A Simulation Model for Analysis of Attacks on the
Bitcoin Peer-to-Peer Network

Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein
Institute of Telematics & Steinbuch Centre for Computing
Karlsruhe Institute of Technology, Germany
Email: {till.neudecker, philipp.andelfinger, hannes.hartenstein} @kit.edu

Abstract—We present a simulation model of the Bitcoin
peer-to-peer network, a widely deployed distributed electronic
currency system. The model enables evaluations of the feasibility
and cost of attacks on the Bitcoin network at full scale of
6,000 nodes. The simulation model is based on unmodified code
from core segments of the Bitcoin reference implementation used
by 99% of nodes. Parametrization of the model is performed
based on large-scale measurements of the real-world network.
We present preliminary validation results showing a reasonable
correspondence of the propagation of messages in the Bitcoin
network compared with simulation results. We apply the model
to study the feasibility of a partitioning attack on the network
and show that the attack is sensitive to the churn of the attacking
nodes.

I. INTRODUCTION

Bitcoin [10] is a distributed electronic currency system
that has found a broad user base and is gaining acceptance
by established organizations. Financial fraud is prevented
using a proof-of-work scheme and cryptographic mechanisms
that guarantee consistency of the financial transactions given
certain properties of the Bitcoin peer-to-peer network formed
by the system’s users. For instance, it is assumed that no
single entity controls more than 50% of the computational
power in the network. To increase the users’ trust in the
system, it is necessary to study Bitcoin’s resistance not only
against attacks on cryptographic mechanisms but also on the
underlying network itself.

In the literature, a number of attacks as well as appropri-
ate counter-measures have been evaluated analytically using
models generated from real-world measurements. However,
existing works abstract both from details of the Bitcoin client
behavior and from network conditions such as topology, link
latencies, and churn. Hence, the real-world feasibility of the
studied attacks remains difficult to assess.

In this paper, we present a simulation model for evaluation
of attacks on the Bitcoin network. Each node’s behavior
is modeled using unmodified code from core segments of
bitcoind, the Bitcoin reference implementation used by 99% of
nodes in the real-world network [14]. The model parameters
defining the network conditions (e.g., latency) are gathered
by measurements covering a broad sample of nodes in the
Bitcoin network. We present preliminary validation results
that display a reasonable correspondence when comparing the
observed information propagation in the real-world network
with simulation results. Based on the simulation model, we
evaluate the feasibility of a partitioning attack on the Bitcoin
network and demonstrate the need to model both the client

behavior and the network conditions to obtain meaningful
results. An attacker entering the network with nodes of a botnet
can successfully disrupt operation of the system by reducing
the connectivity of honest peers in the network. However, the
attacker requires a large number of stable (i.e., continuously
connected) attacking nodes. The main contributions of the
paper are threefold:

Bitcoin Simulation Model: To the best of our knowledge,
we are the first to demonstrate full-scale simulation-based
evaluations of attacks on the Bitcoin network: the simulation
proceeds at a factor of 0.34 of wall-clock time (i.e., 10 hours
of simulation time require 29 hours wall-clock time) while
still retaining high accuracy through the use of segments of
unmodified application code. Validation results show that the
model approximates the information propagation in the real-
world network with reasonable accuracy.

Code Transformation: We describe the main challenges in
transforming the Bitcoin application code to a simulation
model and propose mechanisms to address the conversion of
complex control flows and long-running function calls.
Evaluation of Partitioning Attack: Applying the simulation
model, we study the feasibility of an attack aiming to partition
the network. We demonstrate the tradeoff in the costs of the
attack with respect to the amount of network resources that
must be available to the attacker and the time required to
perform the attack.

The remainder of the paper is structured as follows: in
Section II, we outline related work in evaluation of Bitcoin
regarding network and security properties and in modeling ap-
proaches for similar distributed systems. Section III describes
our simulation model of the Bitcoin network conditions and
client behavior. Section IV details the transformation of the
client source code to the simulation model. In Section V, we
present preliminary validation results with reference to real-
world measurements. In Section VI, the simulation model is
applied to study the feasibility of a partitioning attack on the
Bitcoin network. In Section VII, we summarize our results and
discuss future work.

