

A SIMULATION PROGRAM WITH LATENCY EXPLOITATION FOR THE TRANSIENT ANALYSIS OF DIGITAL CIRCUITS

SAJID AHMED SOHAIL

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER R-993	3. RECIPIENT'S CATALOG NUMEER
4. TITLE (And Subtitie) A Simulation Program with Latency Exploitation for the Transient Analysis of Digital Circuits	5. TYPE OF REPORT A PERIOO COVERED Technical Report 6. PERFORMING ORG. REPORT NUMEER R-993; UILU-ENG 83-2214
7. AUTHOR(s) Sajid Ahmed Sohail	8. CONTRACT OR GRANT NUMEER(A) N00014-79-C-0424
9. PERFORMING ORGANIIATION NAME ANO ADORESS Coordinated Science Laboratory University of Illinois at Urbana-Champaign Urbana, Illinois 61801	10. PROGRAM ELEMENT, PROJECT, TASK AREA A WORK UNIT NUMEERS
11. CONTROLLING OFFICE NAME ANO ADORESS	12. REPORT OATE August 1983
Joint Services Electronics Program	13. NUMEER OF PAGES 80
14. MONITORING AGENCY MAME A ADOAESS(If dillerant from Controlline Office)	15. SEEURITY CLASS. (OA ETiA Teport) UNCLASSIFIED
	i5. OECLASSIFICATION COWNGRASING SEMEDULE
16. DISTHIBUTION STATEMENT (Of this Report) Approved for public release; distribution unlim	ed
17. DISTRIEUTION STATEMENT (of the ebatract entored in Block 20, il diltermitrom	Report)
18. SUPPLEMENTARY NOTES	
19. KEY wOMOS (Continue on reverse side if necessery end identlfy by block number) circuit simulation digital circuits latency	B
20. ABSTRACT (Continue on reverse side if necessery and identily by block numbor) This report examines the efficiency that can be of large digital integrated circuits with the implem inactive gates in a given time interval are bypassed particular the latency criterion in the program SLAT guide to SLATE is included.	obtained in the simulation ntation of latency, that is, in the simulation. In is studied, and a user's

digital circuits latency

a SImulation program with latency exploitation for the transient

BY

SAJID AHMED SOHAIL

$$
\text { B.S., University of Illinois, } 1982
$$

Abstract

THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 1983

Urbana, Illinois
$\because \quad$
id
ACKNOWLEDGMENT
I would like to express my gratitude to my thesis advisor, Professor T. N. Trick, for his invaluable guidance and supervision throughout the course of this research. His dynamic personality provided me with inspiration and encouragement.
I would also like to thank a special friend, Kathleen, for her help in typing this manuscript.
Finally, thanks are due to my parents, to whom I owe more than anyone else. They have encouraged me and sustained me and have always believed in me.

CHAPTER

Page

1. INTRODUCTION 1
2. MOSFET AND BIPOLAR DEVICE MODELS IN SLATE. 3
2.1. MOSFET Model 3
2.2. Bipolar Transistor Model 20
3. LATENCY EXAMPLES AND RESULTS. 23
3.1. Latency Criteria 23
3.2. Experimental Results. 25
APPENDIX USER'S GUIDE TO SLATE. 37
A.1. Types of Analysis 38
A.2. Convergence 39
A.3. Input Format 40
A.4. Circuit Description. 41
A.5. Title Card; Comment Card; and End Card 42
A.6. Element Cards 43
A.7. Semiconductor Devices. 51
A.8. Subcircuits 65
A.9. Control Cards. 67
A.10. Example Input Decks 74
REFERENCES 79

CHAPTER 1

INTRODUCTION

The challenge of simulating integrated circuits (ICs) is becoming more formidable with the rapidly increasing number of devices on a chip. The conventional circuit simulation programs [1-4] use a prohibitive amount of computing resources for today's large scale integrated (LSI) circuits. These simulators do not exploit the two inherent properties of digital ICs, namely, repetitiveness and latency. SLATE (a Simulator with Latency and Tearing) is a simulation program which attacks the problem of simulating LSI circuits by exploiting the above stated properties of digital circuits. SLATE was orignally developed from SPICE2 [1] by Ping Yang of The Coordinated Science Laboratory and the Department of Electrical Engineering at The University of Illinois [5].
It was the goal of this research to benchmark the program SLATE against SPICE2 (version G.1)', and show by example circuits that the latency exploitation approach in SLATE does in fact save computer time as the size of the cipouits simulated increases. In order to do so, a VAX11/780 UNIX version of SLATE was created in the initial stages of this research. This version of SLATE also includes a new charge conserving MOSFET model with subthreshold conduction and short channel effects $[6,7]$.
Chapter 2 of this thesis describes in detall the new MOSFET model implemented in SLATE and the modified Gummel-Poon [8] model for bipolar

[^0]transistors. Chapter 3 describes the latency scheme in SLATE and the experimental results achieved by exploiting latency in example circuits. Finally, the Appendix lists the user's guide to SLATE, with the example circuits at the end.

CHAPTER 2

MOSFET AND BIPOLAR DEVICE MODELS IN SLATE

VLSI circuits impose several very important restrictions on the device models in circuit simulators. The device models should be compratinnally efficient, sufficiently accurate, memory requirements should not be too high, and convergence probability should be high. SLATE incorporates a MOSFET model based on a quasi-physical set of equations with a parameter vector which can be extracted from measured data. The model includes above threshold and subthreshold components of current, short-channel offects, and a charge-conserving capacitor model [6]. [7]. The model is computationally very officient due to its simplicity, and its convergence properties are better than Meyer's model [9] due to smooth transitions of current and charge among different regions.

The bipolar junction transistor model in SLATE is an adaption of the integral charge control model of Gamel and Poon [8]. The model reduces to the simpler Eber-Moll model if the additional Gummel-Poon parameters are not specified.

2.1. MOSFET Mode1

The carrent-voltage characteristics and the four terminal nonreciprocal capacitor characteristics of the MOSFET device are basic components of the model. Figure 2.1 shows the MOSFET model in SLATE.

FP-7793

Figure 2.1 MOSFET Model
2.1.1. DC model

The de model in SLATE is based on a quasi-physical current model which includes subthreshold and above threshold regions of operation. The model equations are described below.

Threshold voltage equation:

The threshold voltage equation for a long channel MOSFET is modified to represent the bulk charge Q_{B} sharing between the gate, drain and somrce. The effect of this charge sharing is to reduce the threshold voltage [10].

$$
\begin{aligned}
v_{t}=V_{t 0} & +B E *\left(\left(2 \phi_{f}-V_{b s}\right)^{1 / 2}-\left(2 \phi_{f}\right)^{1 / 2}\right) \\
& -D E *\left(\left(2 \phi_{f}+V_{d s}-V_{b s}\right)^{1 / 2}-\left(2 \phi_{f}\right)^{1 / 2}\right) *\left(2 \phi_{f}-V_{b s}\right)^{1 / 2}
\end{aligned}
$$

where
$\mathrm{BE}=\frac{\left(2 \mathrm{q}_{8} \mathrm{i}^{\mathrm{Na}}\right)^{1 / 2}}{\mathrm{CoI}}$
$V_{t 0}=V_{F B}+2 \phi_{f}+B E^{*}\left(2 \phi_{f}\right)^{1 / 2}$
$V_{F B}=\psi_{M S}-\frac{Q_{g S}}{C_{O X}}$
$B E$ is the body effect terin for long channel device, and $D E$, the drain effect term, represents the drain induced barrier lowering. The parameters $B E, D E$ and $V_{t o}$ can be cxtracted from the measured $I-V$ data. It may be noted that for small geometry devices, BE and DE will be dependent on the length and width of the device. The width dependence is due to the oxide encroachment which is common in today's processes.

This effect has been theoretically studied in [11] and [12], and experimentally verified in [7].

Drain current equations:

The drain current expressions in SLATE take into account the lateral electric field effect in short channel devices. This lateral field modifies the channel quasi-fermi level Vy. The unique attribute of this model is the factor a_{z} which is found to be adequate in representing the effects of the lateral electric field [7].

$$
a_{z}=\alpha+\gamma * V_{g s t}
$$

where
$V_{g s t}=V_{g s}-V_{t}$
$a=$ KP1 inear/KPsaturation

The parameter γ is a short channel parameter, representing the velocity saturation effect.

The drain to source current without the subthreshold component in the three regions of operation is given by:

$$
\begin{align*}
& \text { Cutoff region: } \quad V_{g s t}<0 \\
& I D=0 \\
& \text { Linear region: } \quad V_{d s a t}>V_{d s} \\
& I D=\frac{a_{z} \cdot \operatorname{IP*}(W-W R) *\left(2 * V_{g s t} * V_{d s}-a_{z} * V_{d s}^{2}\right)}{(L-T L D-L R) *\left(1+\partial * V_{g s t}\right)} \tag{2.5a}\\
& \text { Saturation region: } \quad V_{d s a t}<V_{d s} \\
& I D=\frac{I P(\bar{T}-W R) V_{g s t}^{2}\left(1+\lambda\left(a / a_{z}\right)^{2}\left(V_{d s}-V_{d s a t}\right)\right)}{(L-T L D-L R)\left(1+\partial * V_{g s t}\right)} \tag{2.5b}
\end{align*}
$$

$$
\begin{aligned}
& \text { where } \\
& V_{d s a t}=\frac{V_{g s t}}{a_{I}} \\
& K P=\frac{\mu_{\mathrm{n}} C_{o x}}{2}
\end{aligned}
$$

In the above equations TLD is the total lateral diffusion (sum of the source and drain lateral diffusions). LR and WR are the mask tolerance length reduction and width reduction factor due to the oxide encroachment. The parameters ∂ (THETA) and λ are the mobility variation factor and the channel length modulation factor which is roughly proportional to $1 /(L-T L D)$, respectively. The parameters α, γ, ∂, and λ are part of the parameter vector which can be extracted from the measured data. See Table 2.1 for an example parameter vector for $L=1.5 \mu \mathrm{~m}$ and $\nabla=5 \mu \mathrm{~m}$ device [7].

The subthreshold component of the current is added to the device drain current in all three regions if the user specified parameter KPS is not zero. The simplified expression for the subthreshold current, derived by solving the Poisson equation for effective Q_{B}, is given below [7].

$$
\begin{align*}
& \text { For } V_{g s}>V_{t} \\
& I D_{s \mathrm{ub}}=\frac{\text { KPS* }(\mathbb{H}-W R)}{(L-T L D-L R)} *\left(1-e^{\left.-N G \beta V_{d s}\right)}\right. \tag{2.6}
\end{align*}
$$

$$
\begin{align*}
& \text { For } V_{t}>V_{g s} \geq V_{b s}+V_{F B} \\
& I D_{s u b}=\frac{G P S *(T-W R)}{(L-T L D-L R)} *\left(1-e^{\left.\left.-N G \beta V_{d s}\right) * e^{N G \beta\left(V_{b s}\right.}+U_{s}-2 \phi_{f}\right)}\right. \tag{2.7}
\end{align*}
$$

where

$$
\begin{aligned}
& \beta=Q / K^{*} T \\
& K P S=\frac{2^{1 / 2} \mu_{n} \varepsilon_{s i}}{N G \beta^{2} L D} \\
& D_{s}=V_{g s}-V_{b s}-V_{F B}+\frac{B_{E T}}{2}\left(1-\left(1+4\left(V_{g s}-V_{F B}-V_{b s}\right) / B E T\right)^{1 / 2}\right) \\
& B E T=B E-D E\left(\left(2 \phi_{f}-V_{d s}-V_{b s}\right)^{1 / 2}-\left(\phi_{f}\right)^{1 / 2}\right)
\end{aligned}
$$

where LD is the extrinsic Debye length and NG is a correction factor used to represent the approximations made in deriving the above corrent equations, and the uncertainty in the exact device temperature. KPS and NG are also extracted from the measured data, see Table 2.1.

