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ABSTRACT

Production scheduling is concerned with the allocation of resources

and the sequencing of tasks. Sequencing problems, except for special

cases, are very difficult to solve analytically. Consequently, heuristics

are used frequently to solve this problem.

A popular class of heuristics is referred to as dispatching rules.

A dispatching rule is a discipline by which jobs are assigned priorities

at different work stations. Competing rules in a multi-stage, multi-job

problem are generally evaluated on the basis of their performance in

simulation tests.

The purpose of this paper is to present an analysis of dispatching

rules using a job shop simulation model. The analysis involves 20

different dispatching rules in a 9-machine shop, for 4 sets of 10000

jobs.
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1. INTRODUCTION

Production scheduling is concerned with the allocation of resources

and the sequencing of tasks to produce goods and services. Although

allocation and sequencing decisions are closely related, it is very

difficult to model mathematically the interaction between them.

However, by using a hierarchical approach, the allocation and the

sequencing problems can be solved separately. The allocation problem is

solved first and its results are supplied as inputs to the sequencing

problem.

The resource allocation problem can sometimes be solved using

aggregate production planning techniques. To specify completely the

input to the sequencing problem, the resulting detailed or item plan

(also referred to as the master schedule) has to be disaggregated. A

breakdown by component parts can be obtained in a straightforward way by

using Material Requirements Planning (MRP) systems. Although MRP

continues to be popular in practice, many issues still need to be

resolved to make it an effective production planning tool. (For reviews

of aggregate production planning and materials requirement planning, see

Bitran and Hax [5] and Smith [36] respectively).

The sequencing problem, except for special cases, falls into a

category of combinatorially-difficult problems known as NP-complete

(Garey and Johnson [5]). Consequently, there has been a concentration

on the use of heuristics to solve this problem. A class of heuristics

that has been found to work well and is in popular use, is referred to

as dispatching rules. A dispatching rule is a discipline by which jobs

are assigned priorities at individual work stations. The job with the

"highest" priority is always processed first. The priorities of the
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remaining jobs in the queue may change over time as other jobs enter the

queue.

There is a wide variety of dispatching rules. These are based on

information about due-dates, processing times, status of jobs and status

of queues. Depending on the information used, dispatching rules can be

classified as local or global, simple or composite and, static or

dynamic. For an extensive survey of dispatching rules, see Panwalker

and Iskander [33].

Competing dispatching rules are evaluated on the basis of their

performance in simulation tests. Most of these tests have been

conducted in the context of a manufacturing job shop. Although there

have been many simulation studies, most research has concentrated on

jobs which only require fabrication. Some research has examined

assembly operations. However, a lot of work remains to be done

involving fabrication and assembly jobs for which MRP systems are

appropriate.

The purpose of this paper is to present an analysis of dispatching

rules using a job shop simulation model. Section 2 presents a

classification of job shops and dispatching rules and a review of job

shop simulation research. Section 3 contains a description of the

general simulation model. Section 4 reports on the results of the

simulation runs involving 20 different dispatching rules in a 9-machine

job shop for 4 sets of 10000 jobs which do not require assembly.

Finally, section 5 presents concluding remarks.
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2. A REVIEW OF JOB SHOP SIMULATION RESEARCH

The first section explained that dispatching rules are used to

solve sequencing problems. The purpose of this section is to present a

survey of the research literature on job shops. The survey focuses on

simulation models for multi-stage job shops. As an introduction to the

survey, the section begins with a discussion of job shops, dispatching

rules, and the simulation methodology.

2.1. Job Shops

In both theory and practice, much of the work on sequencing

problems has been related to manufacturing. Consequently, the job shop

has become a favorite theoretical construct to study the various

components and interactions of complex sequencing problems.

2.1.1. Components of a Job Shop

A job shop model may include the following components:

a. operations - elemental tasks.

b. jobs - one or more related operations that comprise a

basic task module.

c. events - occurrences corresponding to the

movement of jobs in the shop.

d. machines - the facilities which perform the operations

e. workers - the resources which operate the machines

f. queues - the sets of jobs waiting at machines.

g. routes - lists of the order and the corresponding machines

in which the operations of a job have to be performed.

h. bill of materials - lists of parts and their quantities that
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are required for different operations of a job.

i. time

arrival time - the time at which the job is ready

for processing at the shop

processing time - the time it takes for a machine

to perform an operation for a particular job.

due-date - the time by which the job is

supposed to be finished.

j. dispatching rules - the methods that specify how

machine operators choose which job in their queue to process

next.

k. schedule - the order in which the jobs are processed

by the machines.

1. performance measures - the criteria by which the schedule

is evaluated.

2.1.2. Classification of Job Shops

Sequencing problems have been studied in a variety of job shop

settings. Since conditions vary, different solution approaches have

been required. The following classification illustrates the diversity

of settings and common solution approaches. For a broad classification

of various scheduling problems and a review of important theoretical

developments of the different classes of problems, see Graves [191.

Job shops can be defined in the following terms:

a. The time environment.

The time environment of the shop can be deterministic or

stochastic. In a deterministic shop, all times (i.e. arrival,
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processing, due-date) are known and fixed. In a stochastic shop, any of

the times may be random variables with a specified probability

distribution.

b. The job arrival process.

In a static shop, all the jobs arrive simultaneously and thus are

ready for processing at the same time. On the other hand, in a dynamic

shop, jobs arrive at different times.

In the static case, since all jobs are completely known and

available, a fixed schedule can be made. Graphical, enumerative or

mathematical programming methods are commonly used. However, in the

dynamic case, the schedule can change whenever a new job arrives. Thus,

heuristic methods are preferred for scheduling a dynamic shop.

c. The machine configuration.

The shop can have one to several different machines. The number of

distinct machines describes an n-stage shop, where n is the number of

distinct machines. There can also be machines with identical functions

and which are grouped into machine centers. This configuration is

termed parallel machines.

Shop configurations with one or two distinct machines can be

studied with algebraic and probabilistic methods. Optimum schedules and

dispatching rules have been found for this class of problems for some

performance measures [2].

Optimal solutions have been found for some highly restrictive

problems involving three machines. In general, however, for shops with

more than two distinct machines, analytical methods have failed to find

optimal solutions. This is due to the computational complexity of such

problems. For an example of computational complexity, see Conway, et
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al., p. 95 [12]. As a result, these configurations have been studied

using simulation methods which use dispatching rules. The rules have

been found to vary in performance relative to one another, depending on

job and shop characteristics and on performance criteria.

d. The operation flow process.

If, at one extreme, all jobs follow the same route through the

machines, the shop is termed as a pure flow shop. If, at the other

extreme, each job has a unique route, the shop is termed as a pure job

shop. In the pure flow shop, most solution approaches involve

permutation schedules and heuristic procedures. In the pure job shop,

branch and bound procedures, enumeration and sampling methods for static

and deterministic conditions, and simulation experiments with

dispatching rules are used [2].

If each job may have only one of a fixed set of routings (which

implies a fixed line of products), the shop is called a closed job shop.

On the other hand, if a job may have any arbitrary route, the shop is

termed an open job shop. Open shops are concerned with sequencing jobs

through the machines and use similar solution approaches as pure job

shop problems. Closed shops involve the additional problem of

lot-sizing because jobs are generated by inventory replenishment

decisions. In addition to the approaches used in open shop problems,

closed shop problems also use lot-sizing methods.

2.2. Dispatching Rules

One of the earliest and most extensive studies on dispatching rules

was done by Conway [7, 8, 9]. The 92 dispatching rules (some which

change in relative weights) in his RAND study [7] are classified on the
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basis of information requirements into local rules and global rules.

Local rules only require information on the jobs waiting at a machine,

while global rules require additional information about jobs or machines

in other parts of the shop. The classification appears in table 2.1.

