
A SIMULATION MODEL FOl:t A LOOP

ARCHITECTURE DISTRIBUTED COMPUTER SYSTEM

S. Baragli and S. Valvo

Ing. C. Olivetti e C.

Progetto Centrale Sistemi

IVREA (TO)

A B S T R A C T

Moving from a practical problem, the preliminary definition of a loop network, a

simulation model has been built and will be described in this paper. For its char-

acteristics of flexibility, modularity and programmability, this model has been used

also as a tool for documenting the evolving project and as a design aid.

At the end, some of the results obtained are presented in graphical form: the loop

utilization and performance at different transmission speeds, and the system's

response time versus load variations.

505

INTRODUCTION

This paper is concerned with a simulation model that has been built as an aid for

the project of a loop-connected distributed computer system for office automation

applications.

Aloop network can be built between N terminals by systematically connecting the

output of one to the input of the next and the output of the last to the input of the

first (FRA74). In the case studied, it has been decided to let messages flow in only

one direction (e. g. clockwise).

Many processors (the hosts) use this facility to communicate; they are attached to

the loop through special hardware interface modules, called nodes. Any node, if

not in transmitting mode, must always receive bytes from one side and retransmii

them to the other, thus permitting messages circulation.

As two or more hosts could try to put messages on the line at the same time, some

form of loop control must be provided to prevent mutual interference. This control

can be either centralized (transmission by any node must be authorized by a special

unit, the loop controller) or distributed. In this project, distributed control has

been chosen for reliability and cost considerations.

At least two control strategies are possible:

a) when a node wants to transmit, it inserts the message between two other mes-

sages, delaying the second for as much time as necessary (REA7G);

b) a particular "go-ahead" message circulates around the loop, allowing only one

node at a time to trnsmit (FAR?2, NEW69).

In the first case, a hardware mechanism must be provided to switch the incoming

message in a delay buffer when so needed; the second strategy was deemed more

simple and was adopted for this project. So, when a node has to trnsmit a message,

it must follow the sequence:

i) wait for the "go-ahead" item to arrive;

it) destroy this item and transmit the message instead of ihe item;

iii) transmit another "go-ahead" token, thus releasing the line.

In loop networks, the amount of time by which any message is delayed is called

node delay. In the case studied, the node delay must be fixed in time; for the dif-

ferent trials simulated with the model, this delay has been made equivalent to the

transmission time of one or more bytes.

At the software level, communication is process-oriented; there is only one set

of communication primitives between processes, whether the processes are allocated

506

on the same processor or not. To give an example, let us suppose that the process

A, allocated on host n. i, wants to send a message to the process B, that belongs to

the host n. 2. The following actions will take place:

l) the interproeess communication facilities in the o. s. nucleus of host n. 1 deter-

mine, in a transparent way, whether the process B is local to the host n. i;

2) as process B is not local, a command is issued to the node n. I, in order to send

the message through the loop;

3) if the process B is being addressed for the first time, the node has no way of

determining that the process B is on host n. 2; so the message is sent on the line

with the address 00 (broadcast message);

4) every node in the loop receives the message; obviously, only the node n. 2 pas-

ses it to its host; afterwards, there will be a reply message, containing the physical

address of its sender (n. 2);

5) as the reply message reaches the node n. i, this node becomes informed that the

process B is allocated on the host n. 2; this information will be used, if necessary,

by the node n. i, but not by process A. This makes easier the reconfiguration of

the system.

At a first approach to the definition of the real system, the need arose for an estimate

of the minimum line transmission speed and consequently of the technology required

for the interface transmitters. It was decided to carry out this estimate using a

simulation model, written in the language SIMULA87 (BIR73). This model has not

been used for this estimate only, but it grew with the project.

A project's development usually consists of:

i) the choice of the architecture to be utilized;

it) the logical partitioning of the system into different modules, with the definition

of the respective interfaces;

iii) the implementation of these modules.

