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Moving from a practical problem, the preliminary definition of a loop network, a 

simulation model has been built and will be described in this paper. For its char- 

acteristics of flexibility, modularity and programmability, this model has been used 

also as a tool for documenting the evolving project and as a design aid. 

At the end, some of the results obtained are presented in graphical form: the loop 

utilization and performance at different transmission speeds, and the system's 

response time versus load variations. 
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INTRODUCTION 

This paper is concerned with a simulation model that has been built as an aid for 

the project of a loop-connected distributed computer system for office automation 

applications. 

Aloop network can be built between N terminals by systematically connecting the 

output of one to the input of the next and the output of the last to the input of the 

first (FRA74). In the case studied, it has been decided to let messages flow in only 

one direction (e. g. clockwise). 

Many processors (the hosts) use this facility to communicate; they are attached to 

the loop through special hardware interface modules, called nodes. Any node, if 

not in transmitting mode, must always receive bytes from one side and retransmii 

them to the other, thus permitting messages circulation. 

As two or more hosts could try to put messages on the line at the same time, some 

form of loop control must be provided to prevent mutual interference. This control 

can be either centralized (transmission by any node must be authorized by a special 

unit, the loop controller) or distributed. In this project, distributed control has 

been chosen for reliability and cost considerations. 

At least two control strategies are possible: 

a) when a node wants to transmit, it inserts the message between two other mes- 

sages, delaying the second for as much time as necessary (REA7G); 

b) a particular "go-ahead" message circulates around the loop, allowing only one 

node at a time to trnsmit (FAR?2, NEW69). 

In the first case, a hardware mechanism must be provided to switch the incoming 

message in a delay buffer when so needed; the second strategy was deemed more 

simple and was adopted for this project. So, when a node has to trnsmit a message, 

it must follow the sequence: 

i) wait for the "go-ahead" item to arrive; 

it) destroy this item and transmit the message instead of ihe item; 

iii) transmit another "go-ahead" token, thus releasing the line. 

In loop networks, the amount of time by which any message is delayed is called 

node delay. In the case studied, the node delay must be fixed in time; for the dif- 

ferent trials simulated with the model, this delay has been made equivalent to the 

transmission time of one or more bytes. 

At the software level, communication is process-oriented; there is only one set 

of communication primitives between processes, whether the processes are allocated 
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on the same processor or not. To give an example, let us suppose that the process 

A, allocated on host n. i, wants to send a message to the process B, that belongs to 

the host n. 2. The following actions will take place: 

l) the interproeess communication facilities in the o. s. nucleus of host n. 1 deter- 

mine, in a transparent way, whether the process B is local to the host n. i; 

2) as process B is not local, a command is issued to the node n. I, in order to send 

the message through the loop; 

3) if the process B is being addressed for the first time, the node has no way of 

determining that the process B is on host n. 2; so the message is sent on the line 

with the address 00 (broadcast message); 

4) every node in the loop receives the message; obviously, only the node n. 2 pas- 

ses it to its host; afterwards, there will be a reply message, containing the physical 

address of its sender (n. 2); 

5) as the reply message reaches the node n. i, this node becomes informed that the 

process B is allocated on the host n. 2; this information will be used, if necessary, 

by the node n. i, but not by process A. This makes easier the reconfiguration of 

the system. 

At a first approach to the definition of the real system, the need arose for an estimate 

of the minimum line transmission speed and consequently of the technology required 

for the interface transmitters. It was decided to carry out this estimate using a 

simulation model, written in the language SIMULA87 (BIR73). This model has not 

been used for this estimate only, but it grew with the project. 

A project's development usually consists of: 

i) the choice of the architecture to be utilized; 

it) the logical partitioning of the system into different modules, with the definition 

of the respective interfaces; 

iii) the implementation of these modules. 

The simulation model can be present in this process if it represents, at an high 

abstraction level, all of the system's parts. Then it can: 

a) compare the performances of different system's architectures; 

b) verify the consistency of the interface definitions between the various system 

parts; 

c) provide a context to test an already implemented module; then cycle back to point 

b) and re-evaluate the throughput if this module behaves somehow differently 

from the specifications; 

d) suggest, as a consequence of points b) and c), structure modifications in order 
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to maintain or enhance perforr~lance; 

e) document the project evolution. 

