersive media and the like.2

In this context, the physical process of image formation on the sensor can be described by the irradiance

Eλ,t (p) =

∫∫

Lλ,t(x, y, z, φ, θ) cos
4 (θ) dΩ 1

2

(1)

in units of Wm−2 nm−1, where the hemisphere above a point p = (x, y, z)T on a surface is denoted by Ω 1

2

. The
angle between the incident ray and the surface normal of the sensor is denoted by θ. Integrating the irradiance
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Figure 1: Overview of the physical theories of light and their associated phenomena.
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over the exposure time T and the wavelength range using the spectral responsivity R(λ) of the sensor results in
the radiant exposure

H (p) =

∫ ∫

T

R (λ)Eλ,t (p) dt dλ (2)

of pixel p in units of Jm−2. Finally, an integration over the active surface Ap of a pixel p yields the radiant
energy

Qp =

∫∫

H(p′) dAp , (3)

which is digitized by the sensor.

The main idea of raytracing is to numerically approximate the physical process of image formation by
representing the continuous light field by a limited amount of discrete samples, the rays. This approach
corresponds to a Monte Carlo integration of Eqs. (1)–(3). Hence, it can be proven that the approximation of H
converges towards the true value with increasing number of samples N .20 Additionally, by assuming a static
scene and camera, Eq. (2) further reduces to a multiplication with the exposure time T .

The representation of the continuous light field by discrete rays allows to effectively trace single rays inside
the simulated camera and the simulated world, hence the name raytracing. Furthermore, by tracing the rays
in the reverse direction of their actual propagation, that is beginning at the sensor and ending at light sources,
only the fraction of the light field that actually contributes to the image formation is considered. The process of
tracing the rays in the scene is described by the famous rendering equation, which is solved in a similar fashion
as Eqs. (1)–(3). As the main focus of this article is the camera simulation, we refer to the literature for more
information about accurate scene simulation.15,21

4. SIMULATION FRAMEWORK

We propose an object oriented raytracing framework written entirely in C++, as shown in Figure 2. The main
layout of the framework follows well-known raytracing implementations.15,21 In particular, the framework consists
of the following:

The Frontend provides an abstract interface for the user to control the raytracing routine. The user provides
an abstract scene description in form of a JSON file that is read and parsed by the Frontend. Furthermore, the
user can control additional settings of the rendering process, such as multithreading parameters or the output file
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Figure 2: Simplified overview of the proposed simulation framework.
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Figure 3: Example scene which is used throughout the paper.

name and image format. We provide a GuiFrontend with a graphical user interface as well as a command line
based BasicFrontend (which does not depend on any external libraries) to control the raytracer.

The Camera initiates the sampling and tracing routine and is responsible for all image-side ray calculations.
Furthermore, the Camera provides an object-side ray (in world coordinates) to be used for the actual rendering
process. Finally, the Camera receives back a spectrum description, which can be monochromatic, RGB or true
sampled spectra, of the traced ray which is saved to the (monochromatic, RGB or multispectral) image and
passed back to the Frontend. Since our framework puts emphasis on the camera’s capabilities, it will be discussed
in more detail in Section 4.1.

The Tracer is responsible for all object-side ray tracing and interactions of the rays with the scene. It receives
the object-side ray from the Camera and calculates possible intersections of the ray with the scene objects and
initiates the shading process. Note that the tracing is held abstract, i.e. the Tracer is not only capable of tracing
the spectral properties of the objects (i.e. their color) but also abstract reference properties such as depth or
surface normals (see also Section 4.2).

The remaining blocks are responsible for the object shading, i.e. converting the abstract shading data of an
Object into a spectrum, depending on the Object’s material properties such as color, texture and reflection,
scattering and transmission properties (defined through the bidirectional reflectance/transmittance distribution
function, BRDF/BTDF), which are provided by the Material, BRDF/BTDF and Texture blocks in combination
with the spectral properties of the Light source(s). This ultimately results in approximating the rendering
equation for the given scene. Many raytracing frameworks emphasize on the shading part of raytracing to render
photo-realistic images of complex textures, such as hair, fur, skin, trees or grass (for example for animated
cinematic movies or computer games). As our main focus lies on the implementation of computational cameras,
we will not discuss the shading process in more detail and instead refer the interested reader to the literature.15,21

Due to the object oriented layout of the framework, all blocks depicted in Figure 2 can be extended to one’s
own needs, e.g. by adding a new Camera (which is the most likely case) but also by adding a new reference
Tracer, a new Texture, etc.

