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Pandemic influenza preparedness plans strongly focus on efficient mitigation strategies including social distancing,
logistics and medical response. These strategies are formed by multiple decision makers before a pandemic outbreak and
during the pandemic in local communities, states and nation-wide. In this paper, we model the spread of pandemic
influenza in a local community, a university, and evaluate the mitigation policies. Since the development of an
appropriate vaccine requires a significant amount of time and available antiviral quantities can only cover a relatively
small proportion of the population, university decision makers will first focus on non-pharmaceutical interventions.
These interventions include social distancing and isolation. The disease spread is modelled as differential equations-
based compartmental model. The system is simulated for multiple non-pharmaceutical interventions such as social
distancing including suspending university operations, evacuating dorms and isolation of infected individuals on
campus. Although the model is built based on the preparedness plan of one of the biggest universities in the world,
Arizona State University, it can easily be generalized for other colleges and universities. The policies and the decisions
are tested by several simulation runs and evaluations of the mitigation strategies are presented in the paper.
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1. Introduction

Preparedness plans for pandemic influenza generally focus on

establishing efficient mitigation strategies for inter-related

communities and providing adequate medical services. Several

decisions need to be made before, during and after the

pandemic outbreak to minimize morbidity, mortality and

economic losses. However, because the population that will

be potentially affected by pandemic influenza is very large

and diverse, different strategies, including non-pharmaceutical

and pharmaceutical interventions, will inevitably need to be

employed in different communities.

In this paper we aim to help local decision makers apply

appropriate interventions in this hazardous and uncertain

situation, by modelling the impact of policy decisions on

infectious disease dynamics. We illustrate a simulation

model in the context of a major public university’s

emergency preparedness plan. The model is designed to

capture system response to the policies that can be

implemented by different departments of the university

during the pandemic influenza. We first formulate a

mathematical epidemiology model to have a better under-

standing of the disease dynamics in the local population.

Then, we model several social distancing policies that can be

implemented in the university such as suspending university

operations, evacuating dorms and isolation of symptomatic

cases on campus. The main objective of this paper is to assist

the local policy makers and senior level university admin-

istrators with effective pandemic influenza community

mitigation strategy development. We also present insights

about the operational mitigation strategies on a university

campus (dorm evacuations and isolation on campus) to help

improve operational decision making.

2. Literature review

With the increasing number of infections caused by novel

viruses, developing pandemic emergency response plans at

the local (schools, hospitals, airports etc), state and national

level is a critical element of preparedness planning. There

have been a significant number of papers published in the

literature to model infectious diseases including pandemic

influenza. These models can be categorized as compart-

mental models (Rvachev and Longini, 1985; Flahault et al,

1994; Townshend and Turner, 2000; Brauer and Castillo-

Chavez, 2001; Evenden et al, 2005; Chowell et al, 2006;

Sertsou et al, 2006 and Feng et al, 2007) and discrete event

agent-based models (Ferguson et al, 2006; Germann et al,

2006; Wu et al, 2006; Das et al, 2007; Dibble et al, 2007).

These models in the literature are generally developed to
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estimate the spread of the diseases in the community and to

evaluate specific mitigation policies.

Simulating future pandemics typically requires estimation

of parameters based on the data available from previous

influenza pandemics. In a recent study, Chowell et al (2006)

used data from the 1918 influenza pandemic in Canton of

Geneva, Switzerland, to present the transmission dynamics

of two different waves of the disease with a compartmental

model. Another compartmental model is presented by Feng

et al (2007) to determine the impact of non-pharmaceutical

interventions, including quarantine and isolation, on the

spread of influenza. Other studies have attempted to expand

influenza models to examine the spread of the disease

outside of contained communities. Flahault et al (1994)

presented a model of the spread of influenza across France

based on the population movements using railroad and air

transportation data, and they concluded that there will not

be enough time available for taking any action to prevent the

global spread of influenza once an influenza pandemic is

detected. Most recently, Hsieh et al (2007) examined the

impact of different quarantine strategies on the 2003 SARS

outbreak in Taiwan, such as quarantine of travellers arriving

to the airports and the quarantine of potentially exposed

contacts of SARS patients. Their results demonstrate that

compartmental models can be very beneficial for evaluating

the impact of traditional intervention measures for new

emerging diseases when there is uncertainty about the

disease characteristics.