The system studied has been designed for office automation applications: typical 

hosts are interactive intelligent terminals, printers, "smart copiers" etc. 

Microprocessors will be used both for the hosts and the nodes, as they are low 

cost components and there is no need for high calculating speed (the results obtained 

show that the required line speed is of the order of 19200 baud). 

THE SIMULATION MODEL. 

The modelling facilities. 

The simulation model has been implemented with a program written in the language 

SIMULA67, running on an IBM 370/188. We have taken advantage of the various 

modelling facilities included in the system-defined classes SIMSET and SIMULATION. 

The class SIMSET allows the definition of circular two-way lists and of the associated 

elements, that can be manipulated by special primitives, such as INTO, OUT (to 

insert or remove the last member of the queue), CARDINAL (to obtain the number 

of elements in the queue) etc. 

The necessary concepts for discrete event modelling are provided in the system 

class SIMULATION which is itself prefixed by SIMSET so that all the latter con- 

cepts are available. A simulation program is composed of a collection of processes 

which undergo scheduled and unscheduled phases. %~nen a component is scheduled, 

it has a time associated with it. This is the time at which its next active phase is 

scheduled to occur. When the active phase of one component ends, it may be re- 

scheduled (marked with the time when its next active phase will be executed), or 

else descheduled. In either case, the scheduled component in the system marked 

with the smallest time for its next active phase is resumed. Thus, the currently 

executed component (which may be referenced by a call on the procedure CURRENT) 

always has the least time associated with it; this is taken as the simulation time 

itself, and the simulation time jumps discretely forwards from one value to another 

when a new component becomes active. 

In the model of the loop, three kinds of processes have been defined and have been 

included, together with the procedures acting on them, in different modules: the 
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hosts, the nodes and the loop itself. 

The structure of the model. 

A development tool of this kind should, if possible, be independent of structure 

variations; these are expected to come about as the project proceeds, through technol- 

ogy improvements or feedbacks like those described in the introduction, point d). 

Consequently, the main goals have been modularity, flexibility and programmability 

of the model. 

Modularity has been achieved by partitioning the implementation of the simulation 

model into small, simple modules, which have evident meaning and functions (see 

fig. i). 

The model itself is logically partitioned into three "big" modules, that communicate 

through well-defined interfaces. The first module simulates the functions of the 

loop hardware, the second those of the nodes, the last those of the host set (fig. 2). 

Hence it is possible, for instance, to precise or to modify- in some way or another 

the node structure, with the sole care of not changing the interfaces with the loop 

and the hosts. 

Interfaces definitions are built over the following interprocess communication 

primitives and objects: 

a) SEI~$D (Q, E, P) : 

enqueues element E into the queue Q and activates process P, if this was susp- 

ended on that queue; 

b) WAIT (Q) : 

tests queue Q : if empty, the process executing the WAIT operation is suspended; 

c) DELAYED-ACTIVATION (P, T, PN, F) : 

causes process P to be activated at current time +T and passes to it a buffer 

pointed by pointer PN; if the buffer contains useful information, the flag F is 

set to TRUE; 

d) LIST1 objects : 

they are queues with an associated binary semaphore. 

As to flexibility, the simulation model is placed on an high abstraction level, if 

compared with the object to be simulated: the structure of the SIMULA program 

modules is as simple as possible; they can "faithfully" reproduce the system only 

because they heavily rely on the use of parameters. 

To give an example, let us consider the BASE-MODULE, about which more details 
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will be given in the following. 

Its main part is a process called BASE-BLOCK, whose sole function is that of re- 

ceiving and sending messages; in so doing it makes use of the information stored 

beforehand in a table. Given a chain of BASE-MODULEs, the simulation of arbitrarily 

comple~ communication protocols between them can be carried out simply by mo- 

difying, through associated procedures, the data in the fables. 