A simulated image of an example scene is shown in Figure 3, which we will use in the remainder of this paper
to illustrate various aspects of our framework’s capabilities.

4.1 Camera

The camera block (see Figure 2) is the most crucial block for the investigation and simulation of computational
cameras. The different camera implementations share a set of common features which are implemented using an
abstract Camera base class that every particular camera, such as a ThinLens or Pinhole camera (see Section 4.1.2),
is derived from. The very core of every camera is a Sensor instance (see Section 4.1.1) and one or multiple
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samplers defining the sampling scheme of the rays inside the camera. For example, one samples the starting
points of rays on pixels and another samples the ray’s directions, e.g. by sampling the intersection points with a
lens. The other core functionality of each camera instance is a Transformation object which holds the camera’s
pose in world coordinates and takes care of the correct transformation between camera and world coordinates
when passing a ray to the Tracer instance.

Other than that, every camera is responsible for correctly sampling and tracing the rays as they pass the
different camera components. This process highly depends on the internal structure of the simulated camera.
Therefore, it has to be implemented individually when adding a new camera to the framework. To make the
implementation easier, we provide a set of core building blocks and reference implementations such as apertures,
(real and thin) lenses and the like, which we describe in more detail in Section 4.1.2.

4.1.1 Sensor simulation

Being part of the Camera, the Sensor instance holds all crucial parameters associated with the (physical) sensor
of the camera. In particular, it holds the sensor size (in px) as well as the pixel pitch, to be able to convert
back to the camera coordinate system. Furthermore, the sensor provides the sampler responsible for sampling
the pixel area in a suitable fashion. Finally, to be able to simulate different sensor types, the sensor holds a
spectral responsivity curve for which we provide numerous reference implementations of real existing sensors by
Sony and ON Semiconductors (both CMOS and CCD). Apart from a physically correct monochromatic sensor
implementation, we provide multiple reference sensors to be able to directly render RGB or multispectral images
(see Section 4.2).

An image of a real camera always suffers from noise of different sources. Depending on the type and amount
of noise, a specific computational or traditional imaging approach can become more favorable than another.23,24

When using a simulation for early experiments of a new camera concept, noise may be omitted. But when a
simulation is used to benchmark and optimize a camera design, noise must be considered.

The proposed framework implements the EMVA 1288 noise model,22 as shown in Figure 4. It models the noise
variance of excited electrons σ2

e−
on the sensor due to the inherent Poisson noise characteristic of incident photons

with mean µphoton and variance σ2
photon, where µphoton is the desired signal. In addition, there is measurable

noise from the camera electronics even with no incident light. It consists of the read noise, which is assumed to
be zero-mean and with variance σ2

read, and noise due to thermal excitation. Again, this is modeled by a Poisson
process, where the rate at which the electrons are excited is characterized by the dark current µI . The combination
of these noise terms is referred to as dark noise with mean µdark = µIT and variance σ2

dark = σ2
read + µIT . After

the amplification with the system gain K, the A/D conversion results in the addition of quantization noise σ2
q.

Depending on the illumination of the captured scene, the exposure time and the camera parameters, either of
these noise sources can be dominant over the others, with varying impacts on the overall system performance.

In favor of a more intuitive user interface, which allows new users to immediately render simple but meaningful
scenes, intensities are defined as digital intensities rather than radiometric intensities. For example, material
colors can be defined directly as three RGB values, where the range of 0 to 255 directly corresponds to the
representable dynamic range of common monitors. This also simplifies and speeds up the simulation process, as
all calculations can be performed in the domain of digital intensities. Radiometric quantities do not have to be
considered. On the other hand, this implies that the physical domain, where the photon noise and the dark noise
originate from, is not directly simulated.

η
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Figure 4: Noise model according to the EMVA 1288 standard.22
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(a) No camera noise. (b) Exposure time T = 10−3 s. (c) Exposure time T = 1 s.

Figure 5: Simulated example scene with different camera noise at different exposure times.

