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Abstract  This simulation employed a compiler which explains the role of central limit theorem in dealing with 

populations that are not normally distributed. A group of 10000-data-point populations were simulated according to 

five different kinds of distribution: uniform, platykurtic normal, positively-skewed exponential, negatively-skewed 

triangular, and bimodal. Three 500-data-point sampling distributions of sample sizes of 2, 10, and 30 were created 

from each population. All populations and sampling distributions were displayed in histograms for analysis along 

with their means and standard deviations. The results verified the principles of the central limit theorem and 

indicated that if the population is close to normality, a smaller sample size is needed so that the central limit theorem 

can take effect. But if the population is far from normality, a large sample size might be required. A proportion of 

population was proposed for a sample size based on the simulation results. Further studies and implications are 

discussed. 
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1. Introduction 

People all over the world were created in different 

heights and widths. Let’s say that hundreds of millions of 

men and women get together in one location such as the 

United States. It would be impossible to tell in advance 

what the height of an individual chosen from the U.S. 

would be. Obviously, something is needed to serve as a 

clear and convenient synopsis of the heights of all people 

living in the U.S. That could be attained by what are 

called statistics.  
The importance of statistics appears when researchers 

attempt to answer this kind of question: what is the true 

average length of people living in, for example, the U.S.? 

The first step for answering this question is to collect data 

relating to the lengths of American people. However, do 

all people in the U. S. have to be considered, so the true 

average of their lengths could be obtained? It is almost 

always impossible to place all American people in  

a line and get their lengths with perfect measurements.  

So, the practical solution here is to randomly select a 

representative sample from the American population and 

then collect the lengths of all individuals included in that 

sample. The population must be clearly specified; 

otherwise the sample will be poorly drawn from the 

population [13]. 

Once data are collected, the second step is to decide on 

an appropriate measure which can describe the lengths of 

American people. There are many possible measures to 

choose from such as the mean, median or mode. Each is 

calculated in a different way and explains the data from a 

different point of view and can characterize the average 

length in a numeric quantity. Among these measures the 

mean will be considered since it is one of the most useful 

and widely used. It is the value that represents the center 

of gravity or the balance point of the distribution [6]. 

The sample mean is generally used as an estimator  

of the population mean. When the expected value of  

the sample mean is similar to the population mean, 

researchers can draw generalizations from the sample to 

the population. That is the essential role of inferential 

statistics. The term statistic is generally used to describe a 

sample while the term parameter is used to describe a 

population. Statistics are almost always used since the 

perfect values of parameters are unknown. Particularly 

when the population size is enormous, like the American 

population, there is no way to get perfect measurements 

for all subjects. 

From one sample to the next, how do researchers 

guarantee that the values of the sample means are not 

varied? Let’s suppose that the researchers select two 

random samples and calculate their means. They may find 

that the second mean is considerably different from the 

first. According to its nature, random sampling can 

sometimes yield unexpected results even when perfectly 

administered. The difference between the two means 

might occur because the first sample could be made up 

mostly of tall individuals while the second could be made 
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up of short ones. To prevent these variations in sample 

means, the researchers must believe in the central limit 

theorem that calls for using the law of large numbers [2] 

when choosing a sample size. A reasonable large sample 

could never be composed entirely of either tall or short 

individuals. For instance, flipping a coin a thousand of 

times will show up heads in almost 50% of the flips while 

flipping it three times might never show up heads 50% of 

the time. 

However, how do researchers guarantee that a random 

large sample mean is close to a population mean? Having 

faith in the central limit theorem, the researchers can be 

sure that a mean of any reasonable large sample drawn 

randomly from a population will be close to the true mean 

of that population [11]. The central limit theorem is the 

theorem that specifies the nature of the sampling 

distribution of means according to the central tendency, 

the variability, and the shape of the distribution [3]. The 

sampling distribution of means is defined as the frequency 

distribution of means for all of the possible equal-sized 

samples drawn randomly from a given population [14]. 