II. RELATED WORK

Most previous studies of the Bitcoin network are based
on analytical models parametrized using measurements of key
metrics (e.g., information propagation delay) of the network.
Measurements of the network have been presented by Donet
et al. [3], while results from continuous measurements are
published by the project bitnodes.io. It was shown that the
distribution of IP addresses in the Bitcoin network does not

© IFIP, (2015). This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in International Symposium on Integrated Network Management (IM), 2015 IFIP/IEEE, http://dx.doi.org/10.1109/INM.2015.7140490

resemble a uniform distribution, but has a strong bias towards
a few autonomous systems [4]. As this distribution affects the
connectivity of the network, our simulation model emulates
the behavior of the Bitcoin reference client in this matter.

Analytical models were used to assess security properties
of Bitcoin in previous studies. The feasibility of Double
Spending attacks in fast payments has been studied using an
analytical model derived from measurements as well as exper-
iments in the real Bitcoin network [7]. Although experiments
in the real network are possible, they are not only limited
by the researcher’s resources but also by legal issues. As the
main goal of Bitcoin’s peer-to-peer network is maintaining
information consistency, several works show the importance of
information propagation latency on, e.g., block chain forks [2].
In [5], formal proofs of block chain properties are presented
based on the assumption of high degrees of synchronization.
The main limitation of analytical studies is the difficulty of
modeling the complex peer interactions resulting from the
client implementation, inhibiting the evaluation of specific,
especially network-based, attacks.

Transformation of native network application’s code into
simulation models has previously been achieved by providing
a virtual operating system interface [12] or full hardware
virtualization [13]. Shadow [6] executes the Tor application
in a simulation environment and supports Bitcoin using a
plugin'. However, we argue that executing the expensive block
chain interactions and cryptographic operations performed by
each Bitcoin client at full accuracy inhibits the scalability of
experiments. Instead, for full-scale studies of the network at
acceptable performance, one needs to abstract from aspects of
the client behavior irrelevant to the given type of study. As
this abstraction requires manual effort and increased need for
validation, we base our simulation model on large segments
of unmodified bitcoind client code. Hence, experiments benefit
both from scalability through abstraction as well as from high
accuracy in the relevant client behavior.

III. SIMULATION MODEL OF THE BITCOIN NETWORK

In this section, we detail the simulation model created
based on the reference client code and measurements of the
Bitcoin network. The purpose of our model is to study attacks
that rely on the network topology to influence information
flows in the network, e.g., by isolating groups of peers or
by providing spurious information to specific peers. The net-
work topology is predominantly defined by the procedures
by which the reference client creates connections to remote
peers as well as by the distribution of the peer’s lifetimes.
As we are interested in information propagation delays in
the network, we additionally require an estimate of the link
latencies between peers. We model these aspects accurately by
integration of unmodified client code and by measurements of
the conditions in the real-world Bitcoin network. By focusing
on attacks relying on the network topology, we can abstract
from computationally expensive cryptographic operations in
the client code to allow for experiments at full scale of the
Bitcoin network at acceptable performance. In the following,
we describe the Bitcoin protocol, the measurements performed
to parametrize our model as well as the transformation of the
client code to a discrete-event simulation model.

A. Protocol & Client Behavior

We will now give a brief sketch of relevant aspects of
Bitcoin; a more detailed description can be found in [10] or
directly in the source code of the reference implementation?.
The two main objects in the Bitcoin protocol are transactions
and blocks. A transaction contains (among others) one or
more payers, one or more payees, and an amount to be paid.
Transactions are broadcasted through the network and have
to be cryptographically signed by the payer in order to be
accepted by other network peers. A transaction can be seen as a
right for the payee to further spend a stated amount of Bitcoins.
The set of all transactions is often compared to a public ledger,
which can be used to cryptographically verify whether the
payer of a transaction has the claimed rights. As the set of
transactions can be inconsistent among different network peers,
blocks are used to reach a consensus on the set of transactions.
A block contains a set of transactions and a proof-of-work.
Each block references a predecessor forming the block chain
— a set of blocks that are authoritative for accepted transactions.
The used proof-of-work mechanism links the ability to create
blocks to computation power, which prevents successful sybil
attacks: An attacker can join the network with many peers,
only limited by the attacker’s network resources. However, this
does not improve the attacker’s chances to create new blocks,
as this solely depends on the attacker’s computational power.
In Section VI we will analyze the influence of such an attack
on the network itself.