TABLE 2.1

Conway's Classification of Priority Rules

a. Local, operation: Rules based on the attributes of

imminent operation of jobs in a particular queue. Attributes of the

imminent operation include processing time, arrival time in queue and

due-date.

b. Local, job: Rules based on the attributes of the jobs in a

particular queue. Attributes of the job include arrival time in shop,

due-date, total or remaining number of operations, and total or

remaining sum of processing times.

c. Global, current status: Rules based on current value of

attributes of any queues or machines and of any jobs in the shop.

Attributes include number of jobs in next queue and sum of imminent

processing time in next queue.

d. Global, predicted status: Rules based on predicted values

of attributes of any queues or machines and of any jobs in the shop.

Attributes include expected additions to current queues.

Another way to classify the rules used in Conway's study are as

simple rules and composite rules. Simple rules are based on only one

kind of information (local or global) while composite rules are

combinations of simple rules. These combinations appear as sums,

products, ratios, or differences of different rules or weighted versions

of them.

Others have attempted to classify rules in different ways. Gere

[16], closely following the simple-composite dichotomy, categorizes

rules as dispatching rules, heuristics and scheduling rules.
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Dispatching rules are techniques by which a value is assigned to each

waiting job and the job with the minimum value is selected. Heuristics

are some "rule of thumb" while a scheduling rule is a combination of one

or more priority rules and/or one or more heuristics. Jackson [23]

distinguishes between static rules and dynamic rules. Static rules are

those in which job priority values do not change with time while dynamic

rules are the juxtaposition of static rules. Finally, Moore and Wilson

[27] have combined Conway's local-global classification with Jackson's

static-dynamic classification into a two-dimensional classification.

2.3. The Simulation Methodology

Dispatching rules in multi-stage open job shops are evaluated using

simulation. A brief overview of the simulation methodology explains its

appropriateness for this class of sequencing problems.

Simulation is a strategy evaluation technique which uses an

abstract representation of reality (i.e. a model) and studies its

behavior through time. The behavior may be influenced by certain or

uncertain factors. For models which consider uncertainties, the

technique involves the following steps:

a. Describe the system to be studied.

b. Formulate simplifying assumptions about the system.

c. Under the set of assumptions, identify:

c.1. Parameters. System attributes which are held

constant during the period that the system is being studied.

c.2. Exogenous variables. System attributes which

are subject to random variaticns through time. The

variations are represented by appropriate probability
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distributions.

c.3. Endogenous variables. System attributes whose

values are generated by changes in the exogenous variables.

d. Develop a model which embodies the interrelationships among the

parameters, the exogenous and the endogenous variables.

e. Use a random number generator to generate a set of

intertemporal events based on the random variation of the exogenous

variables.

f. Run the model.

g. Collect statistics on the resulting values of the endogenous

variables.

h. Analyze results with descriptive and inferential statistical

methods.

i. Draw conclusions and/or propose new sets of model attributes to

observe and analyze.

Simulation is an alternative for problems where analytical

solutions are practically impossible to compute. Gonzalez and Macmillan

[18] explain the use of simulation in a succinct manner. They say:

Alternatives to the use of simulation are mathematical

analysis, experimentation with either the actual system or a

prototype of the actual system, or reliance upon experience

and intuition. All, including simulation, have limitations.
Mathematical analysis of complex systems is very often impossibl;

Experimentation with actual or pilot systems is costly and time
consuming, and relevant variables are not always subject to
control. Intuition and experience are often the only alternatives

to (computer) simulation available but can be very inadequate.
Simulation problems are characterized by being mathematically

intractable and having resisted solution by analytical methods.

The problems usually involve many variables, many parameters,

functions which are not well-behaved mathematically, and random
variables. Thus simulation is a technique of last resort.

Simulation applies to the design and analysis of system behavior.

For systems design, alternative designs can be generated by using
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different sets of parameters and exogenous variables, and their results

compared to some norm. In systems analysis, the object of study is how

real transformations take place. Simulation involves developing a model

which embodies the hypothesis for the transformation, supplying the

model with real data and comparing the model's results with real

outcomes to verify the model's hypothesis.

Since simulation may involve random variables, a large number of

inputs and several similar runs are required to establish a statistical

basis for the results. Likewise, simulation models may involve many

mathematical expressions that define the relationships of various system

variables. Consequently, simulation involves a lot of computation, and

only with the advent of the computer, has it become a practical method.

Today, simulation models are almost always developed as computer

programs.

2.4. Multi-stage Job Shop Simulation Models

The previous sections have reinforced the notion that mathematical

approaches are limited to the study of shops with two, perhaps three,

machines. In larger shop configurations, simulation is the only

practical alternative approach. The discussion will now focus on past

research in multi-stage job shop scheduling using simulation models,

progressing from simple to more complicated models.

2.4.1. Initial Assumptions

Most of the simulation models which are included in this survey

have been based on or have extended from the following initial

assumptions.
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a. Shop.

a.1 The shop has only one limiting resource -- its machines.

b. Machines.

b.1 Each machine is continuously available for assignment without

significant division of the time scale into shifts or days and without

consideration of temporary unavailability for causes such as breakdown

or maintenance.

b.2 There is only one machine of each type in the shop.

b.3 Each machine can handle at most one operation at a time.

c. Jobs.

c.1 Jobs are strictly ordered sequences of operations, without

assembly or partition.

c.2 Jobs arrive in a random manner derived from an exponential

distribution.

c.3 There is no splitting or combination of jobs.

c.4 The job scrap rate is zero.

d. Operations.

d.1 Each operation can be performed by only one machine in the

shop.

d.2 An operation may not begin until its predecessors are

complete.

d.3 Preemption is not allowed -- once an operation is started on a

machine, it must be completed before another operation can begin on that

machine.

d.4 The processing times of successive operations of a particular

job may not be overlapped. A job can be in-process on at most one

operation at a time.
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d.5 Set-up and processing times are randomly generated from

exponential distributions and are sequence independent.

d.6 Transit time between machines is zero.

d.7 Processing time as well as due-dates are known upon arrival

in the shop.

Simulation research in job shop scheduling focuses on developing

effective dispatching rules for given operating conditions. The

conditions studied have been varied, as the following discussion

suggests.

2.4.2. Machine-Limited Systems

Most research has assumed machine limited job shops. This means

that labor is assumed to be always available and so, waiting time occurs

only when a machine is busy processing another job.

The prominent managerial concerns of a job shop are minimizing shop

congestion and meeting due-dates. A common measure of shop congestion

is the mean flowtime [2]. Flowtime is defined as the difference between

the finishing or completion time of a job and its arrival time. Another

measure of shop congestion is mean lateness. Lateness is defined as the

difference between the completion time of a job and its due-date.

Common measures for meeting due-dates are percentage of jobs tardy and

mean job tardiness. Tardiness is a derivative of lateness. It is

defined as positive lateness, or the difference between the completion

time and the due-date of a job, whenever the former exceeds the latter.

A more rigorous mathematical definition of the measures is presented in

section 3.

Many studies have been concerned with finding rules that minimize
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mean flowtime and mean job tardiness. For the one-machine problem,

Smith [37] has shown that sequencing jobs in order of nondecreasing

processing time minimizes mean flowtime. This rule, which is also

called the shortest processing time (SPT) rule, has been shown by Conway

[8] to be among the best performing rules when minimizing the mean

flowtime in a machine-limited job shop is the objective.

Conway [9] has also shown that the SPT rule is among the best rules

that minimize mean job tardiness. However, by its nature, the SPT rule

favors jobs whose tasks have short processing times, and postpones jobs

with longer processing times. As a result, jobs with longer processing

times tend to be tardy. Consequently, the SPT rule suffers from a high

job tardiness variance compared to such benchmark rules as the

first-come-first-served (FCFS). Among the rules which use due-date

information, Conway found that the shortest slack per operation (SOPN)

rule exhibits one of the lowest mean and variance tardiness measures.

Slack is defined as the amount of time remaining before the job becomes

due less the time required to complete the job processing. Operations

refer to the remaining operations.