In addition to compartmental models, there have been a

significant number of papers published on individual-based

modelling of the disease spread. Das et al (2007) present an

agent-based simulation model for the uncertain spread of

pandemic influenza caused by the H5N1 virus and they

evaluate mitigation strategies. Each individual is modelled as

an agent and they evaluate the policies based on the total

number of infected and deceased people, denied hospital

admissions, denied vaccine-antiviral drugs as well as

financial measures such as healthcare-related costs and lost

wages. Ferguson et al (2006) presented an individual-based

simulation model to evaluate several mitigation policies such

as school closure, treatment of infected individuals, case

isolations and household quarantine. These individual-based

models are more realistic for pandemic planning. However,

because of the computational resources they require for

running multiple scenarios, they may not be effective in real-

time decision exercising for pandemic planning. To over-

come the limitations of previous models, we designed a

compartmental model that generates insights about the

implementation of mitigation policies in local communities

and the model is also easy to use in real-time exercises for

pandemic decision making. The presented model in

this paper also differs from other compartmental models,

because it does not model the interventions with population

dynamics in one compartmental model, but rather it

creates several basic Susceptible-Exposed-Infected-Recovered

(S-E-I-R) models running in parallel for different subpopu-

lations generated by the policy implementation.

3. Statement of the problem and model description

Public universities have large student and staff populations

with significant social contact within institutional bound-

aries. Universities have the ability and responsibility to

administer policies to foster social distancing while providing

medical and housing services to students. A university health

services office typically provides the primary healthcare

services on a campus and collaborates with other external

healthcare organizations and emergency personnel. Other

campus departments are responsible for public safety,

transportation of students, and providing essential services

such as meal preparation and counselling. University

administrators are responsible for critical decisions during

a pandemic, including cancellation of classes, closure of

research facilities and communication with university

populations. Owing to the frequency of international travel

and the high density of students and faculty on campus,

university populations can have a large impact on the spread

of infectious diseases within a community.

Public universities in the United States are currently

developing pandemic influenza emergency response plans in

an attempt to control a potential outbreak and balance the

financial, operational and public health consequences of a

pandemic. The objective of these plans is to control the

pandemic through proper actions and appropriate policies to

reduce the spread of the disease while still maintaining

essential university services. Simulation models that address

the population dynamics with the disease characteristics are

useful for identification of preferred policies, improving

understanding of consequences of policy decisions, and

covering gaps in emergency response plans and public health

policies (Evenden et al, 2006). In this paper, we simulate the

disease spread for a large public university, along with some

of the policies that the university developed for their

response to pandemic influenza. Since the university

population is formed by several groups of people (faculty,

staff, students living on campus, students living off campus,

etc), we model the whole university population in terms of

several subpopulations based on their different roles,

responsibilities and behaviours. The considered subpopula-

tions are presented in Figure 1.

On any given day, the university population is formed by

commuting students, residential students, faculty and staff.

These subpopulations are mixing within their subpopula-

tions and also with individuals from other subpopulations

on campus. Mixing rates of individuals during the regular

days (no intervention applied) is presented in Table 1.

Because the social distancing and isolation policies will

force all individuals on campus to have different mixing rates

with different individuals at various locations on and off
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campus, we define new subpopulations after social distancing

policies are activated. These subpopulations are evacuated

students, students on campus after evacuation, evacuated

faculty and staff, students in infirmary, overflow infirmary (if

infirmary capacity is exceeded). We then formulate a

compartmental S-E-I-R model for all subpopulations. The

S-E-I-R model divides the population into several compart-

ments (susceptible, exposed, infected and removed), and

based on the defined rates it moves individuals from one

compartment to another. The disease dynamics starts with a

number of infectious individuals introduced into community

and the rest of the population is assumed to be susceptible.