In order to keep information as consistent as possible, new
transactions and blocks are flooded through the network. For
this, peers announce the availability of new information using
an INV message containing the hash of the new information to
connected peers. The receivers of these INV messages check
whether they have already received the announced information,
and, if the information is new, request the information by
responding with a GETDATA message. As a response to the
GETDATA request, the transaction or block will be sent as a
TX or BLOCK message, respectively.

There are several mechanisms that peers wishing to join
the network can use in order to retrieve IP addresses of other
network peers. First, a number of DNS servers returning IP
addresses of peers are hard-coded in the client code. Once
a peer is connected to the network, it broadcasts its own IP
address so that other peers are aware of it and can potentially
connect to the new peer. By issuing GETADDR messages it is
also possible to receive IP addresses known by another peer up
to a maximum of 23 % of the peer’s known addresses or 2,500
addresses. Known IP addresses are held persistently, which
allows restarting the client while maintaining a large set of
seed IP addresses.

The reference implementation aims at preventing an at-
tacker from gaining a large share of the peers a single Bitcoin
node connects to. Based on the assumption that the attacker
controls only addresses from a limited IP address space, peers
to connect to are organized into buckets according to IP address
ranges. In the case of IPv4, the two most significant bytes
(/16 network) are used. Hence, an attacker can only fill a
limited number of buckets with addresses of peers under his
control. Selection of addresses from the buckets for connection

Thttps://github.com/amiller/shadow-plugin-bitcoin/

Zhttps://github.com/bitcoin/bitcoin

0.1

o 0.01 —
(=%

0.001 | | |

0.0001

0 24 48 72 96 120 144 168
Session Length [h]

Fig. 1. Measured session lengths of peers in the Bitcoin network.

attempts is performed by a random process with a bias towards
peers that have been seen by the network lately.

We assume that all nodes in the network are represented
by the behavior of the bifcoind reference client. Measure-
ments [14] show that the vast majority of peers is in fact use
bitcoind. Still, on the example of a peer connected to all other
peers in the network, it was previously shown that a deviation
from the default behavior can have a severe impact on the
overall network [2].

B. Measurements and Parametrization

In order to parametrize the model correctly, we performed
measurements in the real Bitcoin network as well as ex-
tracted data from existing measurements. As the behavior is
determined by the client implementation, the most influential
network parameters are the distributions of the peer’s session
lengths and link latencies between peers. The network topol-
ogy (i.e., the connectivity graph) is determined by the client
behavior and the distribution of session lengths, both of which
are part of our model. Therefore, we did not perform dedicated
measurements of the exact network topology. Depending on
the session length distribution not only the stability of the
network varies, but the resulting topology can change sub-
stantially as well. For instance, a heavy-tail distribution with
few peers that stay in the network for a long period of time
causes these peers to establish many connections.

The bitnodes.io project’ performs ongoing crawls of all
reachable peers in the Bitcoin network and publishes snapshots
of the IP addresses of these peers every five minutes. We
used this openly accessible data and extracted the points in
time when peers joined or left the network. Fig. 1 shows the
distribution of session lengths observed based on data from one
week. Although the data indicated that a considerable churn
takes place, it should be noted that 2,352 peers did not leave
the network during the observation time of one week.

Fig. 2 shows the measured distribution of latencies in the
Bitcoin network. The distribution was collected by connecting
to around 1,000 network peers and observing a total of 183,000
ping/pong messages. The measured distribution only reflects
the latency between our measurement node and other peers and
not the latency distribution between all peers in the network.
We use this as a rough approximation for our simulation and
leave a precise model of the latency distribution as future work.
As IP addresses of all Bitcoin nodes are known, it will be
possible to gather estimations from real-world measurements
of Internet path latencies, e.g., using the iPlane service [9].

3http://getaddr.bitnodes.io

0.3
025

0.15
0.1 p s
0.05

PDF

0 200 400 600 800 1000

Latency [ms]

Fig. 2. Measured latency distribution between measurement node and peers
in the Bitcoin network.

IV. IMPLEMENTATION: TRANSFORMATION FROM
BITCOIND TO DES MODEL

In this section, we present the steps required to transform
the source code of the Bitcoin reference client (bitcoind) into
a model suited for discrete-event simulation (DES). Discrete-
event simulation is characterized by a system state that is
modified by events occurring at discrete points in simulated
time. Activities spanning an interval of simulated time must
be modeled using multiple events, e.g., representing the start
and end of an activity. First, a brief overview of bitcoind’s
software architecture is given, before challenges arising from
the architecture are discussed and a transformation method is
presented.