Table 2.1 Extracted Parameter Vector	
Parameter	Value
$V_{\text {to }}$	$0.591212 \mathrm{E}+00$
BE	$0.637995 \mathrm{E}+00$
DE	$0.331291 \mathrm{E}-01$
α	$0.105286 \mathrm{E}+01$
$\boldsymbol{\gamma}$	$0.236235 \mathrm{E}+00$
λ	$0.109119 \mathrm{E}+00$
γ	$0.119909 \mathrm{E}+00$
KPS	$0.973771 \mathrm{E}-06$
NG	$0.835092 \mathrm{E}+00$

2.1.2. Transient model

Extrinsic region capacitances:

The MOSFET device can be partitioned into extrinsic and intrinsic regions as shown in Figure 2.2. The extrinsic region capacitances are modelled by fired overlap, fringing and lateral diffusion capacitances plus drain and source $p-n$ junction capacitances and sidewall capacitances.

Overlap capacitances:

$C_{g s}=C_{O X} *(T-W R) *(L G O S+.5 T L D)$
$C_{g d}=C_{o x} *(W-W R) *(L G O D+.5 T L D)$
where LGOS and LGOD are gate to source and gate to drain overlaps, respectively.

Fringing capacitance:

The fringing capacitances becomes important if the gate electrode thickness is comparable to the gate oxide thickness. SLATE includes a fringing capacitance model which models the finite gate electrode thickness effect.
$\mathrm{CFR}=\frac{\mathrm{W} \varepsilon_{0 x}}{\pi} *((x+1 / x) \ln ((1+x)(1-x))+2 \ln (.25(1 / x-x)))$
where
$x=\frac{T_{0 X}}{\left(T_{0 X}+T_{\text {poly }}\right)}$
where $T_{0 x}$ is the gate oxide thickness and $T_{p o l y}$ is the gate electrode

FP-7796
thickness. CFR is added to gate-sonrce and gate-drain capacitances.

Junction capacitancos:

The p-n junction capacitances are modeled by botton junction capacitances and sidewall junction capacitances.

Bottom capacitances:
$C_{b s}=\frac{A S \oplus P P N}{\left(2 \varphi_{f}\right)^{1 / 2}\left(1-V_{b s} / 2 \phi_{f}\right)^{M}}$

$$
\begin{equation*}
C_{b d}=\frac{A D+Y P N}{\left(2 \varphi_{f}\right)^{1 / 2}\left(1-V_{b d} / 2 \phi_{f}\right)^{M}} \tag{2.12}
\end{equation*}
$$

Sidevall capacitances:
$C_{b s}=\frac{A S S * E P N}{\left(2 f_{f s}\right)^{1 / 2}\left(1-V_{b_{s}} / 2 \phi_{f s}\right)^{M S}} *(N S / N)^{1 / 2}$
$C_{b d}=\frac{A D S * S P N}{\left(2 \phi_{f s}\right)^{1 / 2}\left(1-V_{b d} / 2 \phi_{f s}\right)^{M S}} *(N S / N)^{1 / 2}$
where
$I P N=\left(\frac{q \varepsilon_{81} \mathrm{Na}}{2}\right)^{1 / 2}$
and is a constant which models the zero-bias junction capacitance per unit area. AS and AD are source and drain vindow areas and ASS and ASD are sidewall areas. NS is channel stop impurity concentration and N is brik concentration.

Intrinsic region capacitances:

The intrinsic MOSFET device in SLATE is modeled by a cherge conserving capacitance model secently published in [6]. The model
eliminates the problem of charge nonconservation which occurs in the Meyers model [9]. The model uses analytic charge equations in each region of operation instead of capacitance equations and insures the continuity of charges throughout different regions. The unique feature of the model is the partitioning of the channel charge into drain and source components by nsing self-consistent boundary conditions. This was not done in the models previously proposed [13], [14].

The charge model equations in the linear and saturation regions are derived from the dc current model. Whereas, the equations in the accumalation and subthreshold regions are derived from solving one dimensional Poisson equations [15], [16]. Two simplifying assumptions made in deriving the equations are (i) the omission of any mobile charge after pinch-off, and (ii) the omission of drain depletion charges.

Let q_{g}, q_{c}, and q_{b} represent the charge densities per anit area on the gate, in the channel, and in the substrate depletion layer. The charge equations in different regions are as follows.

$$
\begin{align*}
& \text { Linear region: } \quad V_{g s} \geq V_{g s a t} \\
& q_{g}=C_{o x}\left(V_{g s}-V_{F B}-2 \phi_{f}-V_{y}\right) \tag{2.15}\\
& q_{c}=-C_{o x}\left(V_{g s}-V_{t}-a_{z} V_{y}\right) \tag{2.16}\\
& q_{b}=-c_{o X}\left(V_{t}-V_{F B}-2 \phi_{f}-\left(1-a_{z}\right) V_{y}\right) \tag{2.17}
\end{align*}
$$

Where Vy is the quasi-fermi potential for electrons and is defined

$$
\because
$$

With respect to the source.

$$
v_{\text {gsat }}=v_{t}+a_{x} v_{d s}
$$

To obtain the charge equations we would have to integrate equations (2.15), (2.16), and (2.17) over the width and length of the channel in the linear region; therefore,

$$
\begin{equation*}
Q_{g}=v \int_{0}^{L} q_{g} d y \tag{2.18}
\end{equation*}
$$

Substituting for q_{g} we obtain

$$
\begin{equation*}
Q_{g}=W \int_{0}^{L} C_{o x}\left(v_{g s}-v_{F B}-2 \phi_{f}-v_{y}\right) d y \tag{2.19}
\end{equation*}
$$

A11 the terms in equation (2.19), except for Vy, are assumed to be independent of the channel length; therefore, we need to evaluate,

$$
\begin{equation*}
\int_{0}^{L} v y d y=\int_{0}^{V_{d s}} v y d v y \frac{d y}{d v y} \tag{2.20}
\end{equation*}
$$

We also know that along the channel

$$
\begin{equation*}
I D=\nabla \mu_{n} C_{o x}\left(V_{g s}-V_{t}-a_{z} V y\right) \frac{d V Y}{d y} \tag{2.21}
\end{equation*}
$$

Substituting the expression for $1 D$ in the linear region, we get

$$
\begin{equation*}
\frac{d y}{d V_{y}}=\frac{L\left(V_{g s}-V_{t}-a_{z} V_{y}\right)}{\left(V_{g s}-V_{t}\right) V_{d s}-0.5 a_{z} V_{d s}^{2}} \tag{2.22}
\end{equation*}
$$

Integrating equation (2.22) from 0 to $V_{d s}$ we get

$$
\int_{0}^{V_{d s}} V y \frac{d y}{d V y} d V y=L *\left(0.5 V_{d s}-a_{x} V_{d s}^{2} / 12\left(V_{g s}-V_{t}-0.5 a_{x} V_{d s}\right)\right)
$$

Substituting the above expression in equation (2.19) for Q_{g} and similarly for Q_{b} and Q_{c} we obtain the charge equations in the linear resion as below

$$
\begin{align*}
& Q_{g}=V^{*} L^{*} C_{0 Z}\left(V_{g s}-V_{F B}-2 \phi_{f}-0.5 V_{d s}+\right. \\
& \left.a_{I} v_{d s}^{2} / 12\left(v_{g s}-V_{t}-0.5 a_{z} V_{d s}\right)\right) \tag{2.23a}\\
& a_{b}=\operatorname{VAL}^{*} C_{O X}\left(V_{F B}+2 f_{f}-v_{t}+0.5\left(1-a_{x}\right) V_{d s}-\right. \\
& \left.\left(1-a_{z}\right) a_{z} v_{d s}^{2} / 12\left(V_{g s}-V_{t}-0.5 a_{z} V_{d s}\right)\right) \tag{2.23b}\\
& Q_{c}=-W^{*} L^{*} C_{o x}\left(V_{g s}-V_{t}-0.5 a_{x} V_{d s}+\right. \\
& \left.a_{z}^{2} v_{d s}^{2} / 12\left(v_{g s}-v_{t}-0.5 a_{z} v_{d s}\right)\right) \tag{2.23c}\\
& \text { Saturation region: } \quad \mathbf{V}_{\mathbf{t}} \leq \mathrm{V}_{\mathrm{gs}}<\mathrm{V}_{\mathrm{g} \text { gat }}
\end{align*}
$$

The saturation region equations are obtained by integrating equation (2.20) from 0 to $V_{\text {dsat }}$ and substituting the expression for $I D$ in the sateration region in equation (2.21). Thus we get

$$
\int_{0}^{V_{d s e t}} V_{y} \frac{d y}{d V y} d V_{y}=L *\left(V_{g z}-V_{t}\right) / 3 a_{x}
$$

and

$$
\begin{equation*}
a_{g}=v * L * C_{o x}\left(v_{g s}-v_{F B}-2 \phi_{f}-\left(v_{g s}-v_{t}\right) / 3 a_{x}\right) \tag{2.24a}
\end{equation*}
$$

$$
\begin{equation*}
Q_{b}=W^{*} L \cdot c_{o x}\left(v_{F B}+2 \phi_{f}-v_{t}+\left(1-a_{x}\right)\left(v_{g s}-v_{t}\right) / 3 a_{x}\right) \tag{2.24b}
\end{equation*}
$$

$$
\begin{equation*}
Q_{c}=-\nabla^{* L}{ }^{*} C_{o x}\left(2 / 3\left(v_{g s}-v_{t}\right)\right) \tag{2.24c}
\end{equation*}
$$

$$
\begin{align*}
& \text { Subthreshold region: } \quad V_{F B}+V_{b s}<V_{g s}<V_{t} \\
& Q_{g}=W^{*} L^{*} C_{o x} * \frac{B E^{2}}{2} *\left(-1+\left(1+4\left(V_{g s}-V_{F B}-V_{b s}\right) / B E^{2}\right)^{1 / 2}\right) \tag{2.25a}
\end{align*}
$$

$$
\begin{equation*}
Q_{b}=-Q_{g} \tag{2.25b}
\end{equation*}
$$

$$
\begin{equation*}
Q_{c}=0 \tag{2.25c}
\end{equation*}
$$

Accualation region:

$$
\begin{equation*}
Q_{z}=T * L * C_{o x}\left(v_{g z}-v_{t}-v_{b z}\right) \tag{2.26a}
\end{equation*}
$$

$$
\begin{equation*}
a_{b}=-Q_{b} \tag{2.26b}
\end{equation*}
$$

$$
\begin{equation*}
Q_{c}=0 \tag{2.26c}
\end{equation*}
$$

The changel charge Q_{c} is partioned into Q_{s} and Q_{d}, i.e., source and drein charges by considering the following boundary conditions [6], [7].
(a) In the saturation region the channel is isolated from the drain: therefore, all the chancl mobile charge Q_{c} goes into Q_{g} and Q_{d} is zero.
(b) Charges Q_{d} and Q_{s} are continous throughout the saturation and 1inear regions.
(c) The capacitances $C_{d g}$ and $C_{s g}$ are equal and the charges Q_{d} and Q_{8} are equal when $V_{d s}$ is zero.
(d) The capacitances $\mathbf{C}_{\mathrm{dg}}, \mathbf{C}_{\mathrm{ds}}, \mathbf{C}_{\mathrm{db}}, \mathbf{C}_{\mathrm{sg}}, \mathbf{C}_{\mathrm{sd}}, \mathrm{C}_{\mathrm{sb}}$ are continuous throughout the saturation and linear regions.

According to the above bonndary conditions, Q_{d} and Q_{s} are given as follows.