We also assume that susceptible individuals have random

mixing with infectious individuals and they become exposed

to disease. In our model, exposed individuals are assumed to

be infectious and asymptomatic. After a certain time period

(incubation period) these individuals start showing symp-

toms and continue being infectious. Infected compartment

represents the number of these symptomatic and infectious

individuals. Finally, after the completion of the infection

period, individuals either recover or die. The mathematical

formulation of the disease dynamics is presented in the next

section.

3.1. Mathematical epidemiology model

As it is described above, the simulated system is assumed to

have the classical S-E-I-R type of model (Anderson and

May, 1991; Keeling and Rohani, 2008) for each of its

subpopulations. Let K be the set of subpopulations

considered in the model. Each subpopulation, iAK has the

model variables for susceptible, Si (t), exposed, Ei (t),

infected, Ii (t) and recovered, Ri (t); we also define the

variable Di (t) that represents those who do not recover (ie

die). The model dynamics can be written with the following

system of equations:

dSiðtÞ
dt

¼ �aSiðtÞ
X
j2K

bi; j
EjðtÞ þ IjðtÞ

NjðtÞ

� �" #
ð1Þ

dEiðtÞ
dt

¼aSiðtÞ
X
j2K

bi; j
EjðtÞ þ IjðtÞ

NjðtÞ

� �" #

� sEiðtÞ
ð2Þ

dIiðtÞ
dt

¼ �mIiðtÞ � gIiðtÞ þ sEiðtÞ ð3Þ

University

Faculty and Staff
Residential StudentsCommuting

Students

Evacuated Faculty
and Staff

Students on Campus
after Evacuation

Evacuated Students

Overflow InfirmaryStudents in
Infirmary

Figure 1 Subpopulations considered in the simulation model.

Table 1 Mixing rates of individuals in subpopulations without any mitigation policy applied

Mixing rates (people/day) Commuting students Residential students Faculty–staff and others

Commuting students 30 20 10
Residential students 20 45 10
Faculty–Staff and others 10 10 15
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dRiðtÞ
dt

ðtÞ ¼ gIiðtÞ ð4Þ

dDiðtÞ
dt

¼ mIiðtÞ ð5Þ

a is the global infection rate that depends on the structure of

the virus causing the disease. It can be interpreted as the rate

of infection given a contact happened between an infectious

or exposed person and a susceptible person. bi, j is average

mixing (contact) rate per day of people in subpopulation i

with subpopulation j. m is infectious mortality rate. s is rate

of progression from exposed to infected (s�1 is incubation

period). g is recovery rate for infected people. Ni(t) is total

number of people in subpopulation i.

NiðtÞ ¼ SiðtÞ þ EiðtÞ þ IiðtÞ þ RiðtÞ ð6Þ

We assume random mixing within subpopulations and

also between the subpopulations as it is formulated in the

model by summing the mixing rate (bi, j) over all subpopula-
tions. In the model, different subpopulations have different

values for the local parameters of the model, where the

global parameters have the same values. The global

parameters of the model are global infection rate, incubation

period, recovery rate and infectious mortality rate. Local

parameters are the contact rate and the initial number of

people in each of the subpopulations. In this paper, we only

consider the deaths related to pandemic influenza from the

infected compartment.

3.2. Modelling the intervention policies

The formulation given above about the disease dynamics is

assumed to be valid for each of the subpopulations in the

model. Once university emergency response policies are

implemented, individuals will be forced to have different

mixing patterns and this will generate new subpopulations in

the model. For example, since commuting students are not

living in university dorms they are not affected by the

policies related to dorm operations (dorm evacuation).