The bitcoind client is a multithreaded application written
in C++. Communication between threads is mainly achieved
via message queues; each thread may call blocking functions.
Recreating the resulting complex timing behavior in the sim-
ulation is the main challenge in modeling the client. We will
now sketch the functional and time behavior of the three main
threads used for networking in bitcoind:

ThreadOpenConnections/ThreadOpenAddedConnections:
These two threads try to establish connections to other peers
in the network, until the maximum number of outgoing
connections (8 by default) is reached. Selection of hosts to
connect to was sketched in Section III-A. Connection attempts
are performed using blocking calls. Therefore, the timing
behavior of this thread depends on how fast connections can
be established or timeouts on unsuccessful connections occur.
ThreadSocketHandler: This thread reads data from sockets
and writes them into message queues for later processing.
It also writes data that was previously stored in designated
outgoing queues to sockets. Again, the calls in socket
functions are blocking so timing is affected by the blocked
duration (e.g., sending a packet on a saturated link). Iteration
over all connections is performed at most every 10ms.
Measurements show that blocking calls can increase this
interval time to up to around 60 ms.
ThreadMessageHandler: Messages that were stored in
incoming queues by ThreadSocketHandler are processed by
this thread. It cycles every 100ms through all connection’s
queues and performs the protocol handling itself (e.g., reacting
to messages, checking for timeouts). Although the timing of
this thread is affected by cryptographic processing delays, the
effect on the total cycle duration is less severe than for the
other threads.

Modeling a multi-threaded application as a DES model is
possible by introducing separate sets of event types for each

Thread A: connect() |

Thread B: read()

f -
wall-clock time

>

simulated time

e e

A, call B,call eA,return eB, return

Fig. 3. Transformation of blocking function calls in the original application
(top) to a DES representation (bottom).

thread. We identified three main goals that must be taken
into account in the modeling process: Explicitness of timing
behavior, locality of program state, and functional abstraction.

Timing behavior, which in the original code is implicitly
defined by the variable durations of computations and network
latencies, must be reflected explicitly in the DES model. For
instance, if a simulation event e4 ., representing a blocking
function call in thread A is executed, a new event €4 return
representing a successful return from the function call is
scheduled with an appropriate delay in simulated time (cf.
Figure 3). In between €4, cqu and €4 return, any number of
events representing activities of threads of the same or another
client may be executed by the simulator. This transformation
is required for every synchronous application code because of
DES’s inherent asynchronicity.

When modeling a strictly sequential program, continuing
after a blocking call is trivial and only requires maintaining
the client’s state (i.e., variables) across events. However, when
introducing complex control structures and function calls, the
simulator cannot simply continue after the call. Consider the
example in Figure 3: If the blocking function read() is called
from two different functions in the original code, it must be
ensured that the event ep return Teturns to the correct calling
function. Therefore, we keep this information (i.e., the call
stack) for each thread in a separate data structure, enabling
the return event to continue at the right caller function.

Locality of program state: The goal of the simulation
is to execute several instances of the application in one
single simulator. Programmers have several options to keep
state in a program. However, if global storage (e.g., static
variables) is used, care must be taken to isolate the state of the
simulated application instances from each other. Therefore, all
state that is stored in global storage must be transferred to a
per-instance storage. This transfer is rather trivial and could
easily be performed by existing automated model-to-model
transformation approaches.

Functional abstractions can on the one hand improve
performance and may be necessary to enable simulations of
a large number of instances, on the other hand they can
potentially lead to deviation of the behavior of the simulation
model when compared to the original application code. It
should be noted that what is a suitable transformation always
depends on the ultimate purpose of the simulation model.
Hence, different ways to abstract may be suited for different
applications and use cases. As we are primarily interested
in an analysis of networking aspects of the Bitcoin peer-
to-peer network, we abstracted from all cryptographic func-
tions, reducing the computational intensity of the simulation
immensely. By omitting procedures such as verification and
issuing of signatures as well as block chain maintenance, we

make the assumption of a faultless operation regarding these
aspects. However, the named procedures do not affect the
client’s networking behavior that is in our focus. Of course,
for studies targeting attacks that depend on a specific behavior
of these functions, the corresponding code must be included
in the model.