All the important properties of the sampling distribution 

can be summed up in the central limit theorem [4]. 

According to [7], the sampling distribution has the 

following properties: (a) the mean of the sampling 

distribution is always equal to the mean of the population; 

(b) the sampling distribution also tends to be less variable 

than the population; and (c) the shape of the sampling 

distribution starts looking like a normal distribution, even 

when the population is not normally distributed. Any 

change in a sample size can cause a change in the shape of 

the sampling distribution of means [10]. What proportion 

of population does fit reasonably a sample size, so the 

sample distribution is going to be normal and its mean 

will be close to the true mean of the population? 
One of the most common concerns in research is the 

calculation of an effective sample size. The larger the 

sample size is, the more accurate the study results would 

be. The results from an effective sample size would be 

valid, while the results from an inappropriate size would 

be doubtful. This simulation had a twofold purpose and 

utilized a compiler: (a) to concretely reveal the role of the 

central limit theorem in handling non-normal populations 

and (b) to propose a population proportion for a sample 

size so the central limit theorem can take effect despite the 

distance of population distribution from normality. 

2. Distributions 

2.1. Normal Distribution 

The normal distribution is usually characterized  

as a mathematical bell-shaped curve with one peak  

(see Figure 1). It is symmetric around its mean and never 

touches the horizontal axis. The mean, mod, and median 

values of the normal distribution are all the same and are 

located at the center of the distribution. 

The normal distribution is controlled by two quantities: 

(a) the mean where a single peak of the distribution occurs 

and (b) the standard deviation which indicates the extent 

of dispersion for the distribution as a whole [1]. This 

means that different quantities of the mean and standard 

deviation produce different styles of normal distributions 

[9] as follows:  

1. Platykurtic that tends to be flat (see Figure 2A),  

2. Leptokurtic that tends to be so peaked (see Figure 2B), 

and  

3. Mesokurtic that falls in between and looks as in 

Figure 2C. 

 

Figure 1. The normal distribution 

 

Figure 2A. Platykurtic 

 

Figure 2B. Leptokurtic 

 

Figure 2C. Mesokurtic  

Even though there are many styles of bell-shaped 

curves, they all possess a set of properties that characterize 

them in a uniform manner, including: 

(1) Unimodality, which refers to possessing a single 

mode that falls exactly at the center of the distribution, 

(2) Symmetry, where the line of symmetry is 

perpendicular to the abscissa and falls exactly at the center 

of the distribution, 

(3) Equality of descriptive statistics such as mean, 

mode, and median, where all fall at the center of the 

normal distribution, and 

(4) Asymptote, where the normal distribution never 

touches the abscissa. 

The normal distribution is defined by probability 

density function as follows: 

 ( ) ( )2 2/21

2

x
P x e

µ σ

σ π
− −= [12] 

where P(x) is the height of the distribution at any value of 

x, x is an observed score, 𝜎𝜎 is the standard deviation of 

distribution, and 𝜇𝜇 is the mean of distribution.  
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The normal distribution, with a mean of 0 and a 

standard deviation of 1, is often referred to as the standard 

normal distribution (see Figure 3). The probability density 

function for the standard normal distribution is as follows:  

 ( )
2

2
1

2

x

P x e
π

−

=  

 

Figure 3. The standard normal distribution 

2.2. Skewed Distribution 

Any distribution that has a tail longer than the other is 

called skewed. If the longer tail is placed on the right, the 

distribution is positively skewed, sometimes called right-

skewed (see Figure 4A). This means that most of the 

values in the distribution have a tendency to the left. 

When students were administered a very difficult test and 

most of them did poorly on it, their scores on the test 

would most likely follow a positively skewed distribution. 

If the longer tail of a distribution is placed on the left, the 

distribution in this case is negatively skewed, sometimes 

called left-skewed (see Figure 4B). This means that most 

of the values in the data have a tendency to the right. 

When students were administered a very easy test and 

most of them did very well on it, their scores on the test 

would most likely follow a negatively skewed distribution. 