However, these students are affected by the policies such

as suspending university operations, closing the campus, as

well as isolation of the infected individuals on campus. On

the other hand, residential students are directly affected by

the policies related to dorms, such as evacuating the dorms

and isolation of infectious individuals on campus. University

faculty and staff are also part of the plan and they are

classified as either ‘essential’ or ‘non-essential’ personnel (We

do not present results about the faculty and staff in this

paper.). Essential personnel provide necessary basic services

on campus, while non-essential personnel are assumed to be

evacuated with the evacuation plan. From the strategic

planning viewpoint, some of the most critical questions

are: (1) when to suspend the university operations, includ-

ing human resource management, research activities and

residential life; and (2) how to maintain academic continuity

and resume university operations. Suspending university

operations will cost millions of dollars in lost revenue to the

university (Sadique et al, 2008). On the other hand, keeping

the university open for gatherings and education will

increase the disease transmissibility, increase mortality or

severe medical conditions for the university population.

Thus, the university policies are the regulators between the

financial concerns and sustaining healthy conditions for the

university population.

Even though the biological characteristics of the disease

are assumed to be same for all university subpopulations,

the impact of the mitigation policies on individuals will

be different depending on which subpopulation they

belong to, that is where they live, what health status

they have and what university policies are applied to

them.

The mitigation policies considered in the paper are listed

as follows:

1. Social Distancing: Social distancing policies that are

considered in this paper are the possible actions listed

in the university’s pandemic mitigation plan and would

be activated by the university management. These actions

are listed as follows:

(a) Suspending university operations (school closure

until the pandemic ends)

(b) Evacuating university dorms

Suspending university operations will significantly

reduce the average number of contacts that a

commuting student has during the pandemic, and

we assume that individuals who are not on campus

after closing the university will have lower contact

rates with their household members. On the other

hand, residential students will continue having their

average number of contacts in the residential halls

until the dorms are evacuated. The policy of

evacuating dorms has the same effect on the

population, for example it restricts the average

number of contacts that students have in dorms;

however, student still have contacts with their

households.

2. Isolation: This policy includes developing infirmary sites

on campus to isolate the infectious and symptomatic

(infected) students from the healthy and asymptomatic

ones and offering appropriate medical treatment. Because

of the similarities in the symptoms of influenza-like

illnesses, it will be hard for the university officials to

detect novel influenza cases in dorms and apply isolation

measures on campus.

The disease model is constructed as a dynamic model that

enables policies to be implemented by moving people from
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one subpopulation to another. This means even though we

have a basic S-E-I-R model for multiple subpopulations at

the beginning, we define new subpopulations with different

parameter values based on the multiple non-pharmaceutical

interventions that can be implemented. The mathematical

formulation of policy implementation on subpopulations is

given as following (each subpopulation is defined by the

vector):

~PiðtÞ ¼ ðSiðtÞ; EiðtÞ; IiðtÞ; RiðtÞ; DiðtÞÞ ð7Þ

The vector defined in (7) represents the state of

subpopulation i at time t in terms of number of susceptible,

exposed, infected, recovered and dead individuals. Applied

policies generate flow out from one subpopulation, which

must also flow in to another subpopulation. Thus, we define

flow in and flow out functions from the policy space that

includes all available policies that decision makers can use.

We define flow in functions of the form fi : <5
þ�P ! <5

þ
and the flow out functions gi : <5

þ�P ! <5
þ , for

i¼ 1,y,m, m subpopulations, in which <5
þ is defined as

real numbers. The policy space is represented with the set P
such that pAP, where p is a specific policy that generates

the flow out and flow in. Thus, flow from one subpopulation

to another can be formulated with Equation (8). In addition

Equation (9) formulates the flow conservation of individuals

in the model:

d

dt
~PiðtÞ ¼

X
iaj

fið~PjðtÞ; pÞ � gið~PiðtÞ; pÞ ð8Þ

X
i

gið~PiðtÞ; pÞ ¼
X
i

X
jai

fið~PjðtÞ; pÞ ð9Þ

From a policy perspective, the most important and

difficult decisions include how to direct people under

emergency conditions as to which policy should be employed

to which subpopulation and which resources should be

allocated to whom under what conditions. The main

characteristic of the presented model in this paper is the

robustness of moving people from one subpopulation to

another as a result of the implemented decisions. The effects

of the policy implementation to a subpopulation in the

disease dynamics are represented with an example in

Figure 2. In that example we demonstrate the flow out from

the commuting students subpopulation with the activation

of the policy related to suspending university operations.