The simulation model can be present in this process if it represents, at an high

abstraction level, all of the system's parts. Then it can:

a) compare the performances of different system's architectures;

b) verify the consistency of the interface definitions between the various system

parts;

c) provide a context to test an already implemented module; then cycle back to point

b) and re-evaluate the throughput if this module behaves somehow differently

from the specifications;

d) suggest, as a consequence of points b) and c), structure modifications in order

507

to maintain or enhance perforr~lance;

e) document the project evolution.

The system studied has been designed for office automation applications: typical

hosts are interactive intelligent terminals, printers, "smart copiers" etc.

Microprocessors will be used both for the hosts and the nodes, as they are low

cost components and there is no need for high calculating speed (the results obtained

show that the required line speed is of the order of 19200 baud).

THE SIMULATION MODEL.

The modelling facilities.

The simulation model has been implemented with a program written in the language

SIMULA67, running on an IBM 370/188. We have taken advantage of the various

modelling facilities included in the system-defined classes SIMSET and SIMULATION.

The class SIMSET allows the definition of circular two-way lists and of the associated

elements, that can be manipulated by special primitives, such as INTO, OUT (to

insert or remove the last member of the queue), CARDINAL (to obtain the number

of elements in the queue) etc.

The necessary concepts for discrete event modelling are provided in the system

class SIMULATION which is itself prefixed by SIMSET so that all the latter con-

cepts are available. A simulation program is composed of a collection of processes

which undergo scheduled and unscheduled phases. %~nen a component is scheduled,

it has a time associated with it. This is the time at which its next active phase is

scheduled to occur. When the active phase of one component ends, it may be re-

scheduled (marked with the time when its next active phase will be executed), or

else descheduled. In either case, the scheduled component in the system marked

with the smallest time for its next active phase is resumed. Thus, the currently

executed component (which may be referenced by a call on the procedure CURRENT)

always has the least time associated with it; this is taken as the simulation time

itself, and the simulation time jumps discretely forwards from one value to another

when a new component becomes active.

In the model of the loop, three kinds of processes have been defined and have been

included, together with the procedures acting on them, in different modules: the

508

hosts, the nodes and the loop itself.

The structure of the model.

A development tool of this kind should, if possible, be independent of structure

variations; these are expected to come about as the project proceeds, through technol-

ogy improvements or feedbacks like those described in the introduction, point d).

Consequently, the main goals have been modularity, flexibility and programmability

of the model.

Modularity has been achieved by partitioning the implementation of the simulation

model into small, simple modules, which have evident meaning and functions (see

fig. i).

The model itself is logically partitioned into three "big" modules, that communicate

through well-defined interfaces. The first module simulates the functions of the

loop hardware, the second those of the nodes, the last those of the host set (fig. 2).

Hence it is possible, for instance, to precise or to modify- in some way or another

the node structure, with the sole care of not changing the interfaces with the loop

and the hosts.

Interfaces definitions are built over the following interprocess communication

primitives and objects:

a) SEI~$D (Q, E, P) :

enqueues element E into the queue Q and activates process P, if this was susp-

ended on that queue;

b) WAIT (Q) :

tests queue Q : if empty, the process executing the WAIT operation is suspended;

c) DELAYED-ACTIVATION (P, T, PN, F) :

causes process P to be activated at current time +T and passes to it a buffer

pointed by pointer PN; if the buffer contains useful information, the flag F is

set to TRUE;

d) LIST1 objects :

they are queues with an associated binary semaphore.

As to flexibility, the simulation model is placed on an high abstraction level, if

compared with the object to be simulated: the structure of the SIMULA program

modules is as simple as possible; they can "faithfully" reproduce the system only

because they heavily rely on the use of parameters.

To give an example, let us consider the BASE-MODULE, about which more details

509

OFFICE AUTOMATION VALIDATION TESTS I

• HW - CONFIGURATOR HW-CONFIGURATOR J

L O O P

N O D E S

INTERACT.

TERMINAL

HOSTS

BACKGROUND PROGRAM STRUCTURES

f -

OFFICE AUTOMATION

t MAIN PROGRAM
VALIDATION TESTS

MAIN PROGRAM

Fig. i - Program partitioning.