 

Figure 4A. Positively-skewed distribution 

 

Figure 4B. Negatively-skewed distribution 

Measures of central tendency, such as mean, median, 

and mode, are influenced by skewness of the distribution. 

In the case of the negatively-skewed distribution, the 

mean is less than the median, which is, in turn, less than 

the mode. If the distribution is skewed to the right, the 

mean is greater than the median, which is, in turn, greater 

than the mode. In the absence of graphing, it could be 

possible to identify whether the data are skewed to the left 

or to the right by obtaining the mean and median values of 

the data and using the following two rules: (a) if the mean 

is much larger than the median, the data would be skewed 

to the right, (b) if the mean is much smaller than the 

median, the data would be skewed to the left. 
There are many kinds of skewed distributions including 

triangular and exponential distributions, each of which is 

explained briefly in the following section. 

2.2.1. Exponential Distribution 

The exponential distribution is a positively-skewed 

distribution as shown in a Figure 5 with a probability 

density function defined as follows: 

 ( ) ( )/1
, 0

x
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where 𝛼𝛼 is the location parameter which simply translates 

the graph to the left or the right on the horizontal axis and 𝛽𝛽 is the scale parameter which stretches out the graph. If 𝛼𝛼 = 0 and 𝛽𝛽 = 1, the 𝑃𝑃(𝑋𝑋) =  𝑒𝑒−𝑥𝑥  for 𝑥𝑥 > 0 and is called 

the standard exponential distribution. Figure 5, for 

example, shows the probability density function of an 

exponential distribution with 𝛼𝛼 = 0 and 𝛽𝛽 = 2. 

 

Figure 5. Positively-skewed exponential distribution 

2.2.2. Triangular Distribution  

The triangular distribution is a continuous distribution 

with a probability density function shaped like a triangle 

(see Figure 6A & Figure 6B) and defined as follows: 
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where a is the minimum value, b is the maximum value, 

and c ∈ [a, b] and is the peak value (the mode). The maximum 

value of the probability density function is 
( )

2

b a−
 and 

occurs at c. Figure 6A and Figure 6B, for example, show 

the probability density function of triangular distributions 

with a = 0, b = 10, and a maximum value of 
1

5
 at c = 9.5 

(see Figure 6A) and c = 0.5 (see Figure 6B). 

 

Figure 6A. Negatively-skewed triangular distribution 
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Figure 6B. Positively-skewed triangular distribution 

2.3. Uniform Distribution 

It is a distribution where any value in a range defined 

by the minimum and maximum values has equal 

probability of occurrence (see Figure 7). The rectangular 

distribution is a sign that the distribution is not normal. 

 

Figure 7. Uniform distribution 

The probability density function of the uniform 

distribution is as follows: 
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where a is the minimum value and b is the maximum 

value (see Figure 8). 

 

Figure 8. The uniform distribution with a range of [a, b] 

2.4. Multimodal Distribution 

Any distribution that has more than one mode is 

referred to as a multimodal distribution. If the distribution 

has two modes or two relative peaks, it is called bimodal 

(see Figure 9A). The distribution which has three modes 

or three relative peaks is called trimodal (see Figure 9B). 

Multimodality of the distribution is a strong sign that the 

distribution is not normal. The multimodality indicates 

that the distribution is heterogeneous, meaning that the 

distribution is, in fact, derived from two or more 

distributions which have things in common. 

 

Figure 9A. Bimodal distribution 

 

Figure 9B. Trimodal distribution 

3. The Advantage of the Central Limit 

Theorem 

In fact, collecting all data from a whole population is 

not a practical way, so statistics are used instead by 

sampling the population randomly and then drawing 

inferences from this sample to the whole population. 

However, what happens if the population per se is not 

normally distributed? Even if the population is normally 

distributed, how do you guarantee that, from one sample 

to the next, the values of the sample means are not varied? 