+

∈

βα

+

∈

βα σ γ

μ

Π∈

Figure 2 Example of a policy implementation to a subpopulation.
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This policy generates a flow in to evacuated commuting

subpopulation and individuals in this subpopulation have

different mixing rates with the individuals in their sub-

population as well as the individuals from other subpopula-

tions. We want to point here that the mixing rates of

individuals in each subpopulation are represented by the bi, j
matrix.

Suspending university operations is one of the most

critical decisions during a pandemic. Decision makers should

be informed about events around the world because the

universities have high proportions of international students

and faculty travelling worldwide. After making the decision

to suspend university operations, the remaining issue for

university decision makers is how to deal with the students

who are living in the residence halls and cannot leave the

university. In addition, there is a high probability that non-

residential students will request medical assistance from the

university health services. University health services have to

direct the students and minimize the severity of the disease.

According to the university preparedness plan, all well

students will be housed in one location on campus to

centralize essential services. In addition to managing

essential services for well students who are remaining on

campus, the university plan includes an action plan for

treating infected students. The sick students will be

transferred to a temporary infirmary established in one of

the dorms. The main inspection and control locations for the

students will be the triage points at certain locations on the

campus. These critical decision-making processes are quan-

titatively analysed in the next section along with sensitivity

analyses on several disease parameters.

4. Simulation results and policy analysis

We run several scenarios to find an answer to one of the

critical questions for the university, ‘when to suspend

university operations’. The effectiveness of an applied policy

is measured by the number of mortalities and by the total

number of infected people. We compare the effectiveness of

the applied policies based on the base run (without any non-

pharmaceutical intervention) for the decisions of applying

social distancing and isolation at various times on campus.

The parameters related to disease characteristics are set to

fixed values at the beginning of the simulations and they are

obtained from the literature (Longini et al, 2004; Chowell

et al, 2006; Mniszewski et al, 2008).

In our simulation model, we assume an infected mortality

rate of 2% for the university community, an incubation

period of 2 days and an infection period of 3.5 days. Because

these parameters are unlikely to change depending on

policies implemented by the university, they are considered

as uncontrollable parameters. We determine the contact

rates of individuals based on our observations. Because we

observe higher contacts for residence hall students, the

average contact rate for the commuting students is assumed

to be 60 people/day and 75 people/day for the residence hall

students. The infection rate of the model is fixed to 1.5%,

which is defined as the rate of getting infected given a contact

with an infectious person. The model parameters for our

base run for two main subpopulations are given in Table 2.

After determining the system parameters, we first run the

simulation (base run) model, without applying any inter-

vention policies. The initial population numbers for each

subpopulation are obtained from the university’s data

respiratory; we have 47 300 commuting students and 7700

residential students. The disease dynamics starts with an

introduction of an asymptomatic infected person to the

community on 23 September. The results of the simulation

for commuting students and residence hall students are

presented in Figure 3. These results show that without any

interventions, the expected infection rate is 39.17% and the

mortality rate is 0.98% for the total student population

(1.95%mortality in residential students and 0.81%mortality

in commuting students). These two results show that the

disease has a high potential to affect almost half of the

university population. For the policy makers, it is clear that

they should activate their preparedness plan to better

manage the disease for the university population. However,

the question of when to activate this plan is of major

importance. Since any cancellation of university operations

will cause serious financial and managerial disruption to the

university, the timing of suspension of operations should be

decided carefully and optimally in terms of reducing the

financial burden while minimizing the mortality (number of

deaths) and morbidity (number of infected people) on

campus.