510

HO S T I 1 HO S T

......... il !ill

LOOP l

Fig. 2 -Model partitioning.

511

will be given in the following.

Its main part is a process called BASE-BLOCK, whose sole function is that of re-

ceiving and sending messages; in so doing it makes use of the information stored

beforehand in a table. Given a chain of BASE-MODULEs, the simulation of arbitrarily

comple~ communication protocols between them can be carried out simply by mo-

difying, through associated procedures, the data in the fables.

All the variables meaningful for the system description have been written in the

model as parameters, so as to be easily modifiable from the outside. In particular,

among these there are the loop speed, the number of nodes, the "go-ahead" message

length, the node delay; so it is also possible to investigate relations between these

variables.

The concept of the simulation model's programmability must be understood in a

particular sense. Many persons, other than those who have developed this tool,

must have access to it, whenever it is to be used as a design aid for R&D groups

like ours. This means that it is mandatory to hide the specific mechanisms of

SIMIJLA, through the building of ad hoc procedures; by calling them, the SIMULA-

unskilled user can tailor the model over his needs and execute the tests he wants.

But this process needs not be pushed too forward, because, anyway, the users

will master programming techniques.

The procedures we have defined may be divided into two ~roups: those intended

for the assignment of parameters to the system and for its configuration (examples

i, 2) and those intended to describe the communication protocol (example 3).

Examples:

I) NODE-NUMBER (i0) : establishes that there will be i0 nodes on the loop network;

2) ASSIGN ("DISC", 3,150, 30): the third terminal will be a disc, with mean access

time of 150 msec + 30 msec;

3) PROTOCOL ("BSC If", 4, ?, i0): the system-defined BSC II protocol will be used

between the host n. 4, acting as master and terminals n. ? - i0, working as

slaves.

At present, i% is not planned to implement any procedure intended to simplify for

the user the definition of new protocols; yet this is quite possible, in principle. There

is, instead, another possibility: a SIMULA programmer can, simply by writing

a new class prefixed by BASE-BLOCK, redefine the message analysis (e.g. , ignor-

ing the table).

512

The implementation of the host rrodule.

Among the three modules, a brief description will be given of the host module, that

is ¢o sat of the one intended to simulate the host set. Four classes (the class con-

cept is a feature of the SIMULAG7, see BII~78) are defined in it:

INTERACTIVE-TERMINAL, DISC, PRINTER, G E N E R A L I Z E D - H O S T .

Of c o u r s e , d i f f e r e n t o b j e c t s of t h e s e c l a s s e s can be bu i l t by a s s i g n i n g d i f f e r e n t

values to their parameters; for instance, in an INTERACTIVE-TERMINAL can be

defined: time required for the transaction-initiated operations, mean time between

transactions, length of the inquiry message to be sent to the discs, number and

addresses (node numbers) of the discs etc.

In a DISC object can be assigned: the mean access time, the minimum and maximum

length of the messages to be sent to the operators etc.

In a PRINTER object we can select the speed.

At present, the actions of these three classes are those one would expect from an

operator, a disc and a printer once one has exactly defined the transactions and the

background printing activity.

The tests on the simulation model have been carried out with protocols derived

from the analysis of a typical office automation application. On the contrary, as

the name suggests, the structure of the GENERALIZED-HOST class is neither ap-

plication- nor peripheral-oriented; actually, it has been written in the hope of making

easy the definition of a group of GENERALIZED-HOSTS, connected through the loop

network, with different functions; and to allow the implementation of any communi-

cation protocol among them,

In this class two process types are defined (see fig. 3):

a) SW-BLOCK;

b) BASE-BLOCK.

A SW-BLOCK c o n t i n u o u s l y s e n d s c o m m a n d s to i t s a s s o c i a t e d BASE-BLOCK; it can

do t h i s e i t h e r by s y n c h r o n i z i n g i t s e l f on t he r e p l i e s f r o m t h e BASE-BLOCK, o r a -

s y n c h r o n o u s l y , w i th e x p o n e n t i a l l y - d i s t r i b u t e d i n t e r m e s s a g e t i m e s .