To answer these questions, you must have faith in the 

central limit theorem, which implies selecting large 

random samples from the population and calculating the 

mean for each sample. This generates the distribution of 

the sample means, which, in most cases, follows the 

normal curve and confirms the idea that the mean of any 

sample drawn from the population is close to the true 

mean of the population. 

As stated by [5], the central limit theorem contains 

three principles as follows: 

(1) A sampling distribution looks more and more 

normal as the sample size is increased, even when the 

population distribution itself is not normal. 

(2) Regardless of the population distribution, the 

variability of a sampling distribution, as measured by the 

standard deviation, decreases as the sample size is 

increased. 

(3) Regardless of the population distribution and 

sample size, a sampling distribution always has a mean 

equal to the mean of the population from which it is drawn. 

4. Method 

This simulation was quantitative in nature and employed a 

Fortran-95-language-based compiler for data generation 

and analysis. 

4.1. The Central Limit Theorem Compiler 

A compiler was developed by the author using the 

FTN95: Fortran [8] to: (a) confirm the principles 

according to which the central limit theorem functions and 

(b) to propose a population proportion for a sample size so 

the central limit theorem can take effect despite the 

distance of population distribution from normality. The 

compiler generates data according to multiple kinds of 

distributions including normal, right-skewed triangular, 

left-skewed triangular, uniform, exponential, bimodal and 

multimodal; creates histograms; and calculates mean, 

standard deviation, maximum and minimum values of 

distributions. 
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4.2. Basic Codes for Data Generation 

The basic style codes for generating a number of 

random data points following a given distribution are 

explained in the following section. 

4.2.1. The Normal Distribution Code 

The basic style code for generating the normal distribution 

is mentioned below: 

 𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆�(−2) ∗ 𝐿𝐿𝐿𝐿𝐿𝐿 (𝑢𝑢1)� ∗ 𝑆𝑆𝑆𝑆𝑆𝑆(2 ∗ 𝜋𝜋 ∗ 𝑢𝑢2) 

 𝑟𝑟 = 𝜇𝜇 + 𝑟𝑟 ∗ 𝜎𝜎 

where u1 and u2 are random real numbers, and μ and σ are 
constants that represent the mean and standard deviation 

of the normal distribution respectively. 

4.2.2. The Uniform Distribution Code 

The basic style code mentioned below is employed to 

generate the uniform distribution.  

 ( )*r min u max min= + −  

where u is a random real number and min and max are 

constants that represent the lower and upper bounds of the 

uniform distribution respectively. 

4.2.3. The Triangular Distribution Code 

The following basic style code is used for generating 

the triangular distribution: 

 

If (u <= (mode-min)/(max-min)) Then 

r = min + sqrt (u * (max-min) * (mode-min)) 

Else If (u > (mode-min)/(max-min)) then 

r = max – sqrt ((1-u) *(max-min)*(max-mode)) 

End If  

 

where max and min are constants that represent the upper 

and lower bounds of a triangular distribution, u is a 

random real number, and mode is a modal value of the 

triangular distribution which is usually set subjectively 

and works as a determinant whether the distribution is 

positively- or negatively-skewed based on the following 

rules:  

(1) If the mode value equals or is close to the minimum 

value, the code will generate a positively skewed distribution.  

(2) If the mode value equals or is close to the maximum 

value, the code will generate a negatively skewed distribution. 

4.2.4. The Exponential Distribution Code 

The following code is utilized to generate the exponential 

distribution. 

 𝑟𝑟 = −𝛼𝛼 ∗ 𝛽𝛽 ∗ 𝑙𝑙𝐿𝐿𝐿𝐿(𝑢𝑢) 

where 𝛼𝛼 is the location parameter, 𝛽𝛽 is the scale parameter, 

and u is a random positive real number. 

4.2.5. Multimodal Distribution Code 

The basic code for generating random data points 

following a normal distribution, shown previously, can be 

used two times to create a distribution with two modes or 

multiple times to create a distribution with multiple modes. 

Each time the code is applied, the mean value, at least, 

must be different. 