Linear region:

$$
\begin{align*}
Q_{d}= & -W^{*} L \cdot C_{o x}\left(0.5\left(V_{g s}-V_{t}\right)-0.75 a_{x} V_{d s}+\right. \\
& \left.a_{x}^{2} V_{d s}^{2} / 8\left(V_{g s}-V_{t}-0.5 a_{x} V_{d s}\right)\right) \tag{2.27a}\\
Q_{s}= & -W^{*} L * C_{o x}\left(0.5\left(V_{g s}-V_{t}\right)+0.25 a_{x} V_{d s}-\right. \\
& \left.a_{x}^{2} V_{d s}^{2} / 24\left(V_{g s}-V_{t}-0.5 a_{x} V_{d s}\right)\right) \tag{2.27b}
\end{align*}
$$

Saturation region:

$Q_{d}=0$
$Q_{s}=-W * L^{*} C_{0 x}\left(2 / 3\left(V_{g s}-V_{t}\right)\right)$

Figure 2.3 shows the charges sssociated with the gate, bulk, source, and drain of a MOSFET device in all four regions using the above equations. The voltage dependent capacitances can be obtained by taking the partial derivatives of the charge equations with respect to different terminal voltages.

Let

$$
\begin{equation*}
c_{i j}=\frac{\partial Q_{i}}{\partial V_{i j}} \tag{2.29}
\end{equation*}
$$

where $i \neq j \quad i=g, b, d, s$

The above equation yields twelve capacitances to evaluate, three for each terainal of the device. Only nine of the twelve capacitances are
 $C_{b d}, C_{b s}, C_{d g}, C_{d b}, C_{d g}$, then the other three capacitances $C_{s g}, C_{s b}, C_{s d}$ can be deternined by

$$
\begin{aligned}
& c_{s g}=c_{g b}+c_{g d}+c_{g s}-c_{b g}-c_{d s} \\
& c_{s b}=c_{g b}+c_{b d}+c_{b g}-c_{g b}-c_{d b} \\
& c_{s d}=c_{d g}+c_{d b}+c_{d g}-c_{g d}-c_{b d}
\end{aligned}
$$

Figure 2.4 shows three of these twelve capacitances, i.e., $C_{g d}, C_{g s}$ and $C_{g b}$ as function of the gate to source voltage.

FP-7798

Figure 2.3 Voltage Dependent Charges

FP-7797

Figure 2.4 Voltage Dependent Gate Capacitances

2.2. Bipolar Transistor Model

The bipolar transistor model in SLATE is based upon the Gummel and Poon integral charge control model. The model reduces to the simpler Ebers-Moll model if the additional parameters are not specified.

Figure 2.5 shows the bipolar transistor model used in SLATE with the collector-substrate capacitance included. The DC equations for the transistor are as follows:

Figure 2.5 Bipolar Transistor Model

```
    VTE=NE*K*T/Q
    VTC = NC*K*T/Q
    QB=Q1*(1+(1+4*Q2)
    Q1=1/(1- VBE/VB - VBC/VA)
    Q2 = IBE/(Area*IK) + IBC/(Area*IKR)
In the above equations if the additional Gumel-Poon parameters, i.e., C2, IK, C4, IKR, and VB are not specified, then the model reduces to the Ebers-Moll model. The carrents IDE and IDC are zero and \(Q B=Q 1\).
The capacitor equations of the transistor are the sum of the diffusion capacitances and the transition capacitances.
```



```
    For VBE \(\geq 0\)
```

 For VBE \(\geq 0\)
 CBE $=\operatorname{Area*IS*(TF/VT)*VBE~+~Area*CJE/(1-VBE/PE)~}{ }^{M E}$
CBE $=\operatorname{Area*IS*(TF/VT)*VBE~+~Area*CJE/(1-VBE/PE)~}{ }^{M E}$
For VBE < 0
For VBE < 0
CBC $=$ Area*IS*(TR/VT)*EXP (VBC/VT) + Area* CJC* (1 + MC*VBC/PC)
CBC $=$ Area*IS*(TR/VT)*EXP (VBC/VT) + Area* CJC* (1 + MC*VBC/PC)
For VBC ≥ 0
For VBC ≥ 0
$C B C=A r e a * I S *(T R / V T) * V B C+A r e s * C J C /(1-V B C / P C)^{M C}$
$C B C=A r e a * I S *(T R / V T) * V B C+A r e s * C J C /(1-V B C / P C)^{M C}$
For VBC く 0

```
    For VBC く 0
```


CHAPTER

LATENCY EXAMPLES AND RESULTS

Digital circuits render themselves to the exploitation of the phenomenon of latency due to the inherent delay between excitation and response. This is specifically true for VLSI circuits in which a large percentage of the devices may be inactive in a given time interval. The parts of the circuit which are not active at any particriar time are called latent. SLATE takes advantage of this latency phenomenon in real circuits and provides savings in execution time.

The savings in compoter execution time are achieved mostly during the transient analysis by leaving the latent subnetworks out of the analysis, i.e., no linearization, no preprocessing of the subnetworks to eliminate internal variables, no backward substitution to solve for the internal subnetwork voltages, and no convergence tests are done on the parts of the network wich are declared latent. SLATE does not antomatically partition the network into subnetworks; therefore, the subcircuit command is used to specify the subnetworks. In other words the user mast partition the circuit to be analysed into subcircuits, e.g., logic gates, etc., to take advantage of the latency scheme in SLATE.

3.1. Latency Criteria

In order to exploit the latency at the subnetwork level, some sort of criteria are required to determine if a subnetwork is latent. Ping Yang in his Ph.D. thesis [5] proposed four different schemes for the node tearing method. The scheme implemented in SLATE was shown to be
the most accurate and appropriate for the present version of SLATE. The scheme is as follows.

Consider a subnetwork N_{k}. Let the tearing node voltages of N_{k} be denoted by $\underline{V}_{t k}$, the charges of capacitors of subnetwork N_{k} be denoted by G_{k}, and the currents of capacitors of N_{k} be denoted by I_{k}.

A subcircuit N_{k} is considered as latent if the following three conditions are satisfied.
(1)

$$
v_{t k m}\left(t_{n}\right)-v_{t k m}\left(t_{n-1}\right) \leq \varepsilon_{a}+\varepsilon_{I} \max \left(v_{t k m}\left(t_{n}\right), v_{t k m}\left(t_{n-1}\right)\right)
$$

$$
m=1,2, \ldots,
$$

Where ε_{a} and ε_{r} are the absolute and relative error tolerances for voltages. This condition determines whether the changes in the tearing node voltages of the subnetwork N_{k} are small.
(2) $I_{k m}\left(t_{n}\right)-I_{k_{m}}\left(t_{n-1}\right) \leq \varepsilon_{c}+\varepsilon_{r} \max \left(I_{k m}\left(t_{n}\right), I_{k m}\left(t_{n-1}\right)\right)$
$m=1,2, \ldots$,

Abstract

Where c_{c} is the absolute error tolerance for current. This condition is used to check if the changes of the energy storage elements of subnetwork N_{k} are small.

(3) $h_{n-1} \frac{I_{k m}\left(t_{n}\right)-I_{k_{m}}\left(t_{n-1}\right)}{Q_{k m}\left(t_{n}\right)-Q_{k_{m}}\left(t_{n-1}\right)} \geq 1 \quad m=1,2, \ldots$,
where h_{n-1} is the time step taken by the program at t_{n-1}. This

```
condition is used to check if there are slowly varying nodes within the
subnetwork Ng.
    The subnetwork N_ will remain latent as long as
(4) V V 
m=1,2,\ldots..
```

The percentage Latency in the program SLATE is calculated by the following formula;

Latency $=1-$ inlatn/itotal
Where inlatn $=$ Number of nonlatent subcircuits times the number of iterations for those subcircuits.
itotal $=$ Total number of subcircuits times the total number of iterations.

3.2. Experimental Results

A number of example circuits were simalated in an attempt to benchmark SLATE against SPICE2 (Version G.1) ${ }^{1}$. In this section, a small selection of examples is presented to give a comparison between the transient analysis portion of the two simnlators.

In order to see the latency advantage in SLATE, the circuits chosen were an iterative array of a few basic subnetworks. The array size was varied to obtain a range of execution time. The idea was to show the following relationship between the execntion time and the number of

1 Version G.5A was not used due to convergence problems for some of the example circuits we simulated.
devices in the circuit.

$$
t \propto x^{n}
$$

Abstract

where t is the time taken for transient analysis, I is the number of transistors, and n is the rate at which the time increases with the increasing size of the circuit. The problem with the above approach is that, as the circuit size increases, the transient interval for which the circuit is simalated also increases. This does not give a true mesure of the execution time t as function of circuit size only. In order to resolve this problem, the execution time tas normalized to t " by dividing the execution time with the respective time interval, for which the circuit was simplated. Therefore, we hoped to show that

$$
t^{\prime} \times x^{n}
$$

and that the rate of increase n, in SLATE is considerably less than that in SPICE2.

1.1.1. Example 3.1

Figure 3.1 shows the chain of inverters circuit which was analyzed by SLATE and SPICE2. This circnit has inherent latency which increases with the number of levels of logic gates. The number of levels was increased from 2 to 25, Which resulted in an almost no latency to 46\% latency at 25 levels in SLATE. Tables $3.1(a)$ and $3.1(b)$ sumarize the results of these simalations. It may be noted that even at no latency SLATE takes less than half the time taken by SPICE2 (Version G.1). This is due to other featres in SLATE, like a better reordering scheme, a

	Table 3.1(a)	Chain of Inverters (SLATE)				
INYERTERS	PERIOD	NUMTTP	NUMNIT	TRANAN	MOSFETS	LATENCY
2	36 ns	61	137	7.55 s	4	.0304
4	46 ns	62	161	14.2 s	8	.1214
6	56 ns	62	172	22.4 s	12	.1755
8	66 ns	71	217	32.3 s	16	.2632
10	76 ns	63	197	36.2 s	20	.3072
20	126 ns	63	255	73.8 s	40	.4600
25	176 ns	64	258	96.1 s	50	.4231

Table 3.1(b) Chain of Inverters (SPICE)

INYERTERS	PERIOD	NUMTTP	NUMNIT	TRANAN	MOSFETS
2	36 ns	76	192	15.6 s	4
4	46 ns	77	211	29.0 s	8
6	56 ns	87	252	53.6 s	12
8	66 ns	90	264	73.0 s	16
10	76 ns	97	295	102.1 s	20
20	126 ns	129	456	264.2 s	40
25	176 ns	156	560	407.8 s	50

where

```
PERIOD = Simulation interval (nanoseconds).
NUMTTP = Number of time points.
NUMNIT = Number of iterations for transient analysis.
TRANAN = Transient analysis time (seconds).
```

piecevise nonlinear approach which reduces the number of iterations needed to find the solution, and a more optimized code. Figure 3.2 shows a graph of normalized time against the number of transistors. Even though the initial slope of both the curves is about the same, i.e., $n=0.59$ for SLATE and $n=0.72$ for SPICE2, it gets higher $n=1.03$ for SPICE2 and lower $n=0.33$ for SLATE, as the number of devices increases ($x \geq 20$). This shows a rate of increase in SPICE2 three times higher than in SLATE. Therefore, in this particalar example a clear advantage of the latency scheme is seen. The input deck used in this example is given in the Appendiz (sec. A.10) at the end of the thesis.