The BASE-BLOCK a n a l y z e s t h e r e c e i v e d c o m m a n d s one at a t i m e ; for any of t h e m

it d e c i d e s w h e t h e r , in what q u a n t i t y and fo r whom it h a s to send m e s s a g e s t h r o u g h

the loop. On receiving the respective replies, it repeats the same analysis, that

may cause it to send other messages on the line, or to close the cycle by replying

to the SW-BLOCK, and waiting for another command.

If a GENERALIZED-HOST object is to be activated only on requests coming from

513

the loop, it m u s t obv ious ly be depr ived of the SW-BLOCK p r o c e s s ; the BASE-BLOCK

will r e c e i v e c o m m a n d s d i r e c t l y f rom the l ine .

The two p r o c e s s e s coopera te v ia SEND and WAIT p r i m i t i v e s ; they sha re an a r e a

that con ta ins , among o ther ob jec t s , two input and two output queues (for m e s s a g e s

coming from and addressed to the loop and the SV¢-BLOCK); the BASE-BLOCK uses

a particular table (see preceding paragraph) for obtaining all the information neces-

sary to the message analysis.

The table, when so needed, may also specify different reply strategies for the same

message, with the respective probabilities.

The configurator concept.

In the program there are some classes intended to play the role of system's con-

figurators. It may be useful to explain with some details the function of these clas-

ses.

At present, there are an hardware configurator (the only one enrighied to assign

values to system's parameters) and a software one. First of all, the configurator

for a part of the system must create and link all the objects belonging to that part.

As the execution of the simulator program begins with the activation of the eonfi-

gurators, an automatic separation between the phases of system's generation and

actual simulation is obtained.

Let us say here that the simulation model's items can be divided into two groups:

"static" (intended to represent hardware pieces, processes etc.) and "dynamic"

(corresponding to messages). The generation phase provides the creation of the

static parts, whilst, during the simulation phase, dynamic parts (messages) are

produced and acted upon by the static parts. An approach of this kind is called

"machine-based".

By now, it should be clear that the definition of the eonfigurator classes simplifies

the modification not only of the values of the model' s param et er s, concentrated in

the I-IW-CONFIGUI%ATOI~, but also of the system's structure: this may be accom-

plished, in a localized manner, by re-defining only the actions of the HW-CONFI-

GUI~ATOR. To clarify this point, here a list follows of the operations involved in

a GENERALIZED-I-IOST (a SW-CONFIGURATOR) creation and activation (refer to

fig. 3):

a) the HW-CONFIGURATOR generates a GENERALIZED-HOST object, then it links

this object with a node and passes to it all the parameters; among these parameters

514

some will be needed to connect the SW-BLOCK and BASE-BLOCK processes;

b) the GENERALIZED-HOST, now acting as a SW-CONFIGUIRATOR, creates and

links the aforesaid processes and their common data area (e. g. table for message

analysis); this is local to the GENERALIZED-HOST, and becomes available to the

processes because it is passed them as a common parameter by the SW-CONFIGU-

RATOR;

c) at this point, the HW-CONFIGURATOR compiles, inspecting the host data area,

the table entries, thus defining the eommunication protocol for that host.

This operation is accomplished through the execution of specific procedures local

to the HW-CONFIGURATOR.

m sg-analy sis
table

[J ,

J

/

SV~BLOCK
process

GENERALIZED HOST

BASE MODULE

[
i base-block area

l in command queue

lout reply queue

i
i

1

, I

BASE -BLOCK

out command queue

in reply queue

t ~

process

0~

Fig. 3 - Generalized host's structure.

515

RESULTS.

First of all, the model has been used to obtain the numbers that have been re-

quired in order to achieve the primary goal: the preliminary definition of the system

for a typical office automation utilization, in the following pages some of the more

typical curves (fig. 4, 5, 6) are given.

A simple mathematical model has been written for the loop network; it relates

some of the more meaningful ~ariables : transmission speed, node delay and num-

ber, utilization of the loop; this analysis and the simulation results both point to

the utilization of the loop as a faithful measure of the system's level of crowding.