The EMVA 1288 noise model provides the connection of these two domains. By specifying the camera gain K,
the dark current µI and the read noise variance σ2

read, which are usually listed in the data sheet of a camera or
a sensor, and by choosing an exposure time T , the radiant exposure that causes a specific digital intensity is
implicitly defined by the model. Furthermore, the model also allows to translate the parameters of the photon
and dark noise to the domain of digital intensities. That is, in the simulation, the noise can be applied directly to
the final digital image. The value of the photon noise is randomly drawn from the normal distribution

nphoton ∼ N
(

0,K2g
)

, (4)

where g is the gray scale intensity of the current pixel. Drawing from a normal distribution is justified, as the
Poisson distribution converges towards a normal distribution for large numbers of event occurrences. Similarly,
the value of the dark noise is randomly drawn from

ndark ∼ N
(

KµIT,K
2
(

σ2
read + µIT

))

, (5)

where the Poisson distribution of thermally excited electrons is again represented sufficiently by a normal
distribution. If, due to negative noise values, the resulting grey scale value is negative, clipping is applied. Finally,
the quantization noise is not simulated separately as intensities are stored internally as floating point values.
Therefore, the quantization noise is added implicitly by converting the final image to the appropriate bit resolution
(usually between 8 and 16 bit).

The workflow in order to simulate an image with the same degree of noise compared to a real image is as
follows:

1. Look up the system gain K, read noise variance σ2
read in units of e− and dark current µI in units of e−/s

from the data sheet of a camera or sensor.

2. Capture a real image of the desired scene and note the exposure time T .

3. Simulate the image with the determined noise parameters and tune the intensities of the light sources and
the material colors until the resulting image intensities match those of the captured real image.

It is worth mentioning that this workflow is only valid when the real camera possesses a linear response curve.
Otherwise, the captured image has to be linearized first.

Figure 5 shows simulated images without simulated camera noise and with camera noise at different exposure
times T . In the proposed simulation framework, an increasing exposure time effectively decreases the radiant
exposure of the sensor. Therefore, the noise characteristic shifts from mainly multiplicative photon noise in
Figure 5(b) to mainly additive dark noise in Figure 5(c).

In addition to the desired image noise from the physical and technical sources mentioned above, undesired
noise or artifacts caused by insufficient approximation of Eqs. (1)–(3) may degrade simulation results. The
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ultimate cause for these errors lies in the violation of the well-know Nyquist-Shannon sampling theorem when
approximating a wide-band light field by a limited number of samples. The general strategy to minimize the
effect of these approximation errors is to increase the number of discrete samples used for the simulation until
the resulting energy of the undesired errors is negligible compared to the physically motivated image noise.
Furthermore, sampling patterns that incorporate randomness should be preferred over deterministic patterns.
The former cause the approximation errors to become apparent as additional noise in the whole image, which
is more controllable than locally concentrated Moiré-like aliasing artifacts caused by regular sampling. As the
overall bandwidth of the light field depends on the scene as well as the camera configuration, the appropriate
amount of samples can only be decided on a case-by-case basis. Using a (partially) homogeneous scene might
help in order to estimate the appropriate amount of samples in a specific case.

4.1.2 Component kit

Apart from the sensor, a real camera consists of optical elements such as lenses, apertures, free space propagation,
etc., which aim to project the rays from the environment onto the sensor surface. As mentioned before, the
tracing is performed reversed starting from the sensor into the environment. The main task of the remaining
camera module is, starting from each pixel, to determine the course of the rays until they exit the camera. In
order to simplify the design phase, we provide reference implementations of a few basic camera systems and
various basic construction elements as a component kit which makes it easy to add new cameras to our framework.
All components treat rays in the sense of (extended) geometric optics. Nevertheless, additional wavelength
dependencies and dispersive elements can be simulated. In our framework, any optical component, which in
general represents transitions between homogeneous media, can be simulated. In the following, we give a short
overview of these optical components.

A major class of components are optical lenses, the most intuitive of which is the ideal thin lens. The
refraction at the thin lens is calculated in paraxial approximation according to the ideal imaging law. A reference
implementation which uses this component is the ThinLens camera. A more realistic implementation of an
optical lens, using a single thick spherical lens without paraxial approximation, is exemplarily implemented in
the RealLensCamera. Interactions of the rays with the lens are determined using the law of refraction. Thus,
this camera shows geometric aberrations, such as spherical aberration, coma and astigmatism. The strength of
these effects can be adjusted by appropriate selection of the lens parameters. In Figure 6(b), the example scene
is rendered using a RealLensCamera, showing blur effects introduced by geometric aberrations. As mentioned
before, wavelength dependencies (dispersion) can be simulated. Therefore, an extended version of the thick lens
has a wavelength dependent refraction index which can be found exemplary in the ChromaticRealLensCamera
implementation. As a result, the lens shows chromatic aberrations in addition to the geometric aberrations of the
RealLensCamera.