3.2.2. Example 3.2

In this example a more complex circuit was analyzed. The number of levels of logic gates is small and the interconnection network is more complicated. The circuit is a full adder circuit realized by MOS NAND gates, as shown in Figure 3.3. Level 2 MOS model was used in SPICE2 and the charge conserving MOS model described in Chapter 2 was used in SLATE. The number of adder stages was increased from one, to two, to four, and the circrit was exercised with two different patterns of inputs. The first pattern applied was the one in which all the inputs to the adder were changed from 0 to 5 V . This case, referred to as "all" from here on, resulted in maximum activity in the circrit. In the second pattern applied, only one inpot of the first stage was changed. This case, referred to as "one" from here on, resulted in minimum activity in the circrit. The above two cases werc simulated on SLATE, with and without taking adzantage of the latency scheme. Tables $\mathbf{3 . 2 (a)}$, 3.2(b), and $3.2(c)$ smmarize the simulation results for the "all" case,

Figure 3.2 Simalation Data for Chain of Inverters

 ๔

事

Figure 3.3(a) Subcircuits (b) One Bit Full Adder
and Tables $3.3(a), 3.3(b)$, and $3.3(c)$ summarize the results for the "one" case. These results were obtained for an absolute current error tolerance of 1 microamp, due to the convergence problems in SPICE2 for a tighter error tolerance of 1 picoamp.

Figure 3.4 shows the graph of these simulation results. Case "all" is denoted by solid squares for SPICE2, solid circles for SLATE with latency exploitation, and hollow triangles for SLATE without latency exploitation. Case "one" is denoted by hollow squares for SPICE2, hollow circles for SLATE with latency exploitation, and solid triangles for SLATE withont latency exploitation. Several conclusions can be mede from the curves, which are as follows.

In the case "all", SPICE2 shows an increase in slope from $n=0.373$ to $n=0.658$ as the number of adder stages increases from two to four, whereas, SLATE with latency exploitation shows a constant rate of increase $n=0.483$, which is less than the rate of increase in SPICE 2 for two or more adder stages. SLATE without latency exploitation initially shows a rate of increase which is approximately the same as in SLATE With latency exploitation. It may also be noted that, in SLATE, the case without latency takes a lesser amount of transient analysis time than the case with latency exploitation for adder stages less than two, bnt the rate of increase, in the no latency exploitation case, increases from $n=0.469$ to $n=0.693$ as the stages increase. This may be explained by the fact that for less than two stages the circuit does not have very much latency, but an additional overhead is paid in expanding the subcircaits and checking the criteria in the latency exploitation case.

Table 3.2(a) Adder Circait- All Inputs Changing (SLATE with Latency)

STAGES	PERIOD	NUPTIP	NOMNIT	TRANAN	MOSFETS	LATENCY	
1	125 ns	58	159	61.1 s	33	.1159	
2	195 ns	58	197	133.2 s	66	.2199	
4	265 ns	58	202	252.9 s	132	.2305	

Table 3.2(b) Adder Circuit-All Inputs Changing (SLATE without Latency)

STAGES	PERIOD	NUMTTP	NUMNIT	TRANAN	MOSFETS	LATENCY	
1	125 ns	58	159	55.1 s	33	0	
2	195 ns	58	184	119.0 s	66	0	
4	265 ns	58	199	261.4 s	132	0	

STAGES	PERIOD	NUMTTP	NOMNIT	TRANAN	MOSFETS	LATENCY
1	125ns	58	142	43.9 s	33	. 2556
2	195ns	58	142	79.6 s	66	. 3327
4	265ns	58	148	146.4 s	132	. 4079

Table 3.3(b) Adder Circuit- One Input Changing (SLATE without Latency)

STAGES	PERIOD	NUMTTP	NUMNIT	TRANAN	MOSFETS	LATENCY	
1	$125 n s$	58	142	45.7 s	33	0	
2	$195 n s$	58	138	85.5 s	66	0	
4	$265 n s$	58	143	168.6 s	132	0	

Table 3.3(c) Adder Circuit- Onc Input Changing (SPICE)
STAGES PERIOD NUSTTP NOMNIT TRANAN MOSFETS

125 ns	80	171	107.0 s	33
195 ns	79	175	206.9 s	66
265 ns	73	156	365.2 s	132

Figure 3.4 Simalation Data for Adder Circuit

In the "one" case, the transient analysis time taken in all three cases is reduced due to lesser activity in the circrit. This is because SPICE2 has latency exploitation at the device level, i.e., if the solution has not changed from the previous time point, the nonlinear devices are not linearized, and the previons time point results are used. Also, since there is less activity in the circuit, the step size taken by the program increases. These two facts account for the decrease in transient analysis time in SPICE2. In SLATE, it may be noted that the latency exploitation scheme starts paying off from the very beginning. This is due to the fact that the circuits have more latency (i.e., from Table $3.3(a)$ latency exploitation is from 25.5% to 40.8\%). The input data deck for this example is included in the Appendix (sec. A.10) at the end of the thesis.

APPENDIX

USER'S GUIDE TO SLATE

SLATE (a Simulator with Latency and Tearing) is an electronic circuit simulation program that was originally developed from SPICE2 by Ping Yang of The Coordinated Science Laboratory and the Department of Electrical Engineering at The University of Illinois [5] and later modified by Ping Yang at the Central Research Laboratory of Texas Instruments. SLATE is particularly well suited for the simulation of Large Scale Integrated (LSI) circuits due to the implementation of algorithms which exploit the repetitiveness and latency properties in these circuits. Exploitation of these properties provides savings in the storage requirements and computation time, the two very important resources for LSI circuit simulators. Circuits simulated may contain resistors, capacitors, inductors, mutual inductors, independent voltage and current sources, four types of dependent sources, and the four most common semiconductor devices: diodes, BJT's, JFET's, and MOSFET's. SLATE has built-in models for the semiconductor devices, and the user need specify only the pertinent model parameter values. The model for the BJT is based on the integral charge model of Gummel and Poon [8]; however, if the Gummel-Poon parameters are not specified, the model reduces to the simpler Ebers-Moll model. In either case, charge storage effects and ohmic resistances may be included. The diode model can be used for either junction diodes or Schottky barrier diodes. The JFET model is based on the FET model of Shichman and Hodges [17]. The MOSFET model is a modified Shichman and Hodges model developed by Ping Yang
[6], [7]. The model is charge conserving with short channel and subthreshold effects built into it.
A.1. Types of Analysis
A.1.1. DC analysis

The de analysis portion of SLATE determines the dc operating point of the circuit with capacitors opened and inductors shorted. A de analysis is antomatically performed prior to a transient analysis to determine the transient initial conditions. The de anelysis can also be used to generate dc transfer curves: a specified independent voltage or current source is stepped over a user-specified range and the de output variables are stored for each sequential source value. The dc analysis options are specified on the .DC and . OP control cards.

If one desires to see the small-signal models for nonlinear devices in conjunction with a transient analysis operating point, then the . OP card must be provided. The dc bias conditions will be identical for each case, but the more comprehensive operating point information is not available to be printed when transient initial conditions are computed.

A.1.2. Transiont analysis

The transient analysis portion of SLATE computes the transient output variables as a function of time over a aser specified time

Abstract

interval. The initial conditions are antomatically determined by a de analysis. All sources which are not time dependent (for example, power supplies) are set to their dc velue. The transient time interval is specified on the .TRAN card.

A.1.3. Analysis at different temperatures

All input data for SLATE are assumed to have been measured at 27 deg $C(300$ deg $X)$. The simulation also assmes a nominal temperature of 27 deg C. The circuit can be simulated at other temperatures by using a .TEMP control line.

A.2. Convorgence

Both de and transient solutions are obtained by an iterative process which is terminated when both of the following conditions hold:

1) The nonlinear branch currents converge to within a tolerance of
0.1 percent or 1 picoamp (1.0E-12 Amp), whichever is larger.
2) The node voltages converge to within a tolerance of 0.1 percent or 1 microvolt (1.0E-6 Volt), whichever is larger.

Althongh the algorithm used in SLATE has been found to be very reliable, in some cases it will fail to converge to solution. When this failure occurs, the program will print the node voltages at the last iteration and terminate the job. In such cases, the node voltages that are printed are not necessarily correct or even close to the correct solntion.

Failure to converge in the de analysis is usually due to an error in specifying circrit connections, element values, or model parameter values. Regenerative switching circuits or circuits with positive feedback probably will not converge in the dc analysis unless the OFF option is used for some of the devices in the feedback path, or the . FORCE card is used to force the circuit to converge to the desired state.

A.3. Inpot Format

The input format for SLATE is of the free format type. Fields on a card are separated by one or more blanks, a comma, an equal ($=$ sign, or a left or right parenthesis; extra spaces are ignored. A card may be continued by entering a + (plus) in column 1 of the following card: SLATE continues reading beginning with column 2.

A name field mast begin with a letter (A through Z) and cannot contain any dolimiters. Only the first eight characters of the name are used.

A number field may be an integer field (10, -20), a floating point field (3.14159), either an integer or floating point number followed by an integer exponent (3E-11, $1.25 E 4$), or either an integer or a floating point number followed by one of the following scale factors:

$t=1 E 12$	$g=1 E 9$	meg=1E6	$\mathrm{k}=1 \mathrm{E} 3$	$\mathrm{mil}=25.4 \mathrm{E}-6$
$m=1 \mathrm{E}-3$	$\mathrm{r}=1 \mathrm{E}-6$	$\mathrm{n}=1 \mathrm{E}-9$	$\mathrm{p}=1 \mathrm{E}-12$	$\mathrm{f}=1 \mathrm{E}-15$

Abstract

Letters immediately following a number that are not scale factors are ignored, and letters immediately following a scale factor are ignored. Hence, $10,10 \mathrm{~V}, 10 \mathrm{VOLTS}$, and 10 HZ all represent the same number, and M, MA, MSEC, and MOHOS all represent the same scale factor. Note that $1000,1000.0,1 E 3,1.0 \mathrm{E} 3$, and 1 x all represent the same number.

A.4. Circuit Description

The circuit to be analyzed is described to SLATE by a set of element cards, which define the circuit topology and element values, and a set of control cards, which define the model parameters and the run controls. The first card in the inpot deck must be a title card, and the last card must be a .END card. The order of the remaining cards is arbitrary (except, of course, that continuation cards must immediately follow the card being continued).

Each element in the circuit is specified by an olement card that contains the element name, the circuit nodes to which the element is connected, and the valnes of the parameters that determine the electrical characteristics of the element. The first letter of the element name specifies the element type. The format for the SLATE element types is given in what follows. The strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric strings. For example, a resistor name must begin with the letter R and can contain from one to eight characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Data fields that are enclosed in $1 t$ '〈' and gt ' >'
signs are optional. All indicated panctuation (parentheses, equal signs, etc.) are required, With respect to branch voltages and currents, SLATE uniformly uses the associated reference convention (current flows in the direction of voltage drop).

Nodes must be nonnegative integers but need not be numbered sequentially. The datum (ground) node mast be numbered zero. Each node in the circuit must have a de path to ground. Every node must have at least two connections except for MOSFET substrate nodes (which have two internal connections anyway).
A.5. Title Card; Comment Cards; and End Card
A.S.1. Title card

Examples:
DYNAMIC BOOTSTRAP CIRCUIT

This cardmust be the first card in the input deck. Its contents are printed as the heading for each section of output.

A.s.2. End cerd

Examples:
.END

This card must always be the last cardin the input deck. Note

that the period is an integral part of the name.

A.S.3. Comment card

General Form

> * 〈any comment〉

Examples:

- STAGE ONE OF RIPPLE CARRY ADDER
* MAY THE FORCE BE WITH MY CIRCUIT

The asterisk in the first column indicates that this card is a comment card. Comment cards may be placed anywhere in the circuit description.

A.6. Element Cards

A.6.․․ Resistors

General form

RXXXXXXX N1 N2 VALUE

Examples:

R1 12100
RC1 1217 1K

N1 and N2 are the two element nodes. VALUE is the resistances (in ohns) and may be positive or negative but not zero.