All the variables meaningful for the system description have been written in the 

model as parameters, so as to be easily modifiable from the outside. In particular, 

among these there are the loop speed, the number of nodes, the "go-ahead" message 

length, the node delay; so it is also possible to investigate relations between these 

variables. 

The concept of the simulation model's programmability must be understood in a 

particular sense. Many persons, other than those who have developed this tool, 

must have access to it, whenever it is to be used as a design aid for R&D groups 

like ours. This means that it is mandatory to hide the specific mechanisms of 

SIMIJLA, through the building of ad hoc procedures; by calling them, the SIMULA- 

unskilled user can tailor the model over his needs and execute the tests he wants. 

But this process needs not be pushed too forward, because, anyway, the users 

will master programming techniques. 

The procedures we have defined may be divided into two ~roups: those intended 

for the assignment of parameters to the system and for its configuration (examples 

i, 2) and those intended to describe the communication protocol (example 3). 

Examples: 

I) NODE-NUMBER (i0) : establishes that there will be i0 nodes on the loop network; 

2) ASSIGN ("DISC", 3,150, 30): the third terminal will be a disc, with mean access 

time of 150 msec + 30 msec; 

3) PROTOCOL ("BSC If", 4, ?, i0): the system-defined BSC II protocol will be used 

between the host n. 4, acting as master and terminals n. ? - i0, working as 

slaves. 

At present, i% is not planned to implement any procedure intended to simplify for 

the user the definition of new protocols; yet this is quite possible, in principle. There 

is, instead, another possibility: a SIMULA programmer can, simply by writing 

a new class prefixed by BASE-BLOCK, redefine the message analysis (e.g. , ignor- 

ing the table). 
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The implementation of the host rrodule. 

Among the three modules, a brief description will be given of the host module, that 

is ¢o sat of the one intended to simulate the host set. Four classes (the class con- 

cept is a feature of the SIMULAG7, see BII~78) are defined in it: 

INTERACTIVE-TERMINAL, DISC, PRINTER, G E N E R A L I Z E D - H O S T .  

Of  c o u r s e ,  d i f f e r e n t  o b j e c t s  of t h e s e  c l a s s e s  can  be  bu i l t  by  a s s i g n i n g  d i f f e r e n t  

values to their parameters; for instance, in an INTERACTIVE-TERMINAL can be 

defined: time required for the transaction-initiated operations, mean time between 

transactions, length of the inquiry message to be sent to the discs, number and 

addresses (node numbers) of the discs etc. 

In a DISC object can be assigned: the mean access time, the minimum and maximum 

length of the messages to be sent to the operators etc. 

In a PRINTER object we can select the speed. 

At present, the actions of these three classes are those one would expect from an 

operator, a disc and a printer once one has exactly defined the transactions and the 

background printing activity. 

The tests on the simulation model have been carried out with protocols derived 

from the analysis of a typical office automation application. On the contrary, as 

the name suggests, the structure of the GENERALIZED-HOST class is neither ap- 

plication- nor peripheral-oriented; actually, it has been written in the hope of making 

easy the definition of a group of GENERALIZED-HOSTS, connected through the loop 

network, with different functions; and to allow the implementation of any communi- 

cation protocol among them, 

In this class two process types are defined (see fig. 3): 

a) SW-BLOCK; 

b) BASE-BLOCK.  

A SW-BLOCK c o n t i n u o u s l y  s e n d s  c o m m a n d s  to i t s  a s s o c i a t e d  BASE-BLOCK;  it can  

do t h i s  e i t h e r  by s y n c h r o n i z i n g  i t s e l f  on t he  r e p l i e s  f r o m  t h e  BASE-BLOCK,  o r  a -  

s y n c h r o n o u s l y ,  w i th  e x p o n e n t i a l l y - d i s t r i b u t e d  i n t e r m e s s a g e  t i m e s .  

The  BASE-BLOCK a n a l y z e s  t h e  r e c e i v e d  c o m m a n d s  one  at a t i m e ;  for  any  of t h e m  

it d e c i d e s  w h e t h e r ,  in what  q u a n t i t y  and fo r  whom it h a s  to  send  m e s s a g e s  t h r o u g h  

the loop. On receiving the respective replies, it repeats the same analysis, that 

may cause it to send other messages on the line, or to close the cycle by replying 

to the SW-BLOCK, and waiting for another command. 