In addition to mortality and morbidity results from the

base run, we can see that, the disease is getting to its peak

point on 25 October (32 days after the first case) for the

Table 2 Parameters of the base run simulation

Commuting students Residential students References

Mortality rate (m) 0.02 0.02 Mniszewski et al (2008)
Total average contact rate (b) 60 people/day 75 people/day —
Incubation period 2 days 2 days Chowell et al (2006)
Infection period (g) 3.5 days 3.5 days Chowell et al (2006)
Infection rate (a) 0.015 0.015 Longini et al (2004)

94 Journal of Simulation Vol. 5, No. 2



commuting students; however, it gets to peak point for the

residence hall students on 20 October (27 days after the first

case). This can only be explained by the input parameter,

contact rate, which is the only different factor in the model

for these subpopulations and it is a controllable parameter.

This result also shows that the decision makers have less

time for taking actions to reduce the mortalities in the dorms

because it reaches to its peak point in a shorter time in

residence halls. Moreover, since the contact rate is the only

different parameter between these two subpopulations and

because it is a highly uncertain parameter, it has a good

possibility of affecting the implementation of the policies.

Because of this reason, we performed a sensitivity analysis

on the contact rate for both commuting students and

residence hall students in the next section.

If university decision makers decide to suspend university

operations based on the events occurring in the world,

country and state, the simulation results show that the

severity of the disease can be reduced significantly. However,

the date of suspending university operations will generate

different results on the number of infected people and

number of deaths on campus. These students will be forced

to relocate to another dorm to centralize services. Owing to

increased contact rate in dorms, the total number of students

who are exposed and infected on campus will still remain

high. The results for suspending the university operations

and starting the evacuation of students on different dates are

presented in Table 3.

On the basis of the results presented in Table 3, we

calculate the effectiveness rate for the school closures, which

can be important in decision making. These effectiveness

metrics include deaths on campus, total deaths, infected

students on campus and total infected students and they are

presented in Figure 5. The effectiveness metrics are

calculated based on Equation (10), which is introduced by

Haber et al (2007).

Effectiveness of Closure

¼ Base Rate�Rate with Closure

Base Rate

ð10Þ

These effectiveness measure calculations demonstrate that

social distancing has a decreasing effect on reducing the

number of deaths and infections for both students on

campus and the others who are not on campus. When we

compare the effectiveness curves for decision making in

Figure 4, we see that deaths off campus with total infected

students are the most effective decision metrics at any time of

policy activation considered in the analysis. On the other

hand the deaths on campus and infected students on campus

have the worst effectiveness values. Thus, another interesting

conclusion that we make from this calculation is that

decision makers should not wait for the first death on

campus since it has the lowest effectiveness value. In other

words they should consider the mortalities occurring outside
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Figure 3 Simulation results for no intervention scenario run.

Table 3 Results on number of infected students and deaths

Decision for
evacuation

Date of
evacuation

Pandemic
over date

Expected
deaths off

campus (%)

Expected
deaths on

campus (%)

Expected
total

deaths (%)

Infected
students on
campus (%)

Infected
students off
campus (%)

Total
number

of infected
students (%)

Yes 1-Oct (7 days later) 8-Dec 0.01 0.66 0.11 17.38 1.19 3.63
Yes 2-Oct (8 days later) 18-Dec 0.01 0.83 0.14 21.95 1.20 4.33
Yes 5-Oct (11 days later) 1-Dec 0.01 0.88 0.15 22.96 1.27 4.55
Yes 6-Oct (12 days later) 29-Nov 0.03 1.01 0.18 25.26 2.32 5.78
Yes 13-Oct (19 days later) 11-Dec 0.08 1.09 0.23 25.04 4.93 7.97
Yes 15-Oct (21 days later) 17-Dec 0.14 1.26 0.31 26.43 8.39 11.11
No None 31-Dec 0.81 1.95 0.98 76.08 32.60 39.17
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the university in order to have a better policy for protecting

university population.

We also compare the school days lost with suspending

university operations at different times with the total number

of infected students. Since late closures will result in a higher

number of infections, decision makers may want to balance

cost of university closure with the number of infections on

campus. Thus, for the considered dates of closure we

compare the number of lost days with the number of infected

students in Figure 5. As we can see, after the first week of

October (14 days after the first case on campus) university

policy makers should take action to balance the number of

infections and cost of closure.