Apart from placing one single lens in front of the sensor, it is possible to create a grid and place a microlens
on every grid point to simulate a microlens array. The LightFieldCamera is a more exotic example of a camera,
which among other things makes use of this microlens array element to create a lenslet based light field camera
similar to the proposed design of Ng25 and the formerly commercially available camera from Lytro. Figure 6(c)
shows an example of a lenslet based LightFieldCamera. For the sake of clarity, the radius of the microlenses is
chosen to be very large.

Another important class of components are apertures. In optics, these are devices that limit the diameter
of ray bundles by intensity attenuation (or blocking). Their purpose is versatile, depending on the design and
effect. Arguably, the most prominent feature of an aperture is the limitation of the amount of light entering
the lens. The smaller the aperture, the less light reaches the sensor. At the same time, the size of the opening
determines the depth-of-field. Smaller apertures with larger f-number create a deep depth-of-field which allows
objects at different distances to be simultaneously in focus. Another important application is the limitation of
optical aberrations which tend to become more severe at the edge of the lens. Although very useful in some
cases, apertures introduce new unintended effects: Vignetting occurs when rays are partially blocked by the
aperture. This changes the shape of the entrance pupil as a function of the ray’s incident angle, resulting in a
gradual darkening towards the edges of the sensor. The smaller the aperture, the more visible becomes this effect.
Figure 6(a) exemplarily shows the combination of an aperture with a ThinLens camera resulting in (mechanical)
vignetting.
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(a) Camera of type ThinLens with a
CircularAperture.

(b) Camera of type RealLensCamera. (c) A lenslet-based LightFieldCamera

with exaggerated lenslet size.

Figure 6: Simulated example scene using different combination of basic camera components.

In our framework, any number of apertures can be placed at any position in the optical path, both before and
behind the main lens. The classical aperture is circular and is implemented as the CircularAperture, which is
parameterized via its radius. Apart from such a classical aperture, more complex structures may be simulated. In
general, the aperture can be defined by a binary or grayscale mask, using the ImageAperture implementation.
This allows to simulate coded apertures, which in real applications can be used to extract depth information3,4 or
to improve the depth-of-field, to name two examples. The principle of the ImageAperture can be easily applied to
arbitrary spectral components, allowing spectral filters to be modeled. In this way, it becomes possible to evaluate
hyperspectral camera systems. A simple example is to spatially code the sensor (as is the case in conventional
digital color cameras) or to assign a spectral filter to individual lenses in a microlens array.

In summary, using the presented component kit, it can be said that the framework is easily extendable.
New camera systems can be built from individual components and even new components can be added in a
straightforward fashion.

4.2 Reference systems

Due to its design, the proposed framework allows for easy implementation of reference systems, i.e. virtual cameras
that do not posses a real counterpart (usually due to physical limitations). In the context of computational
cameras, this can be divided into three categories: reference sensors, cameras and tracers.

Even though the sensor is in fact part of the camera block of the raytracer, it is worth discussing its reference
implementations separately. A real sensor (such as a CMOS or CCD sensor) measures the number of photons that
are collected at one pixel over the time interval given by the exposure time. As such, these sensors are intrinsically
monochromatic (there have been approaches to true RGB sensors by Foveon, but they can be considered exotic).
In the raytracing process, every ray carries full spectral information. It is therefore straightforward to implement
virtual sensors that measure the full (or RGB) spectrum at every pixel. In fact, measuring the RGB values at
every sensor pixel is the default setting in most raytracers, as it makes implementation of a Bayer pattern and
according demosaicing unnecessary. Within the proposed framework, there are three types of (virtual) sensors:
Raw, Rgb and MultiSpectral. The Raw sensor, in the above sense, is the only (physically) real sensor. It produces
a monochromatic raw sensor image, either for an ideal sensor with constant quantum efficiency or by applying
one of the predefined quantum efficiencies (see Section 4.1.1). Similarly, an Rgb sensor will save the full RGB
value at every pixel, either with ideal or real quantum efficiency. This virtual full RGB sensor can for example be
used to quantitatively evaluate different color coding and demosaicing schemes for digital color cameras. Finally,
using the MultiSpectral sensor, we are able to render full multispectral images with an arbitrary number of
color channels defined by the user at compilation. This sensor can be used to benchmark and evaluate multi- and
hyperspectral imaging systems. A comparison of the different (virtual) sensor types is shown in Figure 7.
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(a) Sensor of type Raw. (b) Sensor of type Rgb. (c) Sensor of type MultiSpectral in
case of 9 color channels (colored).