If a GENERALIZED-HOST object is to be activated only on requests coming from 
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the loop, it m u s t  obv ious ly  be depr ived  of the SW-BLOCK p r o c e s s ;  the BASE-BLOCK 

will  r e c e i v e  c o m m a n d s  d i r e c t l y  f rom the l ine .  

The two p r o c e s s e s  coopera te  v ia  SEND and WAIT p r i m i t i v e s ;  they sha re  an a r e a  

that con ta ins ,  among o ther  ob jec t s ,  two input and two output queues  (for m e s s a g e s  

coming from and addressed to the loop and the SV¢-BLOCK ); the BASE-BLOCK uses 

a particular table (see preceding paragraph) for obtaining all the information neces- 

sary to the message analysis. 

The table, when so needed, may also specify different reply strategies for the same 

message, with the respective probabilities. 

The configurator concept. 

In the program there are some classes intended to play the role of system's con- 

figurators. It may be useful to explain with some details the function of these clas- 

ses. 

At present, there are an hardware configurator (the only one enrighied to assign 

values to system's parameters) and a software one. First of all, the configurator 

for a part of the system must create and link all the objects belonging to that part. 

As the execution of the simulator program begins with the activation of the eonfi- 

gurators, an automatic separation between the phases of system's generation and 

actual simulation is obtained. 

Let us say here that the simulation model's items can be divided into two groups: 

"static" (intended to represent hardware pieces, processes etc. ) and "dynamic" 

(corresponding to messages). The generation phase provides the creation of the 

static parts, whilst, during the simulation phase, dynamic parts (messages) are 

produced and acted upon by the static parts. An approach of this kind is called 

"machine-based". 

By now, it should be clear that the definition of the eonfigurator classes simplifies 

the modification not only of the values of the model' s param et er s, concentrated in 

the I-IW-CONFIGUI%ATOI~, but also of the system's structure: this may be accom- 

plished, in a localized manner, by re-defining only the actions of the HW-CONFI- 

GUI~ATOR. To clarify this point, here a list follows of the operations involved in 

a GENERALIZED-I-IOST (a SW-CONFIGURATOR) creation and activation (refer to 

fig. 3): 

a) the HW-CONFIGURATOR generates a GENERALIZED-HOST object, then it links 

this object with a node and passes to it all the parameters; among these parameters 
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some will be needed to connect the SW-BLOCK and BASE-BLOCK processes; 

b) the GENERALIZED-HOST, now acting as a SW-CONFIGUIRATOR, creates and 

links the aforesaid processes and their common data area (e. g. table for message 

analysis); this is local to the GENERALIZED-HOST, and becomes available to the 

processes because it is passed them as a common parameter by the SW-CONFIGU- 

RATOR; 

c) at this point, the HW-CONFIGURATOR compiles, inspecting the host data area, 

the table entries, thus defining the eommunication protocol for that host. 

This operation is accomplished through the execution of specific procedures local 

to the HW-CONFIGURATOR. 

m sg-analy sis 
table 

[ J ,  

J 

/ 

SV~BLOCK 
process 

GENERALIZED HOST 

BASE MODULE 

[ 
i base-block area 

l in command queue 

lout reply queue 

i 
i 

1 ........ 

, I  

BASE -BLOCK 

out command queue 

in reply queue 

t ~  

process 

0~ 

Fig. 3 - Generalized host's structure. 
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RESULTS. 

First of all, the model has been used to obtain the numbers that have been re- 

quired in order to achieve the primary goal: the preliminary definition of the system 

for a typical office automation utilization, in the following pages some of the more 

typical curves (fig. 4, 5, 6) are given. 

A simple mathematical model has been written for the loop network; it relates 

some of the more meaningful ~ariables : transmission speed, node delay and num- 

ber, utilization of the loop; this analysis and the simulation results both point to 

the utilization of the loop as a faithful measure of the system's level of crowding. 

