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ABSTRACT

Multiple imputation (MI) is now a reference solution for handling missing data. The default

method for MI is the Multivariate Normal Imputation (MNI) algorithm which is based on the

multivariate normal distribution. In the presence of longitudinal ordinal missing data, where the

Gaussian assumption is no longer valid, application of the MNI method is questionable. This

simulation study compares the performance of the MNI and ordinal imputation regression model

for incomplete longitudinal ordinal data for situations covering various numbers of categories of

the ordinal outcome, time occasions, sample sizes, rates of missingness, well-balanced and skewed

data.
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1 Introduction

Longitudinal ordinal data arise naturally in many clinical settings. For example, in randomized

treatment trials, the regular assessment of the patient’s quality of life (QoL) by means of a Likert-

type scale has become popular. In such longitudinal studies, however, subjects may drop out

prematurely while others may miss one or more assessments. Rather than deleting missing values,

it has been recommended to ‘impute’ them. The question of how to obtain valid inferences from

imputed data was formally addressed by Rubin (1978) who introduced the multiple imputation

(MI) method that replaces each missing value not only once but by a set ofM (M > 1) plausible

values whence reflecting the uncertainty about the prediction of the unknown missing values.

It is not uncommon in MI to rely on the assumption that the outcome variable follows a Normal

distribution and hence ignore the categorical responses in the ordinal outcome. The present sim-

ulation study was designed to evaluate two MI methods for incomplete longitudinal ordinal data,

one considering the outcome as continuous and the other as ordinal. The MI method for continu-

ous outcome is based on the Markov Chain Monte Carlo (MCMC) method of data augmentation,

while the MI method for ordinal outcome uses the proportional odds property of the ordinal logis-

tic regression model. The paper will compare the performance of the two MI methods by focusing

on the estimation of the parameters of the longitudinal ordinal logistic model. Both imputation

methods were evaluated through Monte Carlo simulated artificial data sets. The simulations not

only cover well-balanced data but also skewed distribution, as often observed in QoL studies.

The proportional odds model to analyze longitudinal ordinal data is briefly reviewed in Section 2,

while a general overview of the problem of missing data is given in Section 3. Section 4 outlines the

theoretical background of multiple imputation including those for continuous and ordinal variables.

The simulation experimental design is described in Section 5 and results are presented in Section

6. Concluding remarks are given in Section 7.
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2 Models for longitudinal ordinal data

2.1 The proportional odds model

Consider a sample ofN subjects and letY be an ordered variable withK categories assessed onT

occasions on each subject. Then, letYi j denote the assessment of the ordinal variableY for the ith

subject (i = 1, ...,N) at the jth occasion (j = 1, ...,T). Hence,Y i = (Yi1, ...,YiT )′ is the vector of

the repeated assessments of theith subject. Associated with each subject, there is ap × 1 vector

of covariates, sayxi j , measured at timej. Let X i = (xi1, ..., xiT )′ denote theT × p design matrix

of the ith subject. Covariates typically include time of measurement, age, gender, treatment group,

interaction terms, and so on.

The ordinal nature of the outcome variable may be accounted for by considering the cumula-

tive probabilitiesPr(Yi j ≤ k), k = 1, ∙ ∙ ∙ ,K. The cumulative proportional odds model is a popular

choice to relate the marginal probabilities ofY to the covariate vectorx (McCullagh, 1980). Specif-

ically,

logit[Pr(Yi j ≤ k|xi j )] = β0k + x′i jβ, (1)

whereβ0 = (β01, ..., β0,K−1)′ is the vector of the intercept parameters andβ = (β1, ..., βp)′ the vector

of coefficients (i = 1, ...,N; j = 1, ...,T; k = 1, ...,K − 1). Under the proportional odds assumption,

β does not depend onk.