4.1. Sensitivity analysis on disease parameters

In our simulation model we have two sets of parameters.

One set of parameters is the parameters that we have control

over by changing policies. For example, the contact rate can

be reduced by implementing social distancing policies. In

addition, infection rate and mortality rates can be reduced

with antiviral usage and vaccination programmes. Because

parameters are usually uncertain in the course of a

pandemic, estimates from the past pandemics are commonly

used for modelling the future pandemics. Thus, we perform

sensitivity analysis on our disease parameters: contact rate,

incubation period and infection period. In our sensitivity

analysis we assume a normal distribution for each parameter

with a mean value of actual parameter value used in the base

runs. Our main objective is to get more information about

the impacts of these parameters on the mortalities. We use

the Monte Carlo sampling method (Diwekar, 2003), one of

the default sampling methods in Powersim software, to

sample from the distributions. We perform 40 simulation

runs at each time for a sensitivity analysis on a single

parameter (Powersim Software AS, 2003).

In the model we assume that the contact rate for the

commuting students is 60 people/day and it is constant

throughout the simulations. However, this parameter is hard

to estimate for any individual and is very likely to be

variable. Thus, we perform a sensitivity analysis for this

parameter by assuming a distribution assuming a normal

distribution with a mean of 60 and a standard deviation of 6.

The sensitivity analysis result for this assumption is

presented in Figure 6. It is clear that the mortality in

commuting students significantly varies with the variability
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on the contact rate because the difference between 10 percentile

and 90 percentile is significant.

We also perform sensitivity analysis on uncontrollable

parameters of the simulation model. In Figure 7, we present

the sensitivity analysis on the incubation period, which is

assumed to be 2 days in our base runs. Thus, our analysis is

done by assuming a normal distribution over the incubation

period with a mean of 2 and a standard deviation of 1. From

these analysis presented in Figure 7 we can conclude that the

incubation period also plays a major role on the mortalities

of commuting students, since the variability on this

parameter can cause a big difference in mortality values

that is almost 60 people in all of the analyses, thus the

uncertainty on the incubation period may have a big impact

on the policies to reduce the total number of deaths in

commuting students. This is because we assume exposed

individuals are also infectious but asymptomatic and

incubation period is the time for the people to be active in

the community and spread the disease in the community.

Thus, any intervention that can reduce the incubation period

of the disease may help control the disease spread.

Similar analysis is also performed on another uncontrol-

lable parameter, infection period. Even though this parameter

can be controlled by antiviral usages we do not consider

antiviral prophylaxis as an intervention policy in our studies.

In Figure 8 we present the sensitivity analysis on infection

period with assuming a normal distribution with a mean of

3.5 days and a standard deviation of 1 day. We can see from

the figure that the uncertainty related to infection period

does not have as big impact on the variability of the

mortalities as contact rate and incubation period have. The

main reason for this conclusion is that there is not a

significant difference on the mortality rate with 10 percentile

and the 90 percentile of the infection period in the analysis.

4.2. Analysis on time for evacuating dorms

Our simulation experiments show that due to the increased

contact rate in dorms, time for evacuation of the dorms may

have a significant impact on the number of infections and

mortalities in dorms, thus it is an important exogenous

parameter in the model. In our base runs we assume that

the university has the capability of evacuating the dorms in

1.5 days. We run several simulations with varying the time

allocated for dorm evacuation from 1 day to 7 days to see

the effects of this duration on mortalities for on campus
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students. This analysis can also be called a sensitivity

analysis for this specific exogenous parameter (duration of

dorm evacuation). In Figure 9, we can see that as the time

for evacuation increases, mortality in dorms also increases

for both cases of dorm evacuation policy implemented either

on 1 October or 15 October. We also evaluate the duration

of dorm evacuations with five index cases in the dorms for

both cases of having evacuation on 1 October and 15

October. The results in Figure 9 show that earlier evacuation

of dorms is critical for reducing the mortality rate. In

addition to that result, we can also see that the number of

index cases does not significantly change the mortality rate

in dorms.