A．6．2．Capacitors and inductors

Goneral form

CXXXXXXX $\mathrm{N}+\mathrm{N}-\operatorname{VALUE}$ 〈IC＝INCOND〉
LYYYYYY $\mathrm{N}+\mathrm{N}$ VALUE〈IC＝INCOND〉

Examples：

CBYP 130 1UF
$\operatorname{cosC} 1723$ 10U IC＝3V
LLINE 1012 1UH
LSHUNT 23 5U IC＝10．5MA
$N+$ and N are the positive and negative element nodes， respectively．VALUE is the capacitance in Farads or inductance in Henries．The（optionsl）initial condition is the initial（time－zero） value of capacitor voltage（in volts）or initial（time－zero）value of inductor current（in amperes）that flows from $N+$ ，through the inductor， to N－．Note that the initial conditions（if any）apply＇only＇if the UIC option is specified on the ．TRAN cerd．

Nonlinear capacitors and inductors can be described as：

General form
CXXXXXX N＋N－POLY COC1 C2 ．．．〈IC＝INCOND〉
LIYIYYYY N＋N－POLY LO L1 L2 ．．．〈IC＝INCOND〉

CO C1 C2 ．．．（and LO L1 L2 ．．．）are the coefficients of a polynomial describing the element value．The capacitance is expressed as a function of the voltage across the element，while the inductance is a
function of the current through the inductor. The value is computed as

```
value=CO+C1*V+C2*V**2+...
value=LO+L1*I+L2*V**2+...
```

where V is the voltage across the capacitor and I is current through the inductor.
A.6.3. Coupled mutual inductors

General form
KXXXXXXXX LYYYYYYY LZZZZZZZZ VALUE
Examples:
K10 LAA LBB 0.99
KL1L2 L1 L2 0.8

LYYYYYYY and LZZZZZ22 are the names of the two coupled inductors, and VALUE is the coefficient of coupling, K, which must be greater than 0 and less than or equal to 1 . Using the 'dot' convention, place a 'dot' on the first node of each inductor.
A.6.4. Linear dependent sources

SLATE allows circuits to contain linear dependent sources characterized by any of the four equations

$$
i=g^{s} v \quad v=e^{*} v \quad i=f^{e^{2}} \quad v=h^{m}
$$

where g, e, f, and h are constants representing transconductance,

```
voltage gain, current gain, and transresistance, respectively.
```


A.6.4.1. Linear voltage controlled current sources

General form
GXXXXXXX $\mathrm{N}+\mathrm{N}-\mathrm{NC}+\mathrm{NC}-\mathrm{VALUE}$
Examples:
G1 200500.1 MEHO
$N+$ and N - are the positive and negative nodes, respectively.
Current flow is from the positive node, through the source, to the negative node. NC+ and NC- are the positive and negative controlling nodes, respectively. VALUE is the transconductance (in mhos).
A.6.4.2. Linear voltage controlled voltage sources

General form
EXXXXXXX N+ N- NC+ NC- VALUE
Examples:
E1 231412.0
N^{+}is the positive node, and N - is the negative node. NC+ and NCare the positive and negative controlling nodes, respectively. VALUE is the voltage gain.

A.6.4.3. Linear corrent controlled current sources

General form

FXXXXXXX N+ N- VNAM VALUE

Examples:
F1 135 VSENS 5
N^{+}and N - are the positive and negative nodes, respectively. Current flow is from the positive node, through the source, to the negative node. VNAM is the name of a voltage source through which the controlling current flows. The direction of positive controling current flow is from the positive node, through the source, to the negative node of VNAM. VALUE is the current gain.
A.6.4.4. Linear current controlled voltage sources

General form
HXXXXXXXX $\mathrm{N}+\mathrm{N}-$ VNAM VALUE
Examples:
HX 517 VZ 0.5K
$N+$ and N - are the positive and negative nodes, respectively. VNAM is the name of voltage source through which the controliing current flows. The direction of positive controlling current flow is from the positive node, through the source, to the negative node of VNAM. VALUE

```
is the transresistance（in ohms）．
```


A．6．5．Indepondent sources

General form
VXXXXXXX $\mathrm{N}+\mathrm{N}$－〈（DC〉 DC／TRAN VALUE〉
IYYYYYY $\mathrm{N}^{+} \mathrm{N}-\langle\langle D C\rangle$ DC／TRAN VALUE〉

Examples：
VCC 100 DC 6
vieas 129
$\mathrm{N}+$ and N －are the positive and negative nodes，respectively．Note that voltage sources need not be grounded．Positive current is assumed to flow from the positive node，through the source，to the negative node．A curfent source of positive value will force current to flow from the $N+$ node，through the source，and into the N－node．Voltage sources，in addition to being used for circait excitation，are the ＇ammeters＇for SLATE，that is，zero valued voltage sources may be inserted into the circuit for the purpose of measuring current．They will，of course，have no effect on circuit operation since they represent short circuits．

DC／TRAN is the de and transient analysis value of the source．If the source value is zero both for de and transient analyses，this value may be onitted．If the source value is time－invariant（e．g．．，a power supply），then the value may optionally be preceded by the letters DC．

Abstract

Any independent source can be assigned a time-dependent value for transient analysis. If a source is assigned a time-dependent value, the time-zero value is used for dc anslysis. There are forr independent source functions: palse, exponential, piece-wise linear, and sinusoidal. If parameters other than source values are omitted or set to zero, the default vaiues shown will be assumed. (TSTEP is the printing increment and TSTOP is the final time (see the .TRAN card for explanation)).

Pulse: PULSE(V1 V2 TD TR TF PW PER)
Examples:
VIN 30 PULSE(-5 5 1NS 1NS 1NS 50NS 100NS)

parameters	default values	units
V1 (initial vaiue)		volts or amps
V2 (pulsed value)		volts or amps
TD (delay time)	0.0	seconds
TR (rise time)	0.0	seconds
TF (fall time)	0.0	seconds
PW (pulse width)	TSTOP	seconds
PER(period)	TSTOP	seconds

A single pulse so specified is described by the following table:

time	Value
0	V1
TD	V1
TD+TR	V2
TD+TR+PW	V2
TD+TR+PW+TF	V1
TSTOP	V1

Intermediate points are determined by linear interpolation.

Exponential: EXP(V1 V2 TD1 TAU1 TD2 TAU2)

Examples:
VIN 30 EXP(-5 0 2NS 30NS 60NS 40NS)

parameters	default values	units
V1 (initial value)		volts or amps
V2 (pulsed value)		volts or amps
TD1 (rise delay time)	0.0	seconds
TAU1 (rise time constant)	TSTEP	seconds
TD2 (fall delay time)	TD1+TSTEP	seconds
TAD2 (fall time constant)	TSTEP	seconds

The shape of the waveform is described by the following table:

time	value
0 to TD1	V1
TD1 to TD2	V1+(V2-V1)*(1-exp(-(time-TD1)/TAU1))
TD2 to TSTOP	$\mathrm{V} 1+(\mathrm{V} 2-\mathrm{V} 1) *(1-\exp (-(\mathrm{time}-\mathrm{TD} 1) / \mathrm{TAU1})$)
	+(V1-V2)*(1-exp(-(time-TD2)/TAD2))

Piece-Tise Linear: PWL(T1 V1 〈T2 V2 T3 V3 T4 V4 ...〉)
Examples:
VCLOCK 75 PWL ($0-7$ 10NS -7 11NS -3 17NS $-318 N S-750 N S-7)$
Parameters and defanlt values
Each pair of values (Ti, Vi) specifies that the value of the source is Vi in volts or amps) at time T i. The value of the source at intermediate values of time is determined by using linear interpolation on the input values

Sinusoidal:

Examples:

VIN $30 \operatorname{SIN}(05$ 100MEG 1NS 1E10)

parameters	Lefanlt value	units	
VO	(offset)		volts or amps
VA	(amplitude)	volts or amps	
FREQ (frequency)	1/TSTOP	Hz	
TD	(delay)	0.0	seconds
THETA (damping factor)	0.0	$1 / s e c o n d s$	

The shape of the waveform is described by the following table: time value

0 to TD Vo
TD to TSTOP VO + VA* $\exp (-(t i m e-T D) * T H E T A) *$
sine(twopi*FREQ* (time +TD))

A.7. Semiconductor Devices

The elements that have been described to this point typically require only a few parameter values to specify completely the electrical characteristics of the element. However, the models for the four semiconductor devices that are included in the SLATE program require many parameter values. Moreover, many devices in a circuit often are defined by the same set of device model parameters. For these reasons, a set of device model parameters is defined on a separate .MODEL card and assigned a unique model name. The device element cards in SLATE then reference the model name. This scheme alleviates the need to specify all of the model parameters on each device element card.

Each device element card contains the device name, the nodes to which the device is connected, and the device model name. In addition,
other optional parameters may be specified for each device: geometric factors and an initial condition.

The area factor used on the diode, BJT and JFET device card determines the number of equivalent parallel devices of a specified model. The affected parameters are marked with an asterisk under the heading 'area' in the model descriptions below. Several geometric factors associated with the channel and the drain and source diffusions can be specified on the MOSFET device card.

Two different forms of initial conditions may be specified for dovices. The first form is included to improve the dc convergence for circuits that contain more than one stable state. If a device is specified OFF, the dc operating point is determined with the terminal voltages for that device set to zero. After convergence is obtained, the terminal voltages are no longer held at zero and the program continnes to iterate to obtain the exact value for the terminal voltages. If a circuit has more than one de stable state, the OFF option can be used to force the solntion to correspond to a desired state. If a device is specified OFF when in reality the device is conducting, the program will still obtain the correct solntion (assuming the solutions converge) but more iterations may be required. The .INITIAL cerd serves a similar purpose as the OFF option. The .INITIAL option is easier to apply and is the preferred means to aid convergence.

The second form of initial conditions is specified for use with the transient analysis. These are true 'initial conditions' as opposed to the convergence aids bove. See the description of .TRAN card for a

```
detailed explanation of initial conditions.
```


A．1．1．Device element cards

A．I．1．1．Junction diodes

General form
DXXXXXXX N＋N－MNAME 〈AREA〉〈OFF〉〈IC＝VD〉

Examples：

DOUT 78 DIODE1
DIN 37 DMOD 2．0 IC＝0．3
N^{+}and N －are the positive and negative nodes，respectively．MNAME is the model name，AREA is the area factor，and OFF indicates an （optional）starting condition on the device for dc analysis．If the area factor is omitted，a value of 1.0 is assumed．The（optional） initial condition specification using $I C=V D$ is intended for use with the DIC option on the ．TRAN card，when a transient analysis is desired starting from other than the quiescent operating point．

A．1．1．2．Bipolar junction transistors（BJTs）

General form

QXXXXXXX NC NB NE 〈NS〉 MNAME 〈AREA〉〈OFF〉〈IC＝VBE，VCE〉

Examples：

Q5 102030 QMOD IC $=0.8,0.5$
Q10 $\quad 15 \quad 25 \quad 35 \quad 20$ MOD1

Abstract

$N C$ ，$N B$ ，and $N E$ are the collector，base，and emitter nodes， respectively．NS is the（optional）substrate node．If unspecified， ground is used．MNAME is the model name，AREA is the area factor，and OFF indicates an（optional）initial condition on the device for the dc analysis．If the area factor is omitted，a value of 1.0 is assumed． The（optional）initial condition specification using IC＝VBE，VCE is intended for use with the UIC option on the ．TRAN card，when a transient analysis is desired starting from other than the quiescent operating point．

A．1．1．3．Junction field effect transistors（JFETs）

General form
JXXXXXXX ND NG NS MNAME 〈AREA〉〈OFF〉〈IC＝VDS，VGS〉

Examples：

J1 123 JMOD1 OFF

ND，NG，and NS are the drain，gate，and source nodes，respectively． MNAME is the model name，AREA is the area factor and OFF indicates an （optional）initial condition on the device for dc analysis．If the area factor is omitted，a value of 1.0 is assumed．The（optional）initial condition specification，using IC＝VDS，VGS is intended for use with the UIC option on the ．TRAN card，when a transient analysis is desired starting from other than the quiescent operating point．