4.3. Testing Conditions 

To explain how the central limit theorem works, the 

central limit theorem compiler was used to simulate a 

group of 10,000 data-point populations and sampling 

distributions of sample sizes of 2, 10, and 30, each of 

which was drawn 500 times according to five different 

kinds of distributed population as follows:  

(1) A uniformly distributed population which had two 

parameters, the lower bound, 0, and the upper bound, 10; 

(2) A platykurtic normal population which has two 

parameters, mean of 5, and standard deviation of 2.5; 

(3) A positively-skewed population (e.g., an exponential 

distribution with a scale parameter of 2 and a location 

parameter of 1; 

(4) A negatively-skewed population (e.g., a triangular 

distribution with a minimum value of 0, a maximum value 

of 10, and a mode value of 9.5); and  

(5) A bimodal population which has five parameters: 

the proportion of values or “contribution” from the first 

and second distributions (0.5), the mean of the first 

distribution (0), the standard deviation of the first 

distribution (1), the mean of the second distribution (10), 

and the standard deviation of the second distribution (1). 

4.4. Data Analysis  

Three common characteristics were considered to 

examine population and sampling distributions including 

the shape, central tendency, and variability. The histogram 

was considered since it is the most common statistical 

graph that can describe the shape of a frequency 

distribution in a clear fashion.  The Statistical Package for 

Social Sciences (SPSS) was used for creating histograms 

for population and sampling distributions. Each population 

distribution was displayed in a histogram along with the 

three sampling distributions of sample sizes of 2, 10, and 

30, each of which was displayed in a separate histogram. 

The mean was used to measure the central tendency of 

population and sampling distributions. Although the mean 

is useful in identifying the center of statistical data, it 

delivers only part of the story and fails to deliver the other 

interesting part.  Actually, the mean cannot tell researchers 

whether the data are close to its center or whether the data 

are spread out over a wide range.  However, a measure 

like the standard deviation can tell that missing part! 

Accordingly, the standard deviation was computed for 

population and sampling distributions for complete analysis. 

5. Results and Discussion 

A sampling distribution dragged from a uniform 

population (see Figure 10A) starts approaching the normal 

distribution even when the sample size is small (see 

Figure 10B). As the sample size increases to 10, the 

sampling distribution tends to be closer to the normal 

distribution (see Figure 10C). With a sample size of 30, 

the sampling distribution tends to be a typical normal 

curve (see Figure 10D). As the sample size increases,  

the variability of each sampling distribution decreases 

while the mean is still adjacent to the true mean of the 

population.  
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Figure 10A. Histogram of population–uniform distribution: population = 

10,000; mean = 5.03; standard deviation = 2.88 

 

Figure 10B. Sampling distribution of means (from a uniform 

distribution): sample size = 2; number of samples = 500; mean = 4.92; 

standard deviation = 2.048 

 

Figure 10C. Sampling distribution of means (from a uniform 

distribution): sample size = 10: number of samples = 500; mean = 4.94; 

standard deviation = 0.94 

 

Figure 10D. Sampling distribution of means (from a uniform 

distribution): sample size = 30; number of samples = 500; mean = 5.05; 

standard deviation = 0.51 

Figure 11A shows a platykurtic normal population that 

tends to be flat and broad.  Sampling distributions dragged 

from the platykurtic normal distribution start approaching 

a perfect normal curve (mesokurtic) and tend to be less 

variable as the sample size increases (see Figure 11B  

and Figure 11C). With a large enough sample size, the 

variability of the sampling distribution drops considerably 

and the sampling distribution starts looking leptokurtic 

where the sampling distribution is too peaked to be normal 

(see Figure 11D).  