2.2 Generalized estimating equations

Estimation of the regression parameters of marginal models can be approached by likelihood-based

methods. One difficulty present with likelihood models resides in the complexity of the relationship
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ACCEPTED MANUSCRIPT

between the parameters of the model and the joint probabilities that define the likelihood. There-

fore, alternative solutions have been explored, in particular the generalized estimating equations

(GEE), quite popular for the analysis of non-Gaussian correlated data. This approach circumvents

the specification of the joint distribution of the repeated responses by means of a ‘working’ corre-

lation matrix and only the marginal distributions are specified. Since the proportional odds model

is not part of the regular generalized linear model family, some transformations are required before

applying the GEE method. Following Lipsitz et al. (1994), a (K −1)-dimensional expanded vector

of binary responses has to be created for each subject at each occasion,Y∗i j = (Y∗i1 j, ...,Y∗i,(K−1), j)
′

whereY∗ik j = 1 if Yi j ≤ k and 0 otherwise. Now,

logit[Pr(Yi j ≤ k|xi j )] = logit[Pr(Y∗ik j = 1|xi j )], k = 1, ...,K − 1. (2)

Since the logistic regression model is a member of the generalized linear model family, the GEE

method applies and consistent estimates of the regression parameters can be obtained by solving

the estimating equations

N∑

i=1

∂π′i
∂β

V−1
i (Y∗i − πi) = 0, (3)

whereY∗i = (Y∗i1, ...,Y
∗
iT )′, πi = E(Y∗i ), V i = A1/2

i RiA
1/2
i with A i the diagonal matrix of the vari-

ance of the elements ofY∗i , andβ the expanded vector of intercepts and regression coefficients.

The matrixRi is the ‘working’ correlation matrix that expresses the dependence among repeated

observations over the subjects ranging from independence to exchangeable, banded, or unstruc-

tured.

3 Missingness

The profile of incomplete observations in a longitudinal data set may exhibit a variety of pat-

terns. When an individual withdraws from the study before its completion time, we have a case of

dropout. The missingness pattern may be monotone or non-monotone. In a monotone pattern, if
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Yi j is missing for somej, thenYik is missing for allk > j. As a consequence, ifYi j is known, so

are allYik (k < j). By contrast, in a non-monotone pattern, there will be missing data before last

available assessment. In line with the notation introduced previously, consider the missing data

indicators,Ri j , defined as follows:

Ri j =





1 if Yi j is observed,

0 otherwise,

and letRi = (Ri1, . . . ,RiT )′ the indicator vector corresponding toY i = (Yi1, . . . ,YiT )′. Now Y i can

be split into two subvectors (Yo
i ,Y

m
i ) whereYo

i refers to the observed component ofY i andYm
i

refers to the missing component part. For monotone dropout,Ri is of the form (1, . . . , 1,0, . . . , 0)

and can be used to define the dropout indicatorDi = 1 +
∑T

j=1 Ri j which represents the time at

which subjecti dropped out.

When missing data occur, we are concerned with the distribution of the measurement process

together with the missing-data process. Little and Rubin (1987) and Little (1993, 1995) identified

two broad classes of joint models: the selection model and the pattern-mixture model. In the selec-

tion model, the joint distribution (Y i ,Ri) is split into the marginal distribution of the measurement

and the distribution of the missingness process conditional on the measurementY i. By contrast,

the pattern-mixture model specifies the marginal distribution ofRi and the conditional distribution

of Y i given Ri. Here we shall focus on the selection model approach in which Rubin (1987) and

Little and Rubin (1987) made essential distinctions between the processes responsible for the miss-

ingness: missing completely at random (MCAR), missing at random (MAR), and missing not at

random (MNAR). The determination of the mechanism responsible for missing data has a decisive

implication on the choice of the statistical method used to analyze the data. Under the MCAR

mechanism, the probability of an observation being missing is independent of bothYo andYm.

Under the MAR mechanism, the probability of an observation being missing is independent ofYm

givenYo . When neither MCAR nor MAR holds, the missingness mechanism is said to be MNAR,
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so that the probability of an observation being missing depends onYm.