A．1．1．4．MOSFET＇s

General form
MXXXXXXX ND NG NS NB MNAME 〈L＝VAL〉〈W＝VAL〉〈AD＝VAL〉〈AS＝VAL〉
＋〈ASD＝VAL〉〈ASS＝VAL〉〈RDD＝VAL〉
$+\langle R S S=V A L\rangle\langle C G S=V A L\rangle\langle C G D=V A L\rangle$
$+\langle C G B=V A L\rangle\langle O F F\rangle\langle I C=V D S, V G S, V B S\rangle$
Examples：

MIN	24	2	0	20	TYPE1						
MLD	2	17	6	10	MODM $L=5$	$\Pi=2$					
MPT	2	16	6	10	MODM	5	2				
M10	2	9	3	0	MOD1	$L=10$	$W=5$	$A D=100$	$A S=100$	ASD＝40	ASS $=40$
$M 1$	2	9	3	0	MOD1	10	5	2	2		

ND，NG，NS，and $N B$ are the drain，gate，sonrce，and bulk （substrate）nodes，respectively．MNAME is the model name．L and \boldsymbol{H} are the channel length and width，in microns or mils．$A D$ and $A S$ are the areas of the drain and source diffusion windows，while ASD and ASS are the areas of the drain and source sidewalls．The areas can be specified in micron ${ }^{2}$ or mil ${ }^{2}$ ．Fignre A． 1 shows the geometrical dimensions of a MOSFET device．The keyword MICRON or MIL can be nsed to specify micron or mil，respectively，on the ．MODEL card．The default unit is micron．RDD and RSS represent the equivalent drain and source resistances．These resistances can be computed internally by SLATE，using the formula $R X X=R X * A X /(W-W R)^{2}$ ，where $R X$ stands for $R S$ and $R D$ which are sheet resistances specified on the ．MODEL card or the user muy specify RSS and RDD on the MOSFET olement card if the above does not correctly model the resistances．OFF indicates an（optional）initial condition on the

FP-7794

Figure A. 1 MOSFET Geometrical dimensions

```
device for dc analysis. The (optional) initial condition specification
using IC=VDS,VGS,VBS is intended for use with the UIC option on the
.TRAN card, when a transient analysis is desired starting from other
than the quiescent operating point.
```


A.1.2. MODEL card

General form
.MODEL MNAME TYPE (PNAME1=PVAL1 PNAME2=PVAL2 ...)
Examples:
.MODEL LOAD1 NMOS VTO $=-2 \quad \mathrm{KP}=1 \mathrm{E}-5 \mathrm{BE}=.52 \mathrm{COX}=1 \mathrm{~F}$

The .MODEL card specifies a set of model parameters that will be used by one or more devices. MNAME is the model name, and TYPE is one of the following seven types:

NPN	NPN BJT model
PNP	PNP BJT model
D	diode model
NJF	N-channel JFET model
PJF	P-channel JFET model
NOS	N-channel MOSFET model
PMOS	P-channel MOSFET model

[^1]
A.1.2.1. Diode mode1

The dc characteristics of the diode are determined by the parameters IS and N. An ohmic resistance, RS, is included. Charge storage effects are modeled by a transit time, $T T$, and a nonlinear depletion layer capacitance which is determined by the parameters CJO, PHI, and M. The temperature dependence of the saturation current is defined by the parameters EG, the energy-gap and PT, the saturation current temperature exponent. The equation is as follows;

$$
\operatorname{IS}(T)=\operatorname{IS}(T N O M) * E X P(E G *(T / T N O M-
$$

1) $* Q /(N * K * T)) *(T / T N O M) * *(P T / N)$

Table A. 1 list the model parameters for the diode.

Table A. 1 Diode Model Parameters

name	parameter	units	default	example	area
IS	saturation current	A	1.0E-14	1.0E-14	*
RS	ohmic resistance	Ohm	0	10	*
N	emission coefficient	-	1	1.0	
TT	transit-time	sec	0	0.1 ns	
CJO	zero-bias junction capecitance	F	0	2pF	*
PHI	junction potential	V	1	0.6	
M	grading coefficient	-	0.5	0.5	
EG	activation energy	eV	1.11	$\begin{aligned} & 1.11 \mathrm{Si} \\ & 0.69 \mathrm{Sbd} \\ & 0.67 \mathrm{Ge} \end{aligned}$	
PT	saturation-current temperature exponent	-	3.0	$\begin{aligned} & 3.0 \mathrm{jn} \\ & 2.0 \mathrm{Sbd} \end{aligned}$	

A.1.2.2. BJT mode1

The bipolar junction transistor model in SLATE is an adaptation of the integral charge control model of Gummel and Poon [8]. This modified Gumel-Poon model extends the oxiginal model to include several effects at high bias levols. The model will antomatically simplify to the simpler Ebers-Moll model when certain parameters are not specified. The parameter names used in the modified Gummel-Poon model have been chosen to be more easily understood by the program user and to reflect better both physical and circuit design thinking.

The dc model is defined by the parameters IS, $B F, N E, C 2$, and IK Which determine the forward current gain characteristics, $I S, B R, N C$, C4, IKR, which determine the reverse current gain characteristics, and VA and VB which determine the output conductance for formard and reverse regions. Three ohmic resistances RB, RC, and RE are included. Base charge storage is modeled by forward and reverse transit times, TF and TR, and nonlinear depletion layer capacitances which are determined by CJE, PE, and ME for the B-E jnnction, CJC, PC, and MC for the B-C junction and CCS, for the C-S (Collector-Substrate) junction. The temperature dependence of the saturation current, IS, is determined by the energy-gap, EG, and the saturation current temperature exponent, PT. The model parameters for the BJT are listed in Table A.2. The temperature dependences are defined by the following equations;

$$
\begin{aligned}
& \operatorname{IS}(T)=\operatorname{IS}(T N O M) * \operatorname{EXP}\left(E G *(T / T N O M-1) * Q /\left(K^{*} T\right)\right) *(T / T N O M) * * P T \\
& C 2(T)=C 2(T N O M) *(I S(T N O M) / I S(T)) * *(1-1 / N E) \\
& C 4(T)=C 4(\text { TNOM }) *(\operatorname{IS}(\text { TNOM }) / I S(T)) * *(1-1 / N C)
\end{aligned}
$$

Table A. 2 BJT Model Parameters

name	parameter	units	default	example	area
BF	ideal forward beta	-	100	100	
BR	ideal reverse beta	-	1	0.1	
IS	saturation current	A	1.0E-14	$1.0 \mathrm{E}-15$	*
RB	base resistance	Ohms	0	100	*
RE	emitter resistance	Ohms	0	1	*
RC	collector resistance	Ohms	0	10	*
VA	forward Early voltage	V	infinite	200	
VB	reverse Early voltage	V	infinite	200	
II	forward high-current knee current	A	infinite	10ma	*
C2	forward low-current nonideal base current coefficient	-	0	100	
NE	B-E emission coefficient	-	2	2	
IER	reverse high-current knee current	A	infinite	10ma	*
C4	reverse low-current nonideal base current coefficient	-	0	1	
NC	B-C emission coefficient	-	2	2	
TF	forward transit time	sec	0	0.1ns	
TR	reverse transit time	sec	0	10ns	
CCS	zero-bias collectorsubstrate capacitance	F	0	2pF	*
CJE	B-E zero-bias depletion capacitance	F	0	2pF	*
PE	B-E bailt-in potential	V	1.0	0.7	
ME	B-E grading coefficient	-	0.5	0.5	
CJC	B-C zero-bias depletion capacitance	F	0	2pF	*
PC	B-C built-in potential	V	1.0	0.5	
MC	B-C grading coefficient	-	0.5	0.33	
EG	energy gap	eV	1.11	$\begin{aligned} & 1.11 \mathrm{Si} \\ & 0.67 \mathrm{Ge} \end{aligned}$	
PT	saturation current exponent	-	3.0	3.0	

A.1.2.3. JFET model

The JFET model is derived from the FET model of Shichman and Hodges [17]. Table A.3 list the model parameters for the JFET. The dc characteristics are defined by the parameters VTO and BETA, which determine the variation of drain current with gate voltage, LAMBDA, which determines the output conductance, and IS,the saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are included. Charge storage is modeled by nonlinear depletion layer capacitances for both gate junctions which vary as the $-1 / 2$ power of junction voltage and are defined by the parameters CGS, CGD, and PB. The temperature dependence of the saturation current,IS, is defined by the following equation;

$$
\operatorname{IS}(T)=\operatorname{IS}(T N O M) * \operatorname{EXP}(1.11 *(T / T N O M-1) * Q /(X * T))
$$

Table A. 3 JFET Model Parameters

name	parameter	units	default	example	area
VIT	threshold voltage	V	-2.0	-2.0	
BETA	transconductance parameter	A/ V^{2}	$1.0 \mathrm{E}-4$	$1.0 \mathrm{E}-3$	*
LAMBDA	channel length modulation parameter	1/V	0	1.0E-4	
RD	drain ohmic resistance	Ohm	0	100	*
RS	source ohmic resistance	Ohm	0	100	*
CGS	zero-bias G-S junction capacitance	F	0	5pF	*
CGD	zero-bias G-D junction capacitance	F	0	1pF	*
PB	gate junction potential	V	1	0.6	
IS	gate saturation current	A	1.0E-14	1.0E-14	*

A.7.2.4. MOSFET model

The dc characteristics of the MOSFET are defined by the device parameters VTO, KP, LAMBDA, THETA, PHI and BE. VTO is positive for enhancement mode and negative for depletion mode N-channel and P-channel devices. The short channel effects are modeled by the ALPHA, DE, and GAMMA parameters, and the subthreshold current is defined by parameters KPS and NG. Charge storage is modeled by three constant capacitors, CGS, CGD, and CFR, which represent overlap and fringing capacitances, by the nonlinear thin-oxide capacitance which is distribated among the gate, source, drain, and bulk regions, and by the nonlinear depletionlayer capacitances for both substrate junctions, divided into bottom and periphery, which vary as the M and $M S$ power of junction voltage respectively, and are determined by the parameters CBD, CBS, KPN, M, MS and PB. Table A. 4 list the model parameters for the MOSFET. The temperature dependence of the parameters N, IS, KP, KPS, and VTO are defined as follows;

```
N(T) = 5.884E+15*EXP(-0.555*Q/K*T)*T**1.5
IS(T) = IC(TNOM)*(T/TNOM)**3*EXP(1.11*(T/TNOM-1)*Q/R*T)
```



```
EPS(T) = KPS (TNOM)* (T/TNOM)**(1.5+TCKP)
VTO(T) = VTO(TNOM) +TCVT*(T-TNOM)
```

Table A. 4 MOSFET Model Parameters

name	parameter	units	default	example
VT0	zero-bias threshold	V	0.0	1.0
N	voltage bulk doping concentration	cm^{-3}	$1 \mathrm{el5}$	1 el
KP	constant ($\mu_{n}{ }^{*} \varepsilon_{s i} /\left(2 * T_{o x}\right)$)	A / V^{2}	0.0	1.0E-5
BE	body effect parameter	V. 5	0.0	0.52
	$\mathrm{BE}=\left(2 \varepsilon_{\text {si }} \mathrm{qNa}\right)^{1 / 2} / \mathrm{C}_{0 \mathrm{x}}$			
LAMBDA	channel length modulation	-	0.01	0.05
RD	drain sheet resistance	Ohm/Sq	0.0	35.0
RS	source sheet resistance	Ohm/Sq	0.0	35.0
C0X	thin oxide capacitance	$\begin{aligned} & \text { F/mi1 }{ }^{2} \\ & \text { micron } \end{aligned}$	1.0 fF	$0.5 \mathrm{fF} / \mu \mathrm{m}^{2}$
TLD	```sum total of lateral diffusion of source and drain```	mils or microns	0.0	1.0
LGO	length of gate overlap	mils or microns	0.0	0.0
KPN	constant which models diffusion capacitance	$\mathrm{V}^{5} \mathrm{~F}$	1.0 fF	. 1 fF
	$\mathbf{K P N}=\left(\mathrm{qe}_{\mathrm{si}} \mathrm{Na} / 2\right)^{1 / 2}$			
THETA	mobility variation factor	1/V	0.028	0.028
IS	bulk junction saturation current	$\begin{aligned} & A / m i l^{2} \\ & \text { A/micron } \end{aligned}$	1.0E-14	1.0E-15
TCVT	temperature coefficient	V/deg C	-3E-3	-6E-3
TCKP	of VTO	-	-1.5	-1.4
	of $\mathbb{K P}$			
ALPHA	KPlinear/EPsaturation	- -3	1.0	1.2
NS	channel stop impurity concentration	cm^{-3}	1 E16	1E16
NG	subthreshold parameter	-	1.0	0.9
FC	forward bias nonideal junction capacitance coefficient	-	0.5	0.5
WR	width reduction factor for channel stop out-diffusion	mils or microns	0.0	0.0