Researchers have been concerned with whether or not additional

information significantly improves the performance of the dispatching

rules. Findings have been mixed. In their study of critical ratio

rules for shops coordinated with inventory systems, Berry and Rao [4]

have found that more information does not significantly increase

scheduling performance. In fact, their dynamic rules, which involve

changes in due-dates corresponding to inventory updates, caused a

significant reduction is shop performance. They attribute this

unexpected result to the transfer of substantial uncertainty in the

15



inventory usage to the shop and to the heavy workload in the shop. The

heavy workload prevents allocation of spare resources to newly-urgent

jobs.

On the other hand, Maxwell [26], Maxwell and Mehra [27], Hausman

and Scudder [20] and Baker and Bertrand [3] have shown that composite

and dynamic rules perform better than simple and static rules. For

example, Baker and Bertrand have developed a modified due-date rule

which is the larger of the job's due-date or its early completion time.

Results show that this composite and dynamic rule performed better than

its static components. Findings such as this demonstrate the

synergistic effect of some simple rules that produces a superior

composite rule.

Researchers have also been concerned with the stability of the

performance of various rules under different shop utilization levels.

In Conway's experiments [7], a few composite rules, such as the SOPN

outperformed the SPT rule in some of the runs. This erratic behavior

shows that dispatching rules are sensitive to shifts in machine and shop

utilization and that the SPT rule has a robust behavior. When machine

utilization was balanced and shop utilization was a bit lower (88.8

percent), some compound rules showed better results than the SPT rule.

However, with imbalance in the queues and slightly higher (91.9 percent)

workload, the SPT rule gave better results.

The Conway study [7] raises several important points in job shop

research. First, there is a disparity in the performance of different

priority rules, and, some rules clearly outperform others.

Specifically, formal rules outperform the "less formal" benchmark rules

-- random selection and first-come first-served. This disparity
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provides the rationale for developing and using formal rules to improve

scheduling.

Second, among the better rules, it is extremely difficult (if not

impossible) to establish a universally dominant rule. Rules are

sensitive to changes in machine and shop conditions. And, since there

are many variations in operating conditions, evaluating the performance

of rules becomes an empirical matter.

Third, the SPT rule is an amazingly powerful rule in minimizing

both mean flowtime and mean tardiness. Its attractiveness is enhanced

by its simple information requirements and robust behavior under

operational diversity. Given its simplicity and versatility, the SPT

rule appears to be the rule to beat.

Fourth, caution must be exercised in interpreting results even for

experiments with a large number of jobs. The Conway study demonstrates

that merely changing the seed number for the random number generator, is

sufficient to alter machine and shop load patterns to produce

conflicting results between runs.

2.4.3. Dual-Constraint Shops

Dual-constraint shop problems refer to both machine-limited and

labor-limited systems. Often, delays are caused by a lack of manpower

to operate the available equipment.

Machine-limited systems are concerned with sequencing jobs on

machines. In addition, labor-limited systems are concerned with

effective labor assignment procedures, with dispatching rules which

account for the interaction between labor assignment and job priorities,

and with the effect of worker flexibility on shop performance.
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Nelson [29, 30, 31] developed a single-echelon model which

incorporates machine and labor limitations. The model is based on a job

shop organization with multiple work centers in a single organizational

unit. The model consists of a given configuration of several machine

centers, each with multiple identical machines and a fixed labor force,

with each worker having a relative efficiency on any machine. The

performance of the shop is studied under different sets of labor

assignment procedures, machine center selection procedures and

dispatching rules for jobs. On one extreme, the labor assignment

procedure consists of assigning the worker's next task each time the

worker completes one operation in a machine center. On the other

extreme, the procedure assigns a worker only after the worker completes

all jobs in an assigned machine center. The machine center selection

procedure determines which service center an available laborer is

assigned to work at. For example, the worker may be assigned to a

service center at which he is most efficient unless there is no work for

him there and there is work at another service center.

Experiments on the model have shown that changes in machine center

selection procedures have relatively little effect on shop performance.

However, changes in dispatching rules have significant effect on

performance. Likewise, performance increases when labor assignments are

more flexible.

Fryer [13, 14] extended Nelson's model to a multi-echelon

dual-constraint model. The model includes procedures to transfer

workers between two organizational units. Fryer's results confirm

Nelson's findings by showing that increasing labor flexibility,

(measured by the ability to assign workers across organizational units),

18
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improves shop performance.

2.4.4. Multiple Component (Assembly) Jobs

A single component job refers to a job which is not an assembled

product of other jobs. All of the previously cited research has been

concerned with single component jobs. This section will focus on

research involving multiple component jobs, or, jobs which are assembled

products of other jobs.

Multiple component jobs establish an interdependence between the

set of jobs which must be finally assembled. Ideally, it is desirable

to complete all the jobs in the set at the same time. But, due to the

random events in the shop, this is very difficult to achieve for all

sets of jobs in the shop. Thus, research on multiple component jobs has

been concerned with developing dispatching rules which attempt to

minimize the differences between the completion times of different jobs

in a set. This is done by assigning a priority to a job dependent on

the status of other jobs in its set.

Maxwell [261 appended an assembly shop model to the end of Conway's

job shop to study dispatching rules for multiple component jobs. Job

sets consisted of several individual jobs, similar to those of Conway,

with a final assembly operation. New rules were developed that

attempted to have jobs progress at the same rate or to have them

completed at the same preset time. Maxwell found out that better

overall performance could be achieved by combining the new rules with

the SPT rule as a tie-breaker. In subsequent research, Maxwell and

Mehra [27] again found that composite rules which incorporate the SPT

rule with rules that account for the assembly structure of jobs perform
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better than simple dispatching rules.

Hausman and Scudder [20], in their study of repairable inventory

systems, extended the scope of Maxwell's work by providing for assembly

jobs with interchangeable components and available spares. They have

found that dynamic rules which use work-in-process inventory status

information outperform both simple and dynamic rules which ignore

inventory status.

2.5. General Observations

From the research just surveyed, we observe that:

a. The SPT rule is a superior rule for simple component jobs.

b. Composite rules which incorporate the strengths of the SPT rule

with additional information, perform better for both single and

multi-component jobs.

c. Labor flexibility in dual-resource constrained systems, both

for single- and multi-echelon shops, directly affects shop performance.

3. THE JOB SHOP SIMULATION MODEL

This section describes the features of the job shop simulation

model. A general flow chart of the model is shown in Figure 3.1. The

model is written in FORTRAN IV and uses list-processing techniques

adapted from Gilsinn et al. [17].

3.1. General Features

The heart of a job shop simulation model is the mechanism that

"drives" the shop through time. This mechanism can be either

20
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time-driven or event-driven. A time-driven mechanism involves

performing a standard procedure during each standard time unit. For

example, if the standard time unit is defined as , then at each

increment of , the model performs a standard procedure. The procedure

involves checking each machine to: load and unload jobs, transfer jobs

from one queue to another and gather statistics.

With an event-driven mechanism, the model performs the standard

procedures pertaining to an event that is stored in a time-ordered list.

The event-driven mechanism is preferred to the time-driven mechanism for

the following reasons: a) it is a more realistic representation of a

shop; and, b) it may run faster because the standard procedures for an

event is a subset of the procedures for a time unit.

The general job shop simulation model developed for this paper is

an event-driven, single resource constraint shop. It has three events

-- "arrive", "start" and "depart". The events read as follows:

- "arrive" event: "At time X, job Y arrives at machine

center Z."

- "start" event: "at time X, a machine at machine center

Z starts working."

- "depart" event: "At time X, job Y departs from machine

center Z."

The three events "bootstrap" on one another. For example, consider

a simple job which does not require parts. The "arrive" event places

the job in the queue of the machine center where its next operation will

be performed. The "arrive" event also generates a "start" event if

there is an available machine in this machine center. Then, the "start"

event selects from among the jobs in the machine center queue, the next

22
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job to process. It also generates a corresponding "depart" event for

this job. Finally, the "depart" event directs the job to the machine

center of the job's next operation by generating an "arrive" event. The

"depart" event also generates a "start" event if the machine center

which has just finished work on this job has other jobs waiting in

queue.