We isolated the simulation model from the underlying op-
erating system by replacing system calls, e.g., for input/output
operations, with modifications of in-simulator variables or
the scheduling of appropriate event types. As the simulator
enables a god-view of the network, networking operations can
be simplified: for instance, bitcoind uses the POSIX select()
function to monitor multiple sockets. In the simulation, the
reception of packets creates events at the appropriate point in
simulated time, making the use of select() unnecessary. Finally,
we removed legacy support for older Bitcoin protocol versions
and all IPv6-support. As of December 2014, only a small share
of peers uses IPv6, enabling a significant performance boost
through elimination of the related code. However, as the share
of IPv6 nodes is rising, we plan to extend our simulator to
also cover IPv6.

V. VALIDATION

In order to validate our simulation model, we compared
measurements of how fast information propagates through
the real network to the same measurements conducted in
simulations. The information propagation delay is well suited
for validation as it is affected by many aspects of the Bitcoin
network such as client’s behavior, network topology as well
as networking and processing delays. We will now review
information propagation in Bitcoin in detail before we describe
our measurement setup and discuss validation results.

As explained in Section III-A, information propagation
involves three steps. Forwarding (i.e., sending out INV mes-
sages to neighbors) is performed either immediately after the
reception of the information or some random time later. This
mechanism is implemented in order to protect privacy by
making it harder to determine which network peer originally
issued a transaction. Only 25% of all INV messages are
rebroadcasted immediately, the other 75 % are trickled out
to connected peers. For trickling, every 100 ms one peer is
selected out of these peers and the queued INV messages are
sent. Therefore, the timing of the trickling depends on the
number of connections.

The measurements were obtained by maintaining connec-
tions to about 1,000 of the 6,000 reachable peers in the network
and logging the time stamps of incoming INV messages. We
deactivated forwarding of INV messages in order to avoid
information eclipsing [2], i.e., situations where peers do not
forward information to our measurement peer because they
know that we already have this information. As other peers
did not receive any INV messages from our measurement peer,
they were not able to decide whether we had already observed
a given message. Hence, the peers forwarded INV messages
to the monitor node as they became aware of them or during
the trickling phase.

For each announced transaction h, the time differences
between the first reception of an INV message and the subse-
quent n messages were calculated (Aty, 1, ..., Aty). The same

08 imulation o -

0.7 S
0.6 -
05

04 y

0.3

02 y
0.1 / L

09 F\/Ieasuremenlt
9 1

CDF

Time [s]

Fig. 4. Comparison of the distribution of Atj, ; as measured in the Bitcoin
network with simulation results.

method was used in the simulations, where the measurement
peer interacted with a simulated network. Obviously, the
distribution of these measured time differences At ; does not
represent the real propagation delay, as the measurements do
not indicate when peers receive information, but only when
they inform our measurement node. However, it can serve as
an upper bound for propagation delay and still exposes the
same characteristics required for validation.

Fig. 4 shows the average distribution of Aty ; for the real
Bitcoin network and the simulated network. It should be noted
that averaging the delays over a large number of individual
transactions causes the curve to look very smooth, even though
the variance of delays observed for any individual transaction
is significantly larger. The results indicate that during the first
2 seconds, information propagation is faster in the real network
than in the simulation. However, the propagation rate in the
real network declines earlier leading to a worse information
propagation after several seconds.

We suspect that the deviation is caused by a number of
nodes in the real network that are each connected to large
segments of the network. On the one hand, such nodes cause
a quick initial acceleration of information propagation due to
the large set of peers the message is transferred to initially. On
the other hand, the total duration of the subsequent process of
trickling messages to the remaining peers increases with larger
numbers of connected peers. We leave a further analysis of this
issue as future work; nevertheless we state that our simulation
model approximates the real network’s behavior sufficiently
for preliminary evaluations.

VI. CASE STUDY: PARTITIONING ATTACK

We will now apply our simulation model to analyze of a
potential network partitioning attack.

A. Attack Concept and Attacker Model

We assume that the goal of the attacker is to partition the
network into two or more partitions so that no information
flow between the partitions is possible. Such an attack does not
directly enable the attacker to manipulate actual transaction or
block chain data, as this would still require the attacker to be
able to solve the required proof-of-work puzzles. Still, such an
attack impairs Bitcoin’s main functions, potentially causing a
decline in users’ trust in the system. A possible motivation for
an attacker could be speculation on the Bitcoin exchange rate,
which is influenced by users’ trust in the system.