Table A. 4 (cont.)
LR mask tolerance length reduction
$M \quad$ PN junction grading coefficient subthreshold parameter
KPS length of gate-drain overlap
LGOS
DE drain effect factor (short channel parameter)
GAMMA velocity saturation factor (short channel parameter) sidewall grading coefficient
TPOLY fringing capacitance parameter
mils or
0.0
0.0
mils or
0.0 microns
$\begin{array}{lll}- & 0.5 & 0.5\end{array}$
length of gate-source overlap
$0.0 \quad 0.0$

mils or	LGO	0.0
microns		

mils or LGO 0.0 microns
$\begin{array}{lll}- & 0.0 & 0.2\end{array}$
$-0.0 \quad 0.2$

microns
MIL keyword indicating the dimensions are in mils.
MICRON keyword indicating the dimensions are in microns.

A.8. Subcircuits

A subcircuit that consists of SLATE elements can be defined and referenced in a fashion similar to device models. The subcircuit is defined in the input deck by a grouping of element cards; the program then automatically inserts the group of elements wherever the subcircuit is referenced. Subcircuits have a very important usage in SLATE. The node tearing algorithm [5], used in SLATE to exploit latency, uses the subcircuits defined by the user as subnetworks which can be left out of the analysis if they are not active, i.e., latent. This ability is what makes SLATE different from other commonly used simalators, and provides savings in computer execution time. Therefore, to take advantage of the latency scheme in SLATE, the user must partition the network into subnetworks using the subcircuit command. An example of subcircuit usage is given at the end of this APPENDIX (sec. A.10).

A.8.1. SUBCKT card

General form
.SUBCET subnam N1〈N2 N3 ...〉
Examples:
.SUBCTT NAND2 10203040
A circuit definition is began with a . SUBCKT card. SUBNAM is the subcircuit name, and $N 1, N 2, \ldots$ are the external nodes, which cannot be zero. The group of element cards which immediately follow the . SUBCKI card define the subcircuit. The last card in a subcircuit definition is the .ENDS card (see below). Control and device model cards may not

Abstract

appear within a subcircuit definition；however，subcircuit definitions may contain anything else，including other subcircuit definitions and subcircuit calls（see below）．Note that any subcircuit definitions included as part of a subcircuit definition are strictly local（i．e．， such definitions are not known ontside the subcircuit definition）． Also，any element nodes not included on the ．SUBCKT card are strictly local，with the exception of 0 （ground）which is always global．

A．8．2．ENDS card

General form
．ENDS 〈SUBNAM〉

Examples：

．ENDS NAND2

This card must be the last one for any subcircit definition．The subcircait name，if included，indicates which subcircuit definition is being terminated：if omitted，all subcircuits being defined are terminated．The name is needed only when nested subcircuit definitions are being made．

A．8．3．Subcircuit calls

General form
SYYYYYYY N1 〈N2 N3 ．．．〉 SUBNAM
Examples：
X1 12234 NAND2

Abstract

Subcircuits are used in SLATE by specifying pseudo－elements beginning with the letter X ，followed by the circuit nodes to be used in expanding the subcircuit．

A．2．Control Cards

A．9．1．TEMP card

General form
．TEMP T1〈T2〈T3 ．．．〉〉
Examples：
．TEMP－65．0 25.0115 .0

This card specifies the temperatures at which the circuit is to be simulated．$T 1, T 2, \ldots$ are the different temperatures，in degrees C ． Temperatures less than -223.0 deg C are ignored．Model data are specified at TNOM degrees（see the ．OPTIONS card for TNOM）：if the ．TEMP card is omitted，the simulation will also be performed at a temperature equal to TNOM．

A．9．2．WIDTH card
 General form

．WIDTH IN＝COLNUM OUT＝COLNUM
Examples：
．WIDTH IN＝72 OUT＝133

COLNOM is the last colomn read from each line of input；the setting takes effect with the nert line read．The defarlt value for COLNUM is 80 ．The ont parameter specifies the output print width．

Permissible values for the output print width are 80 and 133.

A.2.3. OPTIONS card

General form
.OPTIONS OPT1 OPT2 ... (or OPT=OPIVAL ...)
Examples:
.OPTIONS NOACCT NOLIST NONODE

This card allows the user to reset program control and user options for specific simulation purposes. Any combination of the options listed in the Table A. 5 may be included, in any order. ' x ' (below) represents some positive number.

Table A. 5 Options Listing

OPTION EFFECT

NOACCT suppresses the printout of accounting and run time statistics.
NOLIST
suppresses the printort of the summary listing of the input data.
NOMOD suppresses the printout of the model parameters.
NONODE NOOPTS GMIN $=x$

RELTOL=x
ABSTOL=I
VNTOL=x
TRTOL=x suppresses the printing of the node table. suppresses the printing of option values. resets the value of GMIN, the minimum conductance allowed by the program. The defantt value is $1.0 \mathrm{E}-12$. resets the relative error tolerance of the program. The defanlt value is 0.001 (0.1 percent). resets the absolnte current error tolerance of the program. The defanlt value is 1 picoamp.
VNTOLax resets the absolute voltage error tolerance of the program. The default value is 1 microvolt. resets the transient error tolerance. The default value is 7.0. This parameter is an estimate of the factor by which SLATE overestimates the actual
runcation error.

Table A. 5 (cont.)

CHGTOL=1	resets the charge tolerance of the program.
NUPDGT $=2$	
	output variable values. X must satisfy the relation
	$0<\mathrm{x}$ < 8. The default value is 4. Note: this
	option is indopendent of the error tolerance used by
	SLATE (i.o., if the values of options RELTOL, ABSTOL,
	etc., are not changed then one may be printing
	numerical 'noise' for NUMDGT > 4.
TNOM $=$ I	resets the nominal temperature. The defanlt value
	is $27 \mathrm{deg} \mathrm{C}(300 \mathrm{deg} \mathrm{K})$
ITL1=x	resets the de iteration limit. The default is 150.
ITL2 $=1$	resets the dc transfer curve iteration 1 imit. The
	default is 30.
ITL4 $=1$	resets the transient analysis timepoint iteration
	limit. The default is 50.
ITL5 $=1$	resets the transient analysis total iteration limit.
	The defarit is 10000. Set ITL5 $=0$ to omit this test.
CPTIME=x	the maximum cpu-time in seconds allowed for this job.
LIMTIM $=\mathbf{x}$	resets the amount of cpu time reserved by SLATE for
	generating plots should a cpu time-1imit cause job
	termination. The default value is 2 (seconds).
LIMPTS $=1$	resets the total number of points that can be printed or plotted in a dc, ac, or transient analysis. The
	$\text { default value is } 1001 \text {. }$
LVLTIM $=\mathrm{x}$	if I is 1 (one), the iteration timestep control is used
	if I is 2 (two), the truncation-error timestep is used.
	The dofault value is 2 . If method=Gear and MAXORD>2
	then LVLTIM is set to 2 by SLATE.
METHOD=name	sets the numerical integration method used by SLATE.
	Possible names are Gear or trapezoidal. The default
	is trapezoidal.
MAXORD $=2$	sets the maximum order for the integration method if
	Gear's variable-order method is used. X must be
	between 2 and 6. The defanlt value is 2.

Abstract

A.9.4. OP card

General form . OP

The inclusion of this card in an input deck will force SLATE to determine the dc operating point of the circuit with capacitors opened and inductors shorted. Note: a dc analysis is antomatically performed prior to a transient analysis to determine the transient initial conditions. SLATE performs a dc operating point analysis if no other amalyses are requested.

A.9.5. DC card
 General form

.DC SRCNAM VSTART VSTOP VINCR

Examples:
.DC VIN 05.2
.DC VDS 05.5
.DC IB 010010

This card defines the dc transfer curve source and sweep limits. SRCNAM is the name of an independent voltage or current source. VSTART, VSTOP, and VINCR are the starting, final, and incrementing values respectively. The first example will canse the value of the voltage source VIN to be swept from 0.0 volts to 5.0 volts in increments of 0.2 volts.

A.9.6. INITIAL card
 General form

. INITIAL NODNUM=VAL NODNUM=VAL . . .
Examples:
. INITIAL 12=4.8 4=0.20

This card helps the program find the dc or initial transient solution by making a preliminary pass with the specified nodes held to the given voltages. The restriction is then released and the iteration continues to the true solntion. The. INITIAL card may be necessary for convergence on bistable or astable circuits. In general, this card should not be necessary.
A.9.1. FORCE card

General form
.FORCE NODNUM=VAL NODNUM=VAL ...
Examp1es:
. FORCE $2=5.0 \quad 3=0.0$

This card forces the circuit to converge to the specified node voltages. The .FORCE card may be used to force regenerative switching circuits or circuits with positive feedback to a desired state. This card is different from .INITIAL card in that no more iterations are made once the circnit converges to the specified state. In general, this card should not be necessary.

A．9．8．TRAN card
 General form

．TRAN TSTEP TSTOP 〈TSTART 〈TMAX〉〉〈UIC〉
Examples：
．TRAN 1NS 100NS
．TRAN 1NS 1000NS 500NS
．TRAN 10NS 10S UIC

TSTEP is the printing or plotting increment for line－printer output．For $u s e$ with the post－processor，TSTEP is the suggested computing increment．TSTOP is the final time，and TSTART is the initial time．If TSTART is omitted，it is assumed to be zero．The transient analysis always begins at time zero．In the interval 〈zero，TSTART〉， the circuit is analyzed（to reach a steady state），but no outputs are stored．In the interval 〈TSTART，TSTOP〉，the circuit is analyzed and ortputs are stored．TMAX is the marimum stepsize that SLATE will use （for default，the program chooses 2 ＊TSTEP）．TMAX is useful when one Wishes to guarantee computing interval which is smaller than twice the print interval．

UIC（use initial conditions）is an optional keyword which indicates that the user does not want SLATE to solve for the quiescent operating point before beginning the transient analysis．If this keyword is specified，SLATE uses the values specified using IC＝．．．on the various olements as the initial transient condition and proceeds with the analysis．

A．2．9．PRINT cards

General form
．PRINT PRTYPE OV1 〈OV2 ．．．OV8〉
Examples：
．PRINT TRAN V（4）I（VIN）
．PRINT DC V（5）I（VOUT）V（8，9）

This card defines the contents of a tabalar listing of one to eight ontput variables．PRTYPE is the type of the analysis（DC or TRAN）for which the specified outputs are desired．The form for voltage or current output variables is as follows：
$V(N 1<, N 2)$ ）specifies the voltage difference between nodes N1 and N2．If $N 2$（and the preceding comma）is omitted，ground（ 0 ）is assumed．

Abstract

I（VXXXXXXX）specifies the current flowing in the independent voltage sonrce named VXXXXXXX．Positive current flows from the positive node，through the source，to the negative node．There is no limit on the number of ．PRINT cards for each type of analysis．

A．9．10．PLOT cards

General form
．PLOT PLTYPE 0V1 〈（PLO1，PHI1）〉〈OV2〈（PLO2，PHI2）〉．．．OV8〉

Examples：
．PLOT DC V（4）V（5）V（1）
．PLOT TRAN $V(7,5)(0,5) \quad I(V I N) V(7)(1,9)$

This card defines the contents of one plot of from one to eight outpat variables. PLTYPE is the type of analysis (DC or TRAN) for which the specified outputs are desired. The syntax for the OVI is identical to that for the . PRINT card, described above.