The model maintains a precedence ordering of the events to increase

the efficiency of their execution. Within the same time, events are

performed in a "depart" - "arrive".- "start" precedence. Since transit

time in the shop is assumed to be zero, a job which "departs" from one

machine center can "start" in another machine center at the same time.

The precedence convention assures that before a "start" event chooses

the next job to process in the machine center, all jobs which "depart"

from other machine centers and "arrive" at this machine center during

the same time, are also considered in the selection process.

The model can handle problems with the following characteristics:

a. single or several identical machines grouped by machine

center with up to 20 machine centers.

b. jobs with or without assembly operations with up to 10000

jobs.

c. jobs with assembly operations, operations occurring

at any stage and components made by the shop or supplied from outside

the shop. Components may be common to many jobs.

3.2. Statistics

The model gathers statistics for a user-specified range of jobs.

In simulation studies, the first and last few hundred jobs are discarded
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from the observations to make sure that only "steady-state" conditions

are examined [10]. Since the experiments usually begin with an empty

job shop, the first few hundred jobs are required to "start-up" the shop

and bring it to a "normal" operating level. Likewise, the last few

hundred jobs are discarded to avoid observations related to a declining

level of operations because no more jobs are arriving.

Researchers have been interested in rules which minimize

work-in-process, meet due dates and maximize shop utilization.

Job-related statistics provide a measure for the first two performance

criteria, and shop-related statistics for the third. The model records

these two types of statistics and miscellaneous statistics for

diagnostic purposes.

3.2.1. Job Statistics

Job flowtime is a surrogate measure for work-in-process. The

flowtime of a job is defined as follows:

Let C = completion time of a job

A = arrival time of a job

Then, flowtime, F is

F=C -A

The model records the flowtime for each job and computes the mean

and variance of the flowtime for all jobs within the specified range.

Another measure for work-in-process is lateness. The lateness of a

job is defined as follows:

Let D = due date of a job

Then, lateness, L is defined as

L=C -D
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The model records the lateness for each job and computes the mean

and variance of the lateness for all jobs within the specified range.

Tardiness is a measure for meeting due-dates. It is defined as

follows:

Let T = tardiness of a job

Then,

T = Maximum(O, L)

The model records the tardiness for each job and computes: a) the

mean and variance of the tardiness for all jobs within the specified

range; b) the conditional tardiness (i.e. the mean and variance of the

tardiness for tardy jobs only); and, c) the number and percentage of

tardy jobs.

3.2.2. Shop Statistics

Shop utilization refers to the average percentage of the time that

machines are busy. To measure shop utilization, the model gathers and

computes statistics related to queues and utilization of machines each

time the status of these measures changes. In computational terms, this

means keeping a running average of the measures as follows:

Let TO = time when statistics are first gathered

T = current time

TL - time when the status last changed

V current value of the measure

RAT = running average at time T

Then,

RAT = (TL - TO)*RATL + (T - TL)*V

_T ---------------- _ TO _

T - TO
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With regards to queues, the model computes the average number of

jobs in each machine center queue, the maximum queue length per machine

center, and the average job queue for the shop. For utilization, the

model computes the average utilization for each machine center and the

average utilization for the shop, shop utilization is computed as the

weighted average of machine center utilization.

4. EXPERIMENTAL DESIGN AND

ANALYSIS OF FINDINGS

The purpose of this section is to explain the experimental design

of the verification runs and to discuss the findings of these runs.

Each run is a combination of one "level" from each of the following

factors:

a. dispatching rule: 20 different rules

b. job set: 4 different sets of 10000 jobs

The runs were primarily designed to verify the performance of the

model and consequently, to evaluate the performance of some dispatching

rules. A total of 80 runs were conducted involving all dispatching

rules on all sets of jobs in a 9-machine shop.

For each set of jobs, three random numbers were used to initialize

the random number generator. One number was used by the job generator

program to generate the interarrival times. The second and third

numbers were used by the route generator subroutine to generate the

routings and processing times respectively.
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4.1. Experimental Design

To evaluate the 20 dispatching rules, Conway's [7] experimental

design was adopted. The salient features of the design are:

a. Jobs: 4 sets of 10000 jobs, each job with

a lot size of 1. A large set of jobs is intended for the shop to

achieve "steady state" conditions. A lot size of 1 is a scaling

technique for convenience.

b. Processing time: Processing time at each machine is

independently drawn from an exponential distribution with mean 1.

c. Job arrival rate: exponentially distributed with mean

time between arrivals set so that expected shop utilization is 90 %.

Since expected processing time is I unit, this is equivalent to setting

the mean time between arrivals as the reciprocal of .90, or 1.11 time

units. The time unit can be any convenient unit such as weeks and days.

d. Machine configuration: 9 different machines (In the

context of our model, 9 machine centers with one machine per machine

center.)

e. Routing: randomly generated for each job so that

the expected total number of operations on each machine for a run would

be identical. Number of operations truncated at 39.

f. range of jobs used for gathering statistics: 4019t

job to 9100th job.

g. initial shop condition: empty shop with the first

50 jobs arriving simultaneously at the beginning of each run to hasten

the achievement of "steady state".

The 20 dispatching rules selected for analysis are representative

of the variety of rules studied in the literature. Appendix A contains
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a rigorous mathematical description of each of these rules. Most of

these rules were taken from Conway's study. The modified due-date (MDD)

rule was adopted from Baker [3].

The analysis of this set of rules is intended to shed light on the

following issues:

a. Which rules are best for minimizing flowtime measures?

b. Which rules are best for minimizing tardiness measures?

c. What is the value of added information on the performance of

dispatching rules?

d. What is the trade-off between flowtime and tardiness?

The 20 dispatching rules consist of 8 simple rules and 12 composite

rules which are derivatives of 5 of the simple rules. A dispatching

rule is used to choose which job in a machine queue to process next.

The rule assigns a value to each of the jobs in the queue. As a

convention, the job with the lowest value is processed first. The

values are assigned by each of the rules as follows:

4.1.1. Simple rules

1 FCFS, First-come-first-served. The value of the job is

equal to its arrival time in the queue, and the

job which arrived earliest is processed first.

2 RAND, Random. A job is chosen at random.

3 DDATE, Earliest due-date. The job with the earliest

due-date is processed first. The due-date is equal to

the arrival time plus a constant times the total processing time for

the job.

4 FOPNR, Fewest number of operations remaining. The job with
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the fewest number of operations remaining is processed first.

5 SPT, Shortest processing time. The job with the shortest

processing time for the imminent operation is processed first.

6 LWRK, Least work remaining. The job with the least amount

of work remaining (i.e. the sum of the processing times

for the remaining operations including the imminent one) is

processed first.

7 NINQ, Fewest jobs in next queue. The next queue of each

job is identified. The job with the fewest

number of jobs in its next queue is processed first.

8 WINQ, Least work in next queue. The next queue of each job

is identified. The job whose next queue has the least

amount of work (i.e. the sum of the processing time of

the imminent operations) is processed first.

4.1.2.Composite rules

9 SLACK, Least slack. Slack is the difference

between the due-date of the job and the earliest

time that the job can be finished. It is defined as

the due-date less the sum of current time

and the amount of work remaining. The job with the least

slack is processed first.

10 XWINQ, Least expected work in next queue. The expected work

in the next queue is defined as the least work in the

next queue (same as the WINQ rule) plus

the remaining work of jobs being processed currently at other

machines which will also join the next queue.
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The job with the least expected work in the next

queue is processed first.

11 OPNDD, Least operation due-date. The due-date for each job

is divided by the job's number of operations to produce

equally spaced due-dates for each operation. The job

with the least operation due-date is processed first.