 

Figure 11A. Histogram of population – platykurtic normal distribution: 

population = 10,000; mean = 5.00; standard deviation = 2.50 

 

Figure 11B. Sampling distribution of means (from a platykurtic normal 

distribution): sample size = 2; number of samples = 500; mean = 5.24; 

standard deviation = 1.83 

 

Figure 11C. Sampling distribution of means (from a platykurtic normal 

distribution): sample size = 10; number of samples = 500; mean = 5.00; 

standard deviation = 0.82 

 

Figure 11D. Sampling distribution of means (from a platykurtic normal 

distribution): sample size = 30; number of samples = 500; mean = 5.00; 

standard deviation= 0.43 

The central limit theorem works well with the 

platykurtic normal and uniform populations when a 

sample size is small (n = 2). However, in the case of  

the positively and negatively skewed populations  

(see Figure 12A and Figure 13A), the central limit 

theorem requires taking more than the sample size of 2, so 

that the sampling distributions can meet the normality 

principle. For example, the sampling distribution shown in 

Figure 12B is still skewed to the right, while the sampling 

distribution shown in Figure 13B is to the left. When the 

sample size is increased to 10 (see Figure 12C and  

Figure 13C), both the sampling distributions get away 

from skewness and start to have a similar appearance to 

the normal distribution.  With a large enough sample size, 

the sampling distributions displayed in Figure 12D and 

Figure 13D become less variable and follow the properties 

of the normal distribution and their means are close to the 

perfect mean of their populations. 

 

Figure 12A. Histogram of population –positively-skewed exponential 

distribution: population = 10,000; mean = 1.98; standard deviation = 1.98 
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Figure 12B. Sampling distribution of means (from positively-skewed 

exponential distribution): sample size = 2; number of samples = 500; 

mean = 2.01; standard deviation = 1.45 

 

Figure 12C. Sampling distribution of means (from positively-skewed 

exponential distribution):sample size =10; number of samples = 500; 

mean = 1.97; standard deviation = 0.62 

 

Figure 12D. Sampling distribution of means (from positively-skewed 

exponential distribution):sample size =30; number of samples = 500; 

mean = 2.00; standard deviation = 0.39 

 

Figure 13A. Histogram of population–negatively-skewed triangular 

distribution: population = 10,000; mean = 6.53; standard deviation = 2.29 

 

Figure 13B. Sampling distribution of means (from a negatively skewed 

triangular distribution): sample size = 2; number of samples = 500; mean 

= 6.44; standard deviation = 1.56 

 

Figure 13C. Sampling distribution of means (from a negatively-skewed 

triangular distribution): sample size = 10; number of samples = 500; 

mean = 6.45; standard deviation = 0.76 

 

Figure 13D. Sampling distribution of means (from a negatively-skewed 

triangular distribution): sample size = 30: number of samples = 500; 

mean = 6.54; standard deviation = 0.40 

In the case of the bimodal population (see Figure 14A), 

the central limit theorem needs to take more than the sample 

size of 2 to do its job perfectly in terms of normality. For 

instance, the sampling bimodal distribution shown in 

Figure 14B does not meet the normality principle with a 

sample size of 2, due to the resulting multi-peaks. However, 

by increasing the sample size to 10 (see Figure 14C), the 

multi-peak case completely disappeared and the resulting 

sampling distribution is prone to the properties of the 

normal distribution in terms of symmetry and unimodality. 

Eventually, with a large sample size, the sampling 

distribution starts to resemble a perfect normal distribution 

(see Figure 14D).  It is also noticed that an increase in the 

sample size follows a decrease in the variability of the 

sampling distribution, while the mean value is restored to 

the true mean of the population.  

 

Figure 14A. Histogram of population –bimodal distribution: population 

= 10,000; mean = 5.00; standard   deviation = 5.10 

 

Figure 14B. Sampling distribution of means (from a bimodal 

distribution): sample size = 2; number of samples = 500; mean = 4.79; 

standard deviation = 3.57 

 

Figure 14C. Sampling distribution of means (from a bimodal 

distribution): sample size = 10; number of samples = 500; mean = 5.04; 

standard deviation = 1.64 

 
Figure 14D. Sampling distribution of means (from a bimodal 

distribution): sample size = 30; number of samples = 500; mean = 5.02; 

standard deviation = 0.92 
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6. Conclusion 

The results discussed previously confirmed the 

principles held by the central limit theorem. As the sample 

size is increased, (a) the variability of the sampling 

distribution decreases; (b) the sampling distribution 

increasingly approaches a normal distribution regardless 

of the shape of the population; and (c) the mean of the 

sampling distribution always has a mean equal to the 

mean of the population from which it is drawn. 