4.3. Proposed model versus discrete event-agent based
models for infectious diseases

The presented simulation approach in this paper is different

from classical compartmental models in which the whole

population is simulated with random mixing assumption,

and discrete event agent-based models. With the hierarchical

structure of our model, it is possible to implement several

non-pharmaceutical policies to different subpopulations in

the university system. This flexibility is given to the model by

differentiating the parameter, contact rate, in subpopula-

tions based on the implementation of the policies. Thus,

random mixing in the compartmental models is relaxed for

the whole population by dividing the university population

into subpopulations with respect to possible policies listed in

the preparedness plan.

In Das et al (2007) and Ferguson et al (2006) every

individual is modelled as an agent, and their behaviours are

modelled with assumptions on individual contact networks.

These discrete event agent-based models require high

computational resources to run the simulations and each

run needs a significant amount of time to be completed.

Therefore, the effectiveness of agent-based models to

simulate preparedness plans in support of real-time decisions

with real-time inputs is limited (Bhandari et al, 2007). In

addition, in agent-based models it is hard to get an insight on

the mathematical structure of the disease spread and

interventions, whereas in compartmental models it is easy

to perform sensitivity analysis on model parameters and

develop theoretical insights (Bobashev et al, 2007). Most
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recently, a comprehensive approach for comparing the

compartmental models (differential equation-based models)

with agent-based models is presented by Rahmandad and

Sterman (2008), which gives an analysis on when it is

appropriate to use these models in decision making for

public health problems.

5. Conclusions

In this paper, we simulated the pandemic preparedness plan

of a public university to help university decision makers to

visualize and understand the consequences of their policies.

The performance of the system and the plan is measured in

terms of the number of infected students and the mortality

that occurred on and off campus for the university students,

faculty and staff. The simulation results show that even

during a mild pandemic, the decision to suspend university

operations is critical. The main conclusion from this study is

that public universities should act as early as possible to

protect their community and secure their operations. The

appropriate decisions can significantly reduce the severity of

the pandemic influenza for local communities.

In this paper, we focused on non-pharmaceutical inter-

ventions. Because vaccination strategies may not be effective

in the early stages of a pandemic, poor vaccine matching,

lack of delivery and low public awareness, we did not

consider the vaccination policies in our simulation model.

However, this assumption can be relaxed for future research

investigations. Our sensitivity analyses demonstrate that

some of the parameters of the influenza spread model have

more impact on the outcomes of the simulations; thus, for

developing the appropriate mitigation policies these policy

makers should pay special attention to these parameters. We

conclude that contact rate has high importance in disease

spread, and disease spread can be controlled by disease

mitigation policies when appropriate actions are taken at the

appropriate time. Thus, the decision makers should consider

minimizing the contact rate and adjust their plans when

applying several mitigation policies to their communities. In

addition, uncertain and uncontrollable disease parameters

have significant impact on the disease spread since it is the

time for the exposed people to be active in the community

and spread the disease to their contacts. Thus, policy makers

should be aware of this result and develop screening

activities to identify exposed individuals and quarantine

them to protect others susceptible in the community.

This paper presents a simulation model that can assist

local community managers and policy makers, such as

university managers, about pandemic decision making for

community mitigation strategy. We examined several

operational mitigation strategies on a university campus

(dorm evacuations, isolation on campus). We also present

how these mitigation decisions can change at the local

community level with different severity levels of pandemic. It

should also be pointed that the results in this paper are based

on a hypothetical scenario and the disease transmission

properties may be different for an actual pandemic.

In future work, we will develop an algorithm for

parameter estimation from data of the reported (partial)

real-time cases and that algorithm will be embedded into the

simulation model. Specifically, more work is needed to

analyse how policy decisions can change at the local level

with partial real-time information about pandemic influenza.
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