12 SOPN, Least slack per operation. The

slack for each job is divided by the job's number of remaining

operations. The job with the least slack per operation

is processed first.

13 POPNR. The processing time for each job's imminent

operation is divided by the job's number of remaining operations.

The job with the smallest ratio is processed first.

14 PXWQ. The processing time for each job's imminent

operation is added to the job's expected work in the next queue

(same as the XWINQ rule). The job with the smallest sum

is processed first.

15 PSP. The processing time for each job's next operation is

subtracted from the processing time of the imminent operation.

The job with the smallest difference is processed first.

16 PWRK. The processing time for each job's imminent operation

is added to the job's amount of work remaining. The job with the

smallest sum is processed first.

17 PWQP. The processing time for each job's imminent operation

is added to the job's work in the next queue (same as the WINQ

rule). This sum is divided by the processing time of the job's

next operation. The job with the smallest ratio is
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processed first.

18 PSOPN. The processing time for each job's imminent operation

is added to the job's slack per operation (same as the SOPN rule).

The job with the smallest sum is processed first.

19 MSOPN. The processing time for each job's imminent operation

is multiplied by the job's slack (same as the SLACK rule).

This product is divided by the job's amount of work remaining (same

as the LWRK rule). The job with the smallest ratio is processed

first.

20 MDD. The processing time of the job's imminent

operation is multiplied by the difference between the job's

due-date and the current time. This product is divided by

the job's amount of work remaining (same as the LWRK rule).

The ratio is compared with the processing time of the job's

imminent operation, and the larger number is assigned as the job's

value. The job which has the smallest value is processed first.

4.2. Experimental Results

For exposition purposes, the runs are categorized into trials as

follows

trial : Job set , 9-machine shop

trial 2: Job set 2, 9-machine shop

trial 3: Job set 3, 9-machine shop

trial 4: Job set 4, 9-machine shop

Appendix B contains values obtained from all the runs. Appendix f

contains the plots for these values. The results reveal the following:
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a. Changing the random number seed which generates the set of

jobs, alters the total work content of the set.

Table 4.1 shows the average and standard deviation of the total

processing time per job for each trial and the average and standard

deviation of the number of stages for each trial.

TABLE 4.1

RESULTS OF ROUTING GENERATION

PER JOB

LEGEND:

(Xi) AVERAGE TOTAL PROCESSING TIME

(X2) STANDARD DEVIATION OF

TOTAL PROCESSING TIME

(X3) AVERAGE NUMBER OF STAGES

(X4) STANDARD DEVIATION OF

THE NUMBER OF STAGES

TRIAL X1 X2 X3 X4

1 9.308398 9.013644 9.323103 8.711934

2 8.902154 8.188431 8.818736 7.567665

3 9.314907 9.014271 9.329655 8.712777

4 8.891379 8.189765 8.813333 7.572082

As a consequence of the different work content between trials, the

shop utilization level varies correspondingly. However, the shop

utilization level among rules in the same run are almost identical.

Figure 4.1 plots the shop utilization level for the four trials.

The variation of the shop utilization level between trials may be due to

the different arrival rates of the jobs or the work content of the jobs.

If interarrival rates are tight, the shop utilization is expected to

increase. And, as the work content increases, the shop utilization is

likewise expected to increase.

The almost invariant utilization level for the same trial
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demonstrates that machine utilization is a function of the work content

of the jobs rather than the dispatching rule.

b. The relative rankings of all statistics between rules across

the trials are similar.

Each of the plots in Appendix C shows a similar pattern across all

trials and no significant cross-over of lines which would indicate a

change in relative rankings. For example, figure 4.2 plots the results

for mean flowtime. The consistency suggests that the model has a

tendency towards "steady state". Likewise, the rankings suggest that

some rules perform much better than other rules.

c. Among all rules, the SOPN, PSOPN, MSOPN and MDD rules appear

to produce the best results for the tardiness measures.

Figure 4.3 plots the results in decreasing order of performance

(i.e. increasing values) for mean tardiness. The corresponding

variances are plotted beside the means. The first four rules appear to

perform better by an order of magnitude as a group than the next best

rules. The strength of these rules lies primarily on the use of

due-date information to regulate the pace of the jobs in the shop so

that due dates are met. The SOPN rule, the simplest of these four

rules, relies mainly on this strategy. The other three rules appear to

show improved performance over the SOPN rule by adding processing time

information.

d. Among all rules, the SPT and PSP rules appear to produce the

best results for flowtime measures.
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FIGURE 4.3
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Figure 4.4 plots the results in decreasing order of performance for

mean flowtime. The corresponding variances are also plotted beside the

means. The figure shows that the SPT rule and its close derivative, the

PSP rule, have the best flowtime measures. The other top rules in the

list are also derivatives of the SPT rule.

e. Additional information can improve the performance of

the rules.

Among the simple rules, the SPT rule shows the lowest flowtime mean

and variance while the DDATE rule shows the best performance for the

tardiness measures. Figures 4.5 and 4.6 illustrate these findings.

Figures 4.3 and 4.4 illustrate the benefit of added information. For

the tardiness measure, the six best rules are derivatives of the DDATE

rule which ranks seventh. While the SPT rule shows the best performance

on the flowtime measures, the next four best rules are derivatives of

the SPT rule. The XWINQ rule, which is not a derivative of the SPT or

the DDATE rule, also shows a better performance than its parent, the

WINQ rule.

4.3. Dominance Analysis

The preceding analysis has shown that there is a difference among

the rules which work best under the tardiness criteria and the flowtime

criteria. The purpose of a dominance analysis is to attempt to capture

trade-offs between different tardiness and flowtime criteria. The

method used evaluates the performance of the dispatching rules based on

several measures jointly.

A rule dominates another rule if all its relevant performance
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FIGURE 4.6
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measures are equal to or better than the other rule's measures. In

mathematical terms, suppose we define a and b as the relevant measures

and the criteria is to minimize these measures. Then, for two rules i

and j, rule i dominates rule j if and only if ai a and bi bj, with

at least one strict inequality.

Using mean flowtime and mean tardiness as the relevant measures

reveals two dominant rules, SPT (rule 5) and MDD (rule 20). Using

variance flowtime and variance tardiness reveals three dominant rules,

SPT (rule 5), MDD (rule 20) and PXWQ (rule 14). A similar analysis

using the four measures taken together, identifies the same three rules

as being dominant.

SPT dominates processing time-related and status-related rules with

superior performance in the flowtime measures and a reasonable

performance in the tardiness measures. MDD dominates due-date-related

rules with superior performance in the tardiness measures and reasonable

performance in the flowtime measures.

Conway [7], [9] discusses the robustness of SPT. The dominance

analysis reveals that PXWQ dominates SPT on the tardiness variance

measure. In part, this is explained by recognizing that when using SPT,

jobs with longer tasks are delayed in favor of those jobs with shorter

tasks. Since the duration for each task was independently generated of

the number of tasks, the longer jobs would have a greater probability of

having longer tasks. Also, since the number of stages is geometrically

distributed, there are fewer longer jobs than shorter ones. This

minimizes the overall flowtime measure but causes the longer jobs to

finish later and, consequently, increases their chances of being tardy.

The higher variance of the tardiness of SPT indicates this delaying
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effect.

On the two tardiness-related measures, SPT is dominated by MDD.

This may be explained by the partitioning strategy used by MDD. Jobs

are classified into two sets: those that are going to be tardy and

those that will not be tardy. Jobs in the former set are scheduled

using SPT and those in the latter, using DDATE. The power of this

strategy is explained heuristically by recalling that for the static

one-machine shop case, SPT minimizes mean tardiness if all jobs are

tardy and DDATE minimizes mean tardiness when at most one job is tardy

[2].

The PXWQ rule gains its strength from using the SPT rule to improve

the flowtime measures and a look-ahead rule, XWINQ, to pace the jobs in

the shop to improve the overall tardiness measure.