The utilization of the loop is defined as:

M E S S A G E T R A N S M I S S I O N T I M E
O =

T O T A L T I M E

T h e c u r v e s i n f ig . $ g i v e a v i s u a l c o n f i r m a t i o n of t h e p r e c e d i n g s t a t e m e n t : t h e y

r e f e r t o a s i m p l e , t h o u g h u n r e a l i s t i c , s i t u a t i o n i n w h i c h t h e l o a d o n t h e n e t w o r k

(n u m b e r of t r a n s a c t i o n s p e r m i n u t e , of l i n e s to b e p r i n t e d e t c .) v a r i e s w i t h t i m e ,

r e a c h i n g o n l y a m i n i m u m o r a m a x i m u m v a l u e .

T h e b r o k e n l i n e s h o w s t h e l o a d v a r i a t i o n s : i n t h e s e c o n d c u r v e , e v e r y " X " r e p r e -

s e n t s a s a m p l e of t h e l o o p ' s u t i l i z a t i o n a n d t h e r e s u l t i n g c u r v e f o l l o w s t h e p r e c e d i n g

o n e w i t h a s h o r t d e l a y : f r o m t h i s o n e c a n h a v e a n e s t i m a t e of t h e r e s p o n s e t i m e of

t h e s y s t e m .

In t h e c o n d i t i o n of t h e m a x i m u m l o a d , t h e s y s t e m i s a t i t s s t a b i l i t y l i m i t : c o r r e s p o n -

d i n g l y , we can see that the third curve (sampling the number of elements in the mostly

used transmission queue) oscillates strongly. The oscillations are caused by a

sort of "noise" in the input to the system (e. g. the arrival times for the trans-

actions are randomly varied with a Poisson distribution; only the mean interar-

rival time can be assigned); so there is a good probability that, at a certain moment,

the ~uctuations in the message production rates of the various nodes sum up to

cause an overcrowding, with a resulting increase in the number of messages wait-

ing to be transmitted. This can be seen as a "micro-breakdown" of the system .

Shortly afterwards, usually, the equilibrium returns, but it takes a certain time

to reduce the number of elements in the queues, unless an opposite fluctuation oc-

curs.

At present, it has not yet been possible to compare these curves with the actual

behaviour of a real system~ since the implementation of the loop is still in progress.

%
OF

LO

OP

UT
IL

IZ
AT

IO
N

i0
0 90

80

70

"6
0

50

40

30

20

i0
 0

M
A
X

C
O
N
F
I
G
U
R
A
T
I
O
N

Fi
g.

4

_
_

_
,

,
>

T
R

A
N

S
M

IS
S

IO
N

2
4

0
0

4

8
0

0

9
G

0
0

1

9
2

0
0

3

8
4

0
0

S

P
E

E
D

(B

P
S

)

ix

A

te
st

:

p
ea

k

lo
ad

o
B

te

st

:
"

"
-

1
2

0

lp
m

p

ri
n

te
r

f3

C

te
st

:

m
ed

iu
m

lo

ad

II
I

I
II

I
III

r

C3
')

oll
ue

tti

!
I

I
I

II
I

4
0

0

.

3
0

0

2
0
0

I0
0

Fi
g.

5

24
00

4

8
0

0

TR
AN

SM
IS

SI
ON

'
'

>
SP

EE
D

(B
PS

)
9G

00

19
20

0
38

40
0

Z~

A

te
st

O

B

te
st

l~

C

te
st

lll
Tr]

lll
ll~

l I I
II

I
II

[I
i

r
ME

AN

WA
IT

IN
G

TI
ME

IN

TH

E

TR
AN

SM
IS

SI
ON

QU

EU
E

OF

DI
SC

(r
ns

ec
)

.li
ve

tt|

I
Jil

l[N
il

]
'

I
I

I

O1

,.-
.,4

518

I I

ttO

o

o ~

~ 0 ~
0 0 ~

I

' ,It

0
gl

~o~

I

1 I
I

!