Figure 7: Simulated example scene using the three available (virtual) sensor types (with constant quantum efficiency).

A reference camera implementation makes it possible to compare camera systems to their idealized perfect
systems, sometimes even without the need of any actual optical components. Three of such (virtual) camera
systems will are presented here: Pinhole, Orthographic and LightFieldReference cameras, whose image
simulations are shown in Figure 8.

The probably best-known reference example is the lens-free pinhole camera. A realistic (approximate)
implementation of this camera would mean to place only a single aperture with a very small opening in front of
the sensor. However, this configuration would cause the majority of the sampled rays to be directly blocked by
the aperture and thus, although being calculated, they would have no influence on the creation of the image. The
Pinhole camera reference implementation by-passes this problem by calculating the direction of the rays in such
a way that they always pass exactly through the pinhole point. As a result, images with infinite depth-of-field
can be generated.

A direct definition of the ray direction allows to sample rays that are exactly orthogonal to the sensor. This
way one obtains an orthogonal projection of the scene onto the sensor which in real applications can only be
achieved with complicated setups of lenses and apertures (e.g. telecentric optics). The Orthographic camera
implementation has no perspective distortion, meaning that there is no vanishing point. One characteristic of this
configuration is that the magnification does not change with axial object displacement and the objects therefore
always appear the same size regardless of the object distance.

Finally, the LightFieldReference provides an implementation of a reference light field camera that directly
captures the light field inside a (thin lens) camera and saves it in a 2D representation as a collection of subaperture
views. To be able to compare it with light fields captured by the microlens array based camera (see Section 4.1.2),
the parameters to initialize the camera are closely related to those of the LightFieldCamera. As shown in

(a) Camera of type Pinhole. (b) Camera of type Orthographic. (c) A 3×3 LightFieldReference cam-
era with exaggerated baseline.

Figure 8: Simulated example scene using different reference cameras.

Proc. of SPIE Vol. 11061  1106102-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5

10

20
40

D
ep

th
/
m

(a) Tracer of type Depth.

−1
0

1

−1
0

1

−1

0

1

nxny

n
z

(b) Tracer of type Normal.

Figure 9: Simulated example scene using different (virtual) tracer types.

Figure 8(c), the light field shows subaperture views of the scene from different angles comparable to a multi
camera array with (exaggerated) baseline. In combination with the MultiSpectral reference sensor, we are able
to sample a full hyperspectral light field Lλ(u, v, a, b) which is, to our knowledge, a unique feature of the proposed
framework.

The tracer is not directly part of the camera block. It manages the interaction of the simulated environment
and the object-side rays generated by the camera. Conventional tracers calculate the intersection of the ray
with the scene and return the spectral information of the hit point to the camera. More complex tracers are
able to evaluate interactions with reflective materials by further tracing the reflected ray(s). And even more
sophisticated tracers are capable of using global illumination to render photo-realistic scenes at the cost of much
higher computational load. Apart from the spectral information of the scene, tracers can be used to encode
other information into the image. In our framework, there are multiple abstract tracers that return non-spectral
information: The Depth tracer returns the distance of the imaged object to the first intersection of the ray with
the scene as gray value to the sensor pixels. This is helpful when ground truth data is needed in order to evaluate
depth estimation algorithms. The Normal tracer returns the normal of the hit surface point as RGB values to the
sensor pixels. Again, this can efficiently be used to evaluate algorithms that operate on surface normals, e.g. for
camera based 3D reconstruction. A comparison of the different abstract tracers is shown in Figure 9.

5. CONCLUSION

We have proposed a new raytracing simulation framework for the design, and evaluation of computational
cameras. We have discussed those parts that are most important to consider when developing and benchmarking
new computational cameras (namely the camera, sensor and tracer implementations) in detail and provided
many practical simulation examples. Using the provided reference implementations and building blocks, the
implementation process for new designs is supported as much as possible. With the proposed framework, not only
new camera designs can be implemented, but also reference data can be generated to benchmark and optimize
the new designs, for example using multispectral, hyperspectral, lightfield, depth or normal reference simulations.

The proposed framework is modular in its design and we encourage the community to extend it with new
designs using the publicly available source code.1
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