4.4. Lessons Learned

The analysis of the performance of dispatching rules reinforces the

following results from other research work:

a. The SPT rule is a superior rule in minimizing mean flowtime.

Composite rules which improve flowtime mean and variance use the SPT

rule as a component.

b. The MDD rule is a superior rule in minimizing the tardiness

mean and variance measures.

c. The optimal rules derived for the one-machine case can be used

to develop superior dispatching rules for the multiple machine case.

Both the SPT and the DDATE rules have been analytically proven, in the

one-machine case, to be optimal in minimizing mean flowtime and

minimizing maximum tardiness respectively. The MDD rule produces
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superior performance for tardiness measures because it is based on the

SPT and the DDATE rules.

5. Conclusions.

In this paper, the performance of 20 dispatching rules in an open

fabrication job shop was evaluated. Our findings and the current stage

of research suggest the following issues for further study:

A. Extend the study of dispatching rules to open job shops with

assembly. Issues to be resolved include developing methods of

generating jobs and developing new dispatching rules that exploit the

assembly structure.

B. A natural extension in the study of assembly job shops is the

analysis of closed job shops. Examining the integration of inventory

control and production sequencing is particularly relevant. A promising

area of research appears to be the coordination of material requirements

planning (MRP) and job shop scheduling.

C. Although many procedures have been suggested for assigning

due-dates, the benchmark method is that suggested by Conway 7] and used

in this study. Recently, Baker and Bertrand [3] have examined due-date

assignment procedures for the one-machine shop. Their study needs to be

extended to job shops. In particular, the impact of due-date assignment

procedures on assembly shops remains to be studied.
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D. Although most researchers report that dispatching rules that

utilize more information are better than those that do not, there is no

conclusive evidence to show that there has been a statistically

significant improvement. This is in part due to the prohibitive cost of

conducting a significant number of independent simulation runs.

E. Automated stopping rules to determine when a simulation has

reached "steady-state" conditions would expedite the collection of

independent observations. A promising area of research is developing

such stopping rules.

F. Although simulation models provide insight into real life

problems, the eventual justification of this avenue of research lies in

demonstrating the effectiveness of applying these dispatching rules in

actual manufacturing environments.
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Appendix A

FORMULAE FOR DISPATCHING RULES

Definition of Symbols Used in Dispatching Rules

t time at which a selection for machine assignment is to

be made

i index over the jobs to be processed by the shop

j index over the sequence of operations of a job

J specific value of j, the operation for which

a job is in queue

Mi the total number of operations on the i-th job

I < j < Mi

Ti. the time at which the i-th job becomes ready for its
' ej-th operation (time at which the j-1 operation was

finished)

Ti,l is the time at which the job arrived at
the shop

Di the "due-date" (desired completion time) for the i-th

job

Pi.j the processing time for the j-th operation of the i-th
job (including set-up and tear-down time, if any, assumed

to be sequence independent)

Ri a random variable, uniformly distributed between 0 and 1,

assigned to the j-th operation of the i-th job

Nij(t) the number of jobs, at time t, in the queue corresponding
to the j-th operation of the i-th job

Wi j(t) the total work, at time t, in the queue corresponding
to the j-th operation of the i-th job (total work is

the sum of the imminent-operation processing times of

the Ni,j(t) jobs in the queue)

Xij(t) the total work, at time t, which will "soon" arrive in

the queue corresponding to the j-th operation of the

i-th job (arrival of these jobs is imminent in the

sense that, at time t, their preceding operation is

being performed)
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Qk(t) the set of jobs in the k-th queue at time t

Vi(t) the priority value of the i-th job at time t

The queueing discipline specifies that when a selection

for the machine assignment is to be made at time t from

the k-th queue, a job I is chosen such that:

VI(t) = minimum (Vi(t))

i in Qk(t)

In the event of a tie, the job with minimum value which

arrived in the queue earliest is selected unless

otherwise specified.

Source: Conway [7]
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Dispatching Rules

a. Simple Rules

FCFS

RAND

First-come, first-served

Vi(t) = Ti, j

Random

Vi(t) = Ri j

DDATE Earliest due-date

Vi(t) = Di

FOPNR Fewest number of operations remaining

Vi(t) = Mi - J + 

SPT Shortest processing time

Vi(t) = Pi,J

LWRK Least work remaining

Mi.

Vi(t)= Pi,j

j=J

NINQ Fewest jobs in next queue

(ties resolved by SPT)

WINQ

Vi(t) = Wi,J+1(t)

b. Composite Rules

No. 9

Vi(t) = Ni,J+l(t)

Least work in next queue

(ties resolved by SPT)

SLACK Least slack

M.
1

Vi(t) = Di - t- E Pi,j

j=J
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No. 5

No. 6
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XWINQ Least expected work in next queue

(ties resolved by SPT)

Vi(t) = Wij+1(t) + Xi J+1(t)

OPNDD Least operation due-date

V.i(t) = Ti, + (Di - Ti,1)(J/M i)

SOPN

Vi(t) = (Di - t -~~1

Least slack per operation

-J + 1)

Mi
1

i,j )/ ( M
i

j=J

POPNR

Vi (t) = Pi,J/(Mi - j + )

PXWQ

(ties resolved by SPT)

Vi(t) = PiJ + (Wi,J+1(t) + Xi,j+ (t))

PSP

Vi(t) = Pi,J - Pi,J+1

Pi,J -

PWRK

10.0

Vi(t) = Pi,J +

PWQP

VI(t) =

Pi,J+l
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No. 10

No. 11

No. 12

No. 13

No. 14

No. 15

No. 16

if J < Mi

if J = Mi

M.
1

j=Pi 

j=J

No. 17

Pi + +(t)



No. 18

Vi(t) = Pi,J + (Di- t- 2PiS,)/(Mi - J + )

j=J

MSOPN

Vi(t) =

Mi.

(D i - t - Pi,j)(Pi,j)

j=J

Mi

1Pi,j

j=J

MDD Modified due date

E Pij
j=J

maximum( Pi

Vi(t) =

Source: Rules 1-18 Conway [7]
Rule 20 Baker [3]
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Appendix B

RESULTS OF THE EXPERIMENTS

A. Tardiness-related Results.

Legend:

RULE T

FCFS

RAND

DDATE

FOPNR

SPT

LWRK

MJTAJ.TR,

VJTAJ.TR,

MJTTJ.TR,

VJTTJ.TR,

NJT. TR,

PJT.TR,

Mean Tardiness For All Jobs

Variance Tardiness For All Jobs

Mean Tardiness For Tardy Jobs

Variance Tardiness For Tardy Jobs

Number of Jobs Tardy

Percentage of Jobs Tardy

RIAL MJTAJ.TR VJTAJ.TR MJTTJ.TR VJTTJ.TR NJT.TR

1 12.96

2 6.16

3 13.6

4 14.18

1 18.24

2 9.06

3 16.33

4 16.36

1 6.48

2 .38

3 8
4 3.22

1 28.23

2 14.35
3 36.08

4 23.78

1 2.03

2 .85
3 1.95

4 1.94

1 24.91

2 11.3

3 29.73

4 19.51

648.92

192.55

603.94

773.33

1,498.45

457.44

1,052.51

1,178.92

212.99

7.73

238.43

91.26

1 7,042

4,595.75
25,236

11,986.6

364.35

63.32

336.2

245.6

15,004.4

4,309.11

19,803.4

11,018.2

26.62

17.3

27.11

29.65

40.18

26.69

36.37

37.71

21.09

7.52

21.17

16.67

205.89

123.25

246.21

176.05

38.61

23.95

40.69

38.04

241.32

138.51

267.49

201.84

969.06

347.76

837.58

1,158.66

2,420.03

877.58
1 ,615.15

1 ,91 2.48

384.85
100.2

351.94
248.38

87,70 .3
26,047.1
120,462

61,943.