The utilization of the loop is defined as: 

M E S S A G E  T R A N S M I S S I O N  T I M E  
O =  

T O T A L  T I M E  

T h e  c u r v e s  i n  f ig .  $ g i v e  a v i s u a l  c o n f i r m a t i o n  of  t h e  p r e c e d i n g  s t a t e m e n t :  t h e y  

r e f e r  t o  a s i m p l e ,  t h o u g h  u n r e a l i s t i c ,  s i t u a t i o n  i n  w h i c h  t h e  l o a d  o n  t h e  n e t w o r k  

( n u m b e r  of  t r a n s a c t i o n s  p e r  m i n u t e ,  of  l i n e s  to  b e  p r i n t e d  e t c .  ) v a r i e s  w i t h  t i m e ,  

r e a c h i n g  o n l y  a m i n i m u m  o r  a m a x i m u m  v a l u e .  

T h e  b r o k e n  l i n e  s h o w s  t h e  l o a d  v a r i a t i o n s :  i n  t h e  s e c o n d  c u r v e ,  e v e r y  " X "  r e p r e -  

s e n t s  a s a m p l e  of  t h e  l o o p ' s  u t i l i z a t i o n  a n d  t h e  r e s u l t i n g  c u r v e  f o l l o w s  t h e  p r e c e d i n g  

o n e  w i t h  a s h o r t  d e l a y :  f r o m  t h i s  o n e  c a n  h a v e  a n  e s t i m a t e  of  t h e  r e s p o n s e  t i m e  of  

t h e  s y s t e m .  

In  t h e  c o n d i t i o n  of  t h e  m a x i m u m  l o a d ,  t h e  s y s t e m  i s  a t  i t s  s t a b i l i t y  l i m i t :  c o r r e s p o n -  

d i n g l y ,  we can see that the third curve (sampling the number of elements in the mostly 

used transmission queue) oscillates strongly. The oscillations are caused by a 

sort of "noise" in the input to the system (e. g. the arrival times for the trans- 

actions are randomly varied with a Poisson distribution; only the mean interar- 

rival time can be assigned); so there is a good probability that, at a certain moment, 

the ~uctuations in the message production rates of the various nodes sum up to 

cause an overcrowding, with a resulting increase in the number of messages wait- 

ing to be transmitted. This can be seen as a "micro-breakdown" of the system . 

Shortly afterwards, usually, the equilibrium returns, but it takes a certain time 

to reduce the number of elements in the queues, unless an opposite fluctuation oc- 

curs. 

At present, it has not yet been possible to compare these curves with the actual 

behaviour of a real system~ since the implementation of the loop is still in progress. 
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CONCLUSIONS. 

The proposed simulation model has already achieved some of its goals: its flexibility 

has allowed Us to obtain quickly the required curves and to show the system's 

behaviour with quite different configurations, transmission speeds, node delay etc. 

At present, the work on the model proceeds in the direction of software simulation 

and of the study of other possible applications of the architecture. 

From the first results, some ideas have been suggested; as it has been shown in 

the preceding paragraph, the utilization of the loop is a good measure of the system's 

level of crowding. In a real system, it is desirable to avoid the micro-breakdowns; 

then one can imagine a prevention technique based on the estimate of the loop's 

utilization, easily made by every node. When this measure signals that the system 

has reached a nearly critical state, the nodes with less urgent messages or with a 

small number of elements in their transmission queues can decide to temporarily 

slow down their transmission rates. 

The approximate length of the various modules of the simulation program are 

given: loop and nodes modules, 80 code lines each; host module, 370 lines, of 

which i00 have been written for the GENERALIZED-HOST. The total length of our 

program is 800 lines, not including the procedures written to simplify the model's 

programming. These data show that the proposed simulation approach is simple to 

implement, and thai the model's modularity and flexibility are obtained with a modest 

program length. 

The simulation program has been run on an IBM 370/IG8, as we have already re- 

marked; the required CPU time of this computer is, of course, a function of simulat- 

ed time but also of the memory used, the kind of tests etc. The mean ratio between 

simulated time and 370 CPU time is approximately 40. 
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