I

I

I
I

I

I

I
I

I

I

m

I
I ~,

0 0

I

I

I

v

,-4

0

0
co

¢0

I

J
Fig. 3

519

CONCLUSIONS.

The proposed simulation model has already achieved some of its goals: its flexibility

has allowed Us to obtain quickly the required curves and to show the system's

behaviour with quite different configurations, transmission speeds, node delay etc.

At present, the work on the model proceeds in the direction of software simulation

and of the study of other possible applications of the architecture.

From the first results, some ideas have been suggested; as it has been shown in

the preceding paragraph, the utilization of the loop is a good measure of the system's

level of crowding. In a real system, it is desirable to avoid the micro-breakdowns;

then one can imagine a prevention technique based on the estimate of the loop's

utilization, easily made by every node. When this measure signals that the system

has reached a nearly critical state, the nodes with less urgent messages or with a

small number of elements in their transmission queues can decide to temporarily

slow down their transmission rates.

The approximate length of the various modules of the simulation program are

given: loop and nodes modules, 80 code lines each; host module, 370 lines, of

which i00 have been written for the GENERALIZED-HOST. The total length of our

program is 800 lines, not including the procedures written to simplify the model's

programming. These data show that the proposed simulation approach is simple to

implement, and thai the model's modularity and flexibility are obtained with a modest

program length.

The simulation program has been run on an IBM 370/IG8, as we have already re-

marked; the required CPU time of this computer is, of course, a function of simulat-

ed time but also of the memory used, the kind of tests etc. The mean ratio between

simulated time and 370 CPU time is approximately 40.

BIBLIOGRAPHY.

520

B I R 7 3 :

C A S 7 6 :

FAR72 :

F R A 7 4 :

GOR69 :

K L E 7 5 :

N E W G 9 :

PIE72 :

REA76 :

ZIE75 :

Biriwistle, Dahl, Myhrhaug, Nygaard - SIMULA BEGIN - Petrocelli Ch. 1973.

G. Casaglia, S. Copelli, N. Lijtmaer - DISTRIBUTED CONTROL FOR LOCAL

NETWORK OF MINIS : A DESIGN APPROACH USING MICROPROCES-

SORS - Euromicro Syrup. (p. i19), oct. 197G.

D. J. Farber,K. Larson - THE STRUCTURE OF A DISTRIBUTED COM-

PUTER SYSTEM - THE COMMUNICATION SYSTEM - Proc. Syrup. on

Comp. Comm. Network and Teletraffic, Pol. Inst. of Brooklin Press, apr.

1972.

A.G. Fraser- LOOPS FOR DATA COMMUNICATIONS - Bell Lab., Comp.

Science Tecn. Report n. 24, dec. 1974.

G. Gordon - SYSTEM SIMULATION - Prentice-Hall, 19G9.

L.Kleinrock - QUEUING SYSTEMS - Wiley and sons, 1975.

E.E. Newhall, W.D. Farmer -AN EXPERIMENTAL DISTRIBUTED SWITCH-

ING SYSTEM TO HANDLE BURSTY COMPUTER TRAFFIC - Proc. ACM

Symp., Pine Mountain, Georgia, oct. 1969.

J. R. Pierce - NETWORK FOR BLOCK SWITCHING OF DATA - Bell Syst.

Teehn. Journal, jul. -aug. 1972.

Reames, M. T. Liu - DESIGN AND SIMULATION OF THE DISTRIBUTED

LOOP COMPUTER NETVCDI%K (DLCN) - Proc. 3rd Ann. Syrup. on Comp.

Architecture, jan. 197G.
B. P. Ziegler - THEORY OF MODELLING AND SIMULATION - Wiley and

sons, 1975.

ACKNOWLEDG EM ENTS.

We wish to thank N. Lijtmaer, of the Istituto per l'Elaborazione dellJInformazione,

Pisa, and ing. F. Tisato, Politecnieo di l~ilano, for their suggestions on the best

approach to the problem and ing S. Brandi,Olivetti, for having helped us in the de-

finition of the program structure.