5,523.9

1,229.61

5,438.17

3,449.88

93,139.8
35,181.8

114,572

77,178.8
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PJT.TR

48.701 l

35.6322

50.1609

47.81 61

45. 3793

33.931
44.908

43.3793

30.7356
5.02299

37.8046

1 9.3103

1 3.726

11.6437
14.6552

13. 5057

5.25287

3.55'72

4.793'

5.09' qq

10.32' 8
8. 6092

11.1'49

9.66667

4,237

3,100

4,364

4,160

3,948

2,952

3,907

3,774

2,674

437

3,289

1,680

1,193

1,O13
1,275

1,175

457
309

417

443

898
710
967

841



MJTAJ. TR,

VJTAJ.TR,

MJTTJ.TR,

VJTTJ. TR,

NJT. TR,

PJT.TR,

Mean Tardiness For All Jobs

Variance Tardiness For All Jobs

Mean Tardiness For Tardy Jobs

Variance Tardiness For Tardy Jobs

Number of Jobs Tardy

Percentage of Jobs Tardy

TRIAL MJTAJ.TR VJTAJ.TR MJTTJ.TR VJTTJ.TR NJT.TR

1 4.25

2 2.59

3 4.08

4 5.3

1 5.77

2 3.22
3 5.69
4 6.67

.07

2 .02

3 .03
4 .71

1 5.32
2 3.45

3 5.17
4 5.8

1 2.51

2 .71

3 2.77

4 4.18

1 7.43

2 .27

3 9.53
4 2.15

268.65

134.21

234.15
394.48

387.09
1 63.92

346.45

479.2

1.11

.04

.08
11.91

362.28
234.34

319.51

450.12

37.24

7.74
33.83
78.06

202.96

3.59
230.46
46.59

25.52
20.49

24.31

30.3

27.01
20.87
27.29

30.62

2.72

1t .08

1 .32
6.55

29
24.81
27.77

31.49

10.41
6.44
9.21

!4.97

20.4

5.44
20.62
12.84

1,071.28

695.51

904.4

I,497.61

1,237.14

695.2
1,072.95

1,467.57

34.57

1.29
2.02

71 .38

1,288.04
1,157.56

1,089.43

1,635.56

72.36
33.44
53.24

117.99

292.49

45.04
270.03

141

51

Legend:

RULE

NINQ

WINQ

SOPN

XWINQ

OPNDD

PJT. TR

16.6437
12. 6322

16.7701

17.4943

21.3793

15.4138
20.8391

21.7701

2.65517

1.8046

2.241 38
10.8621

18. 3448
1 3.8851

18.6092

18.4138

24.092

11 .015

30.0345

27.9425

36.4368

4.90805
46.2'84
1 6.747'

I,448

I, 099

1 ,459

1,522

1,860

I ,341

1,813

I ,894

231

157

195

945

1 ,596
1,208

1,619

1,602

2,096
958

2,613

2,431

3,170
427

4,021

1,457

SLACK



MJTAJ.TR,

VJTAJ.TR,

MJTTJ.TR,

VJTTJ.TR,

NJT. TR,

PJT.TR,

Mean Tardiness For All Jobs

Variance Tardiness For All Jobs

Mean Tardiness For Tardy Jobs

Variance Tardiness For Tardy Jobs

Number of Jobs Tardy

Percentage of Jobs Tardy

TRIAL MJTAJ.TR VJTAJ.TR MJTTJ.TR VJTTJ.TR NJT.TR

1 16.18

2 6.89

3 14.7
4 10.31

1 2.52

2 1.78

3 2.39

4 2.78

1 2.36

2 1.13

3 2.33
4 2.07

1 18.26

2 6.87
3 20.02
4 14.06

1 13.18

2 5.43
3 15.18

3,284.89
736.17

2,539.62
1,539.61

177.67

1 32.54

145.02

192.46

452.1

95.9
344.99
241.57

9,888.96
2,264.81
11 ,091 . I

6,948.02

2,368.16

508.91

3,147.13
4 9.95 1,408.78

1 .02 .04

2 .02 .04

3 .02 .04
4 .02 .05

1 .01 .03

2 .01 .03

3 .02 .03
4 .01 .02

1 .01 .02

2 .01 .03

3 .01 .03
4 .01 .03

58.44
35.32
54.82
44.75

21.23
22.23
21.15

25.24

34.4
21.52

31.83
33.08

204.24
107.91

217.18

177.77

62.37
35.56
69.45

49.93

1 .02

1.13

1.05
1.2

.89
1 .06

1

.95

.9
1 .04

.98
.08

9,397.87
2,768.08

7,271 .15

5,139.41

1,100.41

, 197.51
885.44

1 ,181 .1

5,475.63
1,382.96

3,779.85
2,837.69

72,599.9
24,663.3

77,495

58,757.9

8,135.56
2,260.29
10,633.6

5,076.!4

1.12
1 .64

I .08

1.76

.84
1 .07

.96

.83

.67
1 .06

.75
1.06
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Legend:

RULE

POPNR

PXWQ

PSP

PWRK

PJT.TR

27.6782

1 9.5172

26.8161

23.046

11.8621

8.02299

11.3103

11.0115

6.87356

5.26437

7.31034
6. 25287

8.94253

6.36782

9.21839

7.90805

21.1379

15.2759

21.8506

19.9195

1.66667

1.49425

1.75862

1 .42529

1.5977

1.24138

1.57471

1.28736

1 .471 26

1.24138
1 .48276

1.31034

2,408
1,698

2,333

2,005

1,032

698
984

958

598

458
636

544

778

554
802

688

1,839
1,329
1 ,901

1,733

145

130

153
124

139
108

137

112
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108
129
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MDD



B. Flowtime-related Results.

Mean Flowtime

Variance Flowtime

Mean Lateness

Variance Lateness

Average Number of Jobs in the Shop

RULE TRIAL

FCFS 1

2

3

4

MJF.TR VJF.TR

83.43 7,117.89

64.13 3,496.53

84.51 7,173.65

78.26 5,634.98

MJL.TR VJL. TR

-.31 1,539.72

-15.97 1,454.76

.71 1,501.95

-1.73 1,940.83

1 86.07 8,621..6

2 65.28 4,119.35

3 83.95 7,849.82

4 78.23 6,156.14

1 77.44 8,629.29

2 55.17 5,259

3 81.04 8,856.2

4 64.71 6,237.16

1 79 36,326.3

2 61.03 15,678.2

3 88.07 48,658.1

4 72.16 27,417.6

1 38.38 2,701.4

2 31.45 1,456.97

3 37.65 2,533.73

4 35.22 2,235.05

1 74.89 34,444.5

2 56.05 15,143

3 80.49 42,005.1

4 66.6 26,102.5

2.33 2,794.07

-14.82 1,978.52

.15 2,309.41

-1.76 2,601.98

-6.31

-24.94

-2.76

-15.29

-3.92

-19.07

4.38

-7.75

-45.36

-48.68

-46.19

-44.81

593.87

346.05

610.62

500.46

19,799.9

6,513.92

28,455.6

14,366.8

2,927

2,466.35

2,982.81

2,562.12

-8.22 17,417.4

-24.06 5,895.12

-2.98 22,495.4

-13.4 13,010.7
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Legend:

MJF .TR,

VJF.TR,

MJL. TR,

VJL.TR,

NJBAR.TR,

RAND

DDATE

NJBAR.TR

79.2

57.87

75.25

71.1

FOPNR

SPT

LWRK

82.02

59.17

75.08

71.06

73.8

49.63

72.28

58.86

74.14

54.6

77.77

65.23

36.27

28.45

33.43

32.25

69.08

50.14

71.44

59.95



Mean Flowtime

Variance Flowtime

Mean Lateness

Variance Lateness

Average Number of Jobs in the Shop

TRIAL MJF. TR VJF. TR MJL. TR VJL.TR NJBAR.TR

NINQ 1

2

3
4

54.14 4,037.13

44.61 2,409.93

54.36 3,999.34
51.32 3,506.49

-29.63 2,153.83

-35.51 2,088.39

-29.46 2,106.34

-28.69 2,329.44

1 60.55 4,951.03

2 48.26 2,705.11

3 60.04 4,859.79
4 56.71 4,079.9

1 68.49 6,075.61

2 61.77 4,660.83

3 71.43 6,205.06

4 69.09 5,278.76

1 56.5 4,486.58

2 45.57 2,631.79
3 55.86 4,359.76
4 52.34 3,665.73

-23.21 2,045

-31.85 1,943.93

-23.78 2,051.24

-23.29 2,244.85

-1 5.27

-18.33
-1 2.38
-1 0.92

281.64

364.15
224.87

179.3

-27.27 2,277.29
-34.54 2,273.79
-27.96 2,298.35
-27.67 2,382.31

1 72.79 6,472.06

2 60.81 4,787.83
3 74.03 6,474.9
4 69.73 5,307.63

1 80.16 8,170.28
2 56 5,031.66

3 84.34 8,409.19

4 63.95 5,739.34

Legend:

MJF. TR,

VJF.TR,

MJL. TR,

VJL.TR,

NJBAR.TR,

RULE

WINQ

SOPN

51.23

40.29
48.65

46.85

XWINQ

57.19

43.75

53.14

51 .58

64.01

55.7

63.83

62.95

53.28
41.17
49.77

47.57

OPNDD

SLACK

-10.97

-19.3

-9.77
-10.26

-3.59
-24.11

.54
-1 6.05

314.69

355.3
338.16
449.22

552.29
320.86
579.06

387.41

69.42

54.9
66.28

63.47

76.16

50.49

75.14

58.38



MJF .TR,

VJF.TR,

MJL . TR,

VJL. TR,

NJBAR.TR,

Mean Flowtime

Variance Flowtime

Mean Lateness

Variance Lateness

Average Number of Jobs in the Shop

RULE TRIAL MJF. TR VJF. TR MJL. TR VJL. TR NJBAR. TR

__ __ e__------ - - - -_- - -_- - -_- - -_- - -

t 59.59 5,977.14
2 42.94 2,188.94
3 57.52 4,967.48
4 48.79 3,371.44

1 47.36 3,283.78
2 38.56 1,933.14
3 47.04 3,183.76
4 43.32 2,613.02

1 42.19 3,283.58

2 35 1,745.14
3 41.88 3,059.26
4 38.37 2,460.9

1 65.8 25,897.7

2 48.34 10,472.4
3 68.08 28,391.1

4 57.99 19,393.7

1 64.31 8,106.3

2 46.83 3,141.08
3 67.07 9,379.51
4 55.39 5,239.9

1 63.52 5,655.29
2 56.09 4,145.21
3 63.86 5,690.4
4 60.41 4,551.8

1 50.62 4,303.22

2 40.1 2,317.19

3 50.15 4,194.97
4 45.21 2,985.03

1 49.6 4,148.54

2 39.26 2,236.44
3 49.41 4,144.25
4 44.1 2,877.43

-24.05 7,631.01

-37.18 4,252.39

-26.3 6,833.51
-31.22 5,223.94

-36.41 2,271.53

-41.56 2,289.53

-36.79 2,245.62

-36.7 2,228.08

-41.57 2,759.49

-45.13 2,308.98

-41.96 2,704.19
-41.65 2,355.58

-17.43
-31.73

-1 5.64

-21.98

-19.17

-33.29
-1 6.74

-24.62

-20.24
-24.02
-19.96

-19.6

-32.89

-39.59

-33.41
-34.38

-33.9
-40.44
-34.15

-35.49

12,036.4
3,688.94

13,35' .3

8,752.53

4,815.72
2,811.66

5,686.67
3,789.98

414.61

569.19

387

413.95

932.64
1,361.55

983.48
1,109.37

984.73
1,375.41

995.43

1,131.51

55

Legend:

POPNR
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PSP

PWRK

PWQP

PSOPN

57.12

39.15
50.65

45.13

44.54

34.85
41.94

39.71

39.53
31.52

37.35
35.09

60.96
43.58
60.23

52.44

62.4
42.32
59.64
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58.29
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Legend:

NBAR.TR, Mean Machine Queue Length

LBAR.TR, Shop Utilization Level

RULE TRIAL NBAR.TR LBAR.TR

FCFS 1 7.88 .92

2 5.55 .88

3 7.44 .92

4 7 .9

RAND 1 8.19 .92

2 5.69 .88

3 7.42 .92

4 7 .9

DDATE 1 7.28 .92

2 4.63 .88

3 7.12 .92

4 5.64 .9

FOPNR 1 7.32 .91

2 5.19 .88

3 7.73 .91

4 6.35 .9

SPT 1 3.1 .92

2 2.28 .88

3 2.79 .92

4 2.68 .9

LWRK 1 6.76 .91

2 4.69 .88

3 7.03 .91

4 5.76 .9
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Legend:

RULE TRIAL

NINQ 1
2

3
4

WINQ

SOPN

XWINQ

OPNDD

SLACK

NBAR.TR, Mean Machine Queue Length

LBAR.TR, Shop Utilization Level

NBAR. TR

4.77
3.6

4.48

4.3

1 5.43

2 3.98

3 4.98

4 4.83

1 6.19
2 5.31

3 6.17

4 6.09

1 4.99

2 3.69

3 4.61

4 4.38

1 6.79

2 5.22

3 6.44
4 6.15

1 7.54
2 4.73

3 7.43
4 5.59

LB AR. TR

.92

.88

.92

.9

.92

.88

.92

.9

.92

.88

.92

.9

.92

.88

.92
.9

.92

.88

.92
.9

.92

.88

.92

.9
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Legend:

NBAR.TR, Mean Machine Queue Length

LBAR.TR, Shop Utilization Level

RULE TRIAL NBAR. TR LBAR. TR

POPNR 1 5.42 .93

2 3.47 .88

3 4.7 .92

4 4.11 .9

PXWQ 1 4.02 .92

2 2.99 .88

3 3.74 .92

4 3.51 .9

PSP 1 3.47 .92

2 2.62 .88

3 3.23 .92

4 3 .9

PWRK 1 5.86 .91

2 3.96 .88

3 5.77 .92

4 4.93 .9

PWQP 1 6.01 .92

2 3.82 .88

3 5.7 .92

4 4.71 .9

PSOPN 1 5.55 .92

2 4.74 .88

3 5.41 .92

4 5.27 .9

MSOPN 1 4.3 .92

2 3.15 .88

3 4.02 .92

4 3.72 .9

MDD 1 4.2 .92

2 3.06 .88

3 3.94 .92

4 3.6 .9
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Appendix C

_-OTS OF EXPER_r-'EITrr!iL rPrSUT

MJTAJ. TR, MEAN TARDINESS FOR ALL JOBS
BY TRIAL BY RULE
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VJTAJ. TR, TARDINESS VWRIANC FOR ALL JOBS
BY TRIAL BY RULE
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IMJTTJ. TR MEAN TARDIESS FOR TARDY JOBS
BY TRIAL BY RULE
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VJTTJ TR, TARDINESS VARIANCE FOR TARDY JOBS
BY TRIAL BY RULE
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NJT TR, NUMBER OF JOBS TARDY
BY TRIAL BY RULE
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MJF.TP, MEAN FLOWTIME
BY TRIAL BV RULE
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VJF.TR, FLOWTIME ARIANCE

BY TRIAL BY RULE
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MJL.TR, EAN LATENESS
BY TRIAL BY RULE
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VJL .TR. LATENESS VARIANCE
BY TRIAL BY RULE
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NJPAR TR. AvERAGE NUMBER OF JOBS IN THE SHOP

BY TRIAL BY' RULE
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NBAR TR, MEAN MACHINE QUEUE LENGTH
BY TRIAL BY RULE
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LBAR TR. SHOP UTILIZATION LE()EL
BY TRIAL BY ULE
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