We assume that the attacker operates a botnet with po-
tentially more than one hundred thousand nodes, which is a
realistic size for botnets. Although the number of IP addresses
online at a given point in time can be considerably smaller,
far more than 10,000 peers may be online simultaneously [11].
Botnets have proven to be able to successfully perform Dis-
tributed Denial-of-Service (DDoS) attacks on large services.
Hence, we will assume that the botnet is able to also perform
DDoS attacks on a limited number of peers in the Bitcoin
peer-to-peer network. Although botnets have also been used
for mining of Bitcoins, we do not make any assumptions on
the botnet’s computation power.

The attack itself consists of two phases. In the first phase,
the attacker joins the Bitcoin peer-to-peer network with as
many nodes as possible and participates conforming to the pro-
tocol. However, attacker nodes only announce IP addresses of
other attacker nodes, increasing the probability of connections
from honest nodes to attacker nodes. The goal of this approach
is to thin out the connectivity graph between honest nodes.
Once the connectivity graph is sufficiently sparse, the second
phase of the attack begins. The attacker nodes in the network
stop forwarding transactions and blocks and only respond to
messages required to maintain connections to honest nodes.
Now, the attacker performs DDoS attacks on honest nodes of
the remaining connectivity graph that the attackers believes
are on the minimum vertex cut. The minimum vertex cut
defines the minimum set of peers whose removal causes
the connectivity graph to be split into at least two distinct
partitions. We will explain in Section VI-B how the minimum
vertex cut is determined. In the analysis of this attack, the size
of the minimum vertex cut is of interest as it serves as an
indicator for the attacker’s costs.

As the session length of each node has a severe effect on
the number of connections the node establishes, the success
of the attack is sensitive to the botnet nodes’ churn. Hence,
we simulated the attack for varying attacker’s session lengths.
In order to determine the minimum vertex cut of the network,
the attacker needs to be aware of the network topology. It
has been shown that it is possible to deanonymize clients by
identifying the entry nodes to which clients are connected [1].
We assume that by connecting to a large share of the peers
in the network and observing message flows, the attacker can
reconstruct an approximation of the network topology. If an
insufficiently precise approximation is used and a suspected
vertex cut does not actually partition the network, the attacker
can repeat the process by observing the remaining connectivity
network and selecting additional peers on a newly determined
vertex cut.

B. Experiment Setup

In order to evaluate the feasibility of the presented par-
titioning attack, we performed simulations starting with a
number of honest peers. At a certain time stamp the attack
begins with the first phase and attacker peers join the network.
Periodically, a heuristic approximation of the minimum vertex
cut is determined using the metis [8] graph partitioning toolkit.
It should be noted that in general, there may be both multiple
vertex cuts of identical cost and inexpensive cuts that create
highly imbalanced partitions. Hence, the choice of a suitable
cut depends on the desired imbalance between the resulting
partitions. For instance, in a densely connected graph it may

[#n = 6000,5Ls = 00 —+—

2000 m
8 1900 #
g 1800 o
= 1700 %
g e
E 1600 0
g
= 400
= #n =1000,SLy =2h ———
g 300 W l #n =1000,SLA = 00 ----3eeme-
=
> 200
F*+
100 |
0
0
Time [h]
Fig. 5. Number of non-attacker peers on the minimum vertex cut during

an attack with 6,000 attacker peers on a network with #n = 6,000 honest
peers parametrized as in the real-world network (top) and an attack with 1,000
attacker peers on a network with #n = 1, 000 honest peers (bottom); attacks
begin at t = 4 h, attacker’s session length SLs € {2h, oo}.

be easy to isolate one single vertex by removing all adjacent
vertices. In general, the more imbalance is allowed between
partitions, the fewer vertices will be part of the vertex cut. In
our exemplary attack, the attacker is not interested in creating
perfectly balanced partitions, but does aim at creating partitions
of non-negligible size. In metis, maximum allowed imbalance
factors can be specified to represent the attacker’s goals.

The simulations were performed on a 2,6 GHz machine
equipped with 64 GB of main memory; simulation of 10 hours
at real-world scale of around 6,000 peers required 29 hours of
computation time and 22 GB of memory.