The optional plot limits (PLO, PHI) may be specified after any of the output variables. All output variables to the left of a pair of plot limits (PLO, PHI) will be plotted nsing the same lower and upper plot bounds. If plot limits are not specified, SLATE will antomatically determine the minimum and maximum values of all output variables being plotted and scale the plot to fit. More than one scale will be used if the output variable values warrant (i.e., mixing outpat variables with values which are orders-of-magnitude different still gives readable plots). The overlap of two or more traces on any plot is indicated by the letter X.

When more than one output variable appears on the same plot, the first variable specified will be printed as well as plotted. If a printout of all variables is desired, then a companion .PRINT card should be included. There is no limit on the namber of. PLOT cards specified for each type of analysis.

A.10. Example Inpot Decks

This section list some example input decks for SLATE.

Example 1:

The first example cumputes the de transfer curve of a bipolar TIL inverter.

```
    Biploar TIL inverter transfer curve
    * input node(1) ontput node(8)
    r1 9 2 4k
    r2 4 0 1k
    r3 9 5 1.4k
    r4 9 6 100
    q1 3 2 1 bjp
    q2 5 3 4 bjp
    q3 6 5 7 bjp
    q4 8 4 0 bjp
    d1 }78\mathrm{ diode
    \nabla1 1 0 dc
    vdd }90
.mode1 bjp npn(bf=100 br=0.1 rc=10 rb=10 re=5 va=200 nc=1 ne=1)
.model diode d(rs=10)
.dc \nabla1 0 5 0.02
.plot dc v(8)
.end
```


Examp1e 2:

This example lists the input deck used in example 3.1 in Chapter 3. The circuit is a chain of NOS inverters.

```
    This is a circuit to test latency scheme in slate
.subckt inverter 1 2 3
    *** nodes: vdd output input
    m1 1 3 3 0 dm w=5 1=10 as=25 ad=25 ass=15 asd=50
    + rdd=35 rss=35 cgs=1.725f cgd=1.725f
    m2 3 2 0 0 em wri0 1=5 as=100 ad=100 ass=40 asd=35
    + rdd=35 rss=35 cgs=3.45f cgd=3.45f
.ends
    vdd 1 0 5
    vin 2 0 pulse(0 5 1n 1n 1n 75n 152n)
    * A chain of 10 inverters
    x1 12 3 inverter
    x2 1 3 4 inverter
    x3 14 5 inverter
    x4 1 5 6 inverter
    x5 1 6 7 inverter
    16 1 7 8 inverter
     x 1 8 9 inverter
    18 1 9 10 inverter
    x9 1 10 11 inverter
    x10 1 11 12 inverter
.model dm nmos vto=-2 kp=10u be=0.52 1ambda=0.05 kpn=.0918f
    + ms=0.33 cox=.345f theta=1e-20 micron
```

```
.model em nmos vto=1 kp=10a be=0.52 1ambda=0.05 kpn=.0918f
+ ms=0.33 cox=.345f theta=1e-20 micron
.options abstol=1.0e-12 vntol=1e-6 reltol=1e-3
.tran 1n,76n
.print tran v(1) v(2) v(3) v(4) v(5) v(6) v(7) v(8)
.print tran v(9) v(10) v(11) v(12)
.plot tran v(1) v(2) v(3) v(4) v(5) v(6) v(7) v(8)
.plot tran v(9) v(10) v(11) v(12)
.end
```


Example 3:

This example shows the use of the subcircuits in SLATE. The circuit is a NMOS one bit full adder. This input deck was ased in example 3.2 in Chapter 3.

```
one bit full adder circuit
*inverter
.subckt inv 10 20 30
** nodes: vdd output input
m1 10 20 20 0 dm w=5 1=10
+ as=25 ad=25 ass=15 &sd=20 cgs=1.725f cgd=1.725f
+ rdd=35 rss=35
m2 20 30 0 0 em w=10 1=5
+ as=100 ad=100 ass=40 asd=35 cgs=3.45f cgd=3.45f
+ rdd=35 rss=35
.ends
    *2-inpat nand
.subckt nand2 10 40 50 60
    ** nodes: vdd output input(2)
m1 10 40 40 0 dm w=5 1=20
+ as=25 ad=25 ass=15 asd=20 cgs=1.725f cgd=1.725f
+ rdd=35 rss=35
m2 40 50 55 0 em w=10 1=5
+ as=50 ad=100 ass=20 asd=35 cgs=3.45f cgd=3.45f
+ rdd=35 rss=35
m3 55 60 0 0 em w=10 1=5
+ as=100 ad=50 ass=40 asd=20 cgs=3.45f cgd=3.45f
+ rdd=35 rss=35
.ends
*3-input nand
.subckt nand3 10 70 80 90 100
*** nodes: vdd output input(3)
m1 10 70 70 0 dm m=5 1=20
+ as=25 ad=25 ass=15 asd=20 cgs=1.725f cgd=1.725f
```

```
+ rdd=35 rss=35
m2 70 80 75 0 em w=15 1=5
+ as=75 ad=150 ass=20 asd=45 cgs=5.175f cgd=5.175f
+ rdd=35 rss=35
m3 7E 90 85 0 em w=15 1=5
    as=75 ad=75 ass=20 asd=20 cgs=5.175f cgd=5.175f
+ rdd=35 rss=35
m4 85 100 0 0 em w=15 1=5
+ as=150 ad=75 ass=45 asd=20 cgs=5.175f cgd=5.175f
+ rdd=35 rss=35
.ends
    *4-inpot nand
.subckt nand4 10 110 120 130 140 150
    ** nodes: vdd output input(4)
m1 10 110 110 0 dm w=5 1=20
+ as=25 ad=25 ass=15 asd=20 cgs=1.725f cgd=1.725f
+ rdd=35 rss=35
m2 110 120 115 0 em w=20 1=5
+ as=100 ad=200 ass=30 asd=55 cgs=6.9f cgd=6.9f
+ rdd=35 rss=35
m3 115 130 125 0 em w=20 I=5
+ as=100 ad=100 ass=30 asd=30 cgs=6.9f cgd=6.9f
+ rdd=35 rss=35
m4 125 140 135 0 em w=20 l=5
+ as=100 ad=100 ass=30 asd=30 cgs=6.9f cgd=6.9f
+ rdd=35 rss=35
m5 135 150 0 0 em w=20 l=5
+ as=200 ad=100 ass=60 asd=35 cgs=6.9f cgd=6.9f
+ rdd=35 rss=35
.ends
    * nominal circuit
    vdd 1005
    vc1 1 0 pulse(0 5 0 2n 2n 125n 254n)
    va0 2 0 pulse(0 5 0 2n 2n 125n 254n)
    vbO 3 0 pulse(0 5 0 2n 2n 125n 254n)
    x1 101212 11 nand2
    x2 10}1013211 nand2
    <3 1014 3 11 nand2
```



```
    m5 10}1
    <6 10 6 1 2 2 nand2
    <7 10 7 1 3 n nand2
    I8 10 8 2 3 nand2
    19 10 9 % 6
    x101011 9 inv
.print tran v(1) v(2) v(3) v(9) v(16)
.plot tran v(1) v(2) v(3) v(9) v(16) (0,5)
.model dm nmos vtox-2 kp=10u be=0.52 1ambda=0.05 kpn=.0918f
    + ms=0.33 cox=.345f theta=1e-20 micron
.model em nmos vto=1 kp=10u be=0.52 1ambda=0.05 kpn=.0918f
    + ms=0.33 cox=.345f theta=1e-20 micron
```


.tran 1n,125n
 .end

REEERENCES

[1] L. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits," Electron. Res. Lab., University of California Berkeley, ERL Memo No. ERL-M520, May 1975.
[2] H. Qassemzadeh, and T. R. Scott, "Algorithm for ASTAP--A Network Analysis Program,n IEEE Trans. on Circuit Theory , Vol. CT-20, November 1973, pp.628-634.
[3] F. H. Branin, G. R. Hogsett, R. L. Lunde, and L. E. Kugel, "ECAP II---A New Electronic Circuit Analysis Program," IEEE J. SolidState Circuits , Vol. SC-6, August 1971, pp. 146-165.
[4] L. D. Milliman, W. A. Massena, and R. H. Dickhaut, nCIRCUS--A Digital Computer Program for Transient Analysis of Electronic Circuits," Harry Diamond Laboratory, Washington, D.C., Rep. AD-346-1, January 1967.
[5] P. Yang,"An Investigation of Ordering, Tearing and Latency Algorithms for the Time-Domain Simulation of Large Circuits," Ph.D. Thesis, University of Illinois at Urbana-Champaign, August, 1980.
[6] P. Yang, B. Epler, and P. K. Chatterjee,"A Charge Conserving Capacitor Model for VLSI MOSFET Circuit Simulation," presented at the 39th Dev. Res. Conf. (Santa Barbara, CA.), 1981.
[7] P. Yang, P. K. Chatterjee, "SPICE Modelling for Small Geometry MOSFET Circuits," IEEE Iran. on Computer-Aiged Design of Integrated Circuits and Systems , Vol. CAD-1, No.4, OCT. 1982, pp169-182.
[8] H. K. Gummel, and H. C. Poon, "An Integral Charge Control Model of Bipolar Transistors," Bell System Technical Journal , May-June, 1970, pp 827-852.
[9] J. E. Meyers, "MOS Models and Circuit Simulation," RCA Reyiek , Vol. 32, March 1971.
[10] P. K. Chatterjee and J. E. Liess, "An Analytic Charge-Sharing Pridector Model for Submicron MOSFETs," IEDM Tech. Dig. , (Washington, DC.), 1980.
[11] L. A. Akers, M. M. E. Begnwal, and F. Z. Custode, "A model of a narrow-width MOSFET including tapered oxide and doping
encroachment," IEEE Tran. Electron Dey. , Vol. ED-28, p1490, 1982.
[12] W. P. Noble and P. E. Cottrell, NNarrow channel effects in insulated gate field effect transistors," IEEE IEDM Tech. Dig. , p. 583, 1976.
[13] D. E. Ward and R. W. Dutton, "A Charge-Oriented Model for MOS Transient Capacitances,n IEEE J. Solid-State Circuits , Vol. SC-13, Oct. 1978.
[14] Y. A. El-Mansy and A. R. Boothroyd, "A General Four-Terminal Charging-Current Model for the Insulated-Gate Field-Effect Transistors," Solid State Electron. , Vol. 23, pp. 405-410, 1980.
[15] S. M. Sze, Physics of Semiconductor Devices , New York: John Wiley \& Sons, Inc., 1969.
[16] H. K. Ihantola and J. M. Moll, "Design of a Surface Field Effect Transistor," Solid State Electronies , Vol. 7, pp.423-430.
[17] H. Shichman and D. A. Hodges, Modeling and simulation of insulated-gate field effect transistor switching circuits," IEEE J. Solid State Circuits , Vol. SC-3, pp. 285-289, Sept. 1968.

[^0]: Version G.5A was not used due to convergence problems for some of the example circuits we simulated.

[^1]: Parameter values are defined by appending the parameter name, as given below for each model type, followed by an equal sign and the parameter value. Model parameters that are not given a value are assigned the default values given below for each model type.