In virtue of the central limit theorem, researchers can be 

sure that the mean of one reasonably large randomly 

chosen sample, regardless of the size and the shape of the 

population, will be close to the perfect mean of the 

intended population. If the researchers need more sureness, 

they need only to increase the sample size.  How large a 

sample size is needed so the central limit theorem can take 

effect? Generally, the closer the population is to normality, 

a smaller sample size is needed to demonstrate the central 

limit theorem. If populations are heavily skewed or have 

several modes, they might require larger sample sizes. 

There is no certain rule of thumb to determine an 

appropriate sample size. Based on the simulation results, a 

ratio of 3:1000 could be proposed for a sample size, so the 

central limit theorem can become effective and inferences 

could be drawn despite the distance of population from 

normality.  
In this simulation, researchers can see and feel the 

wonderful advantage of the central limit theorem. If it 

were not available at this moment, it would be impossible 

to use a statistic for estimating a parameter by using an 

average resulting from a reasonably large randomly 

chosen sample. In fact, the central limit theorem is the 

reason that research in social sciences and evaluation of 

new medications are still in existence. As with any Monte 

Carlo investigation, only a restricted number of factors 

could be inspected, so care must be considered when any 

generalization is made to other testing conditions. Further 

simulation investigations are needed to determine an 

appropriate sample size according to confidence intervals, 

effect size, power, the probabilities of Type I and II errors, 

and the number of independent variables. 

References 

[1] Cohen, B. H. and Lea, R. B, Essentials of statistics for the social 

and behavioral sciences, John Wiley & Sons Inc, Hoboken, (2004). 

[2] Feller, W, An introduction to probability theory and its 

applications, Wiley, New York, (1970). 

[3] Heiman, G. W, Basic statistics for the behavioral sciences, 

Wadsworth Cengage Learning, Belmont, (2014). 

[4] Howell, D. C, Fundamental statistics for the behavioral sciences, 

Wadsworth Cengage Learning, Belmont, (2011). 

[5] Keppel, G. and Wickens, T. D, Design and analysis: A 

researcher's handbook, Prentice Hall, Upper Saddle River, (2004). 

[6] Paret, M. and Martz, E, “Understanding the Central Limit Theorem: 

Tumbling dice and birthdays,” (2009). [online]. Available:  

http://www.qualitydigest.com/inside/twitter-ed/understanding-

central-limit-theorem.html 

[7] Pagano, R, Understanding statistics in the behavioral sciences, 

Wadsworth Cengage Learning, Belmont, (2013). 

[8] Silverfrost, "FTN95: Fortran 95 for Windows," (2012). [online]. 

Available: 

http://www.silverfrost.com/11/ftn95_overview.aspx 

[9] Shavelson, R. J, Statistical reasoning for the behavioral sciences, 

Allyn and Bacon, Boston, (1996). 

[10] Thompson, B, Foundations of behavioral statistics: An insight-

based approach, Guilford Press, New York, (2006). 

[11] Wallnau, L. and Gravetter, F, Essentials of statistics for the 

behavioral sciences, Wadsworth Cengage Learning, Belmont, 

(2014). 

[12] Weisstein, E. W, "Normal Distribution," (2012). [online]. 

Available:  

http://mathworld.wolfram.com/NormalDistribution.html. 

[13] Welkowitz, J., Cohen, B. H. and Lea R. B, Introductory statistics 

for the behavioral sciences, John Wiley & Sons Inc, Hoboken, 

(2012). 

[14] Nolan, S. A. and Heinzen, T, Statistics for the Behavioral Sciences, 

Worth Publishers, New York, (2012). 

 

 

© The Author(s) 2019. This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