C. Results

Fig. 5 shows the results of two simulated attacks on a
model of the real-world network including latency and churn
parameters as presented in Section III (#n = 6,000) as well
as on a much smaller network with #n = 1,000 peers. The
size of the attacking botnet was chosen to match the number of
honest peers in both scenarios. The desired imbalance factor
was configured so that the largest partition does not contain
more than 60 % of all nodes, hence isolating at least 40 %
of nodes. In the large scenario, the attack causes the number
of honest peers on the minimum vertex cut to decline from
around 2,000 to 1,600 within 24 hours of attack. Although
this decline is not yet critical to the stability of the network
(as the attacker would still need to perform a DDoS attack on
1,600 peers) attackers with a higher number of peers, a more
intelligent behavior or simply more patience might succeed in
splitting the network.

The results from the smaller scenario with 1,000 peers
illustrate the impact of the attacker’s session length SL4 on
the success of the attack: Without any churn, the minimum
vertex cut declines to less than 50 peers. With an average
session length of 2 hours, which equals the session length of
honest peers in this small scenario, the minimum vertex cut
does remain above 100.

VII. CONCLUSION

In this paper we presented a first model to enable full-
scale simulation of the Bitcoin peer-to-peer network at low
runtimes and demonstrated its application with an analysis

of a partitioning attack on the network. Validation results
indicate a close correspondence between key metrics of the
simulated network and the real-world network. The analysis
of a partitioning attack showed that the Bitcoin peer-to-peer
network is resistant against attackers controlling less than
6,000 bots and an attack lasting several hours. However,
attackers with more resources need to be considered.

Currently, our model does not fully model the real-world
network’s topology, resulting in a remaining deviation when
considering the information propagation in the network. Future
work will include approximating the network’s topology by
measurements to improve the accuracy of our model. Ad-
ditionally, we will extend our model by integrating further
aspects of measured user behavior (e.g., realistic generation of
transactions). These improvements will allow us to investigate
sophisticated attacks relying strongly on the current network
state and on protocol specifics.

REFERENCES

[1] A. Biryukov, D. Khovratovich, and I. Pustogarov. Deanonymisation of
Clients in Bitcoin P2P Network. arXiv preprint arXiv:1405.7418, 2014.

[2] C. Decker and R. Wattenhofer. Information Propagation in the Bitcoin
Network. In 2013 IEEE Thirteenth International Conference on Peer-
to-Peer Computing (P2P), pages 1-10. IEEE, 2013.

[3] J. Donet Donet, C. Prez-Sol, and J. Herrera-Joancomart. The Bitcoin
P2P Network. In Financial Cryptography and Data Security, Lecture
Notes in Computer Science, pages 87—-102. Springer Berlin Heidelberg,
2014.

[4] S. Feld, M. Schonfeld, and M. Werner. Analyzing the Deployment
of Bitcoin’s P2P Network under an AS-level Perspective. Procedia
Computer Science, 32:1121-1126, 2014.

[5] J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol:
Analysis and Applications. Technical report, Technical report, 2014.

[6] R.Jansen and N. Hooper. Shadow: Running Tor in a Box for Accurate
and Efficient Experimentation. Technical report, DTIC Document, 2011.

[71 G. O. Karame, E. Androulaki, and S. Capkun. Double-Spending Fast
Payments in Bitcoin. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 906-917. ACM, 2012.

[8] G. Karypis and V. Kumar. Metis - Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0. 1995.

[9] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iPlane: An Information Plane
for Distributed Services. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI *06, pages 367—
380. USENIX Association, 2006.

[10] S. Nakamoto.
1(2012):28, 2008.

[11] B. Stone-Gross, M. Cova, B. Gilbert, R. Kemmerer, C. Kruegel, and
G. Vigna. Analysis of a Botnet Takeover. Security & Privacy, IEEE,
9(1):64-72, 2011.

[12] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti,
and W. Dabbous. Direct Code Execution: Revisiting Library OS
Architecture for Reproducible Network Experiments. In Proceedings
of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies, pages 217-228. ACM, 2013.

[13] T. Werthmann, M. Kaschub, M. Kiihlewind, S. Scholz, and D. Wagner.
VMSimlnt: a Network Simulation Tool Supporting Integration of Arbi-
trary Kernels and Applications. In Proceedings of the 7th International
ICST Conference on Simulation Tools and Techniques, pages 56—65,

Bitcoin: A Peer-to-Peer Electronic Cash System.

2014.
[14] A. Yeow. Bitnodes Project 2014 Q3 Report: The State of
Bitcoin P2P Network. https://bitcoinfoundation.org/2014/09/

bitnodes-project-2014-q3-report-the- state-of-bitcoin- p2p-network/,
2014.