Liang and Zeger (1986) pointed out that GEE are only valid under the restrictive assumption

that the data are missing completely at random (MCAR). Alternative methods were investigated

to allow the analysis of data under less strict missingness assumptions. Robins et al. (1995a,

1995b) developed an extension of the GEE, known as the weighted generalized estimating equa-

tions (WGEE), that provide consistent estimates of the regression parameters even under the MAR

assumption. With their method, each subject’s measurements is weighted in the GEE by the in-

verse probability of dropping out at that time point. Another alternative to analyze the data under

the MAR assumption is multiple imputation based on GEE (MI-GEE). In this approach, missing

values are imputed several times (Rubin, 1976, 1978) and the resulting completed datasets are

analyzed using standard GEE methods. Using Rubin’s rules, the final results obtained from the

completed datasets are combined into a single inference. In the context of longitudinal binary data,

Beunckens et al. (2008) showed by simulations that, in spite of the asymptotic unbiasedness of

WGEE, the combination of GEE and multiple imputation is both less biased and more accurate in

small to moderate sample sizes which typically arise in clinical trials. In this paper, focus will be

on MI-GEE methods.

4 Multiple imputation

4.1 Theoretical framework

The idea behind multiple imputation is that instead of filling in a single value for each missing data,

the technique is to replace each missing value with a set ofM > 1 plausible values drawn from the

conditional distribution of the missing data given the observed data. This conditional distribution

represents the uncertainty about the right value to impute in the sense that the set ofM imputed

values properly represents the information about the missing value that is contained in the observed
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data. TheseM complete data sets are then analyzed by the method that would have been appropri-

ate if the data had been complete. The model used in this last step is called the substantive model,

while the model used in the imputation task is called the imputation model. Results derived from

the substantive model are then combined using simple rules provided by Rubin (1987), resulting in

a single inference about the parameters of interest that accounts for uncertainty due to missing data.

Using the notation introduced in previous sections, letθ represent the parameter vector of the

distribution of the responseY i = (Yo
i ,Y

m
i ). Note thatθ may differ from the parametersβ of the

substantive model. The observed dataYo will be used to estimate the conditional distribution of

Ym givenYo, f (Ym|Yo, θ). If θ is known, the values forYm can be drawn fromf (Ym|Yo, θ). Forθ

unknown, an estimate is obtained from the data, sayθ̂; then missing values will be imputed using

f (Ym|Yo, θ̂). Frequentists incorporate uncertainty inθ by using bootstrap or other methods. A

Bayesian prior distribution forθ can also be chosen. Given this distribution, a drawθ∗ is generated

and now values forYm can be drawn fromf (Ym|Yo, θ∗). These two steps for the construction of

the imputed data are the first phase of MI. Then the substantive model is applied to each of the

M completed data (Yo
i ,Y

m∗
i ). Let β̂m and Ûm be the vector of estimates and the corresponding

variance-covariance matrix for themth imputed data set (m= 1, . . . ,M), respectively. The last step

of MI is the combination of theM results. The MI point estimate forβ is simply the average of the

M complete-data point estimates (Rubin, 1987; Schafer, 1997),

β̂
∗
=

1
M

M∑

m=1

β̂m.

A measure of the precision of̂β∗ is obtained by Rubin’s variance formula (Rubin, 1987) which

combines the within- and the between-imputation variability. DefineW, the within-imputation

variance, as the average of theM within imputation variance estimateŝUm,

W =
1
M

M∑

m=1

Ûm,
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andB, the between-imputation variance, measuring the variability across the imputed values,

B =
1

M − 1

M∑

m=1

(β̂m− β̂
∗
)(β̂m− β̂

∗
)′.

Then, the variance estimate associated withβ̂
∗

is the total variance

T = W +

(

1+
1
M

)

B,

where
(
1+ 1

M

)
is a correction factor for the finite number of imputations.

4.2 Multivariate Normal Imputation Method

MCMC methods have been considered to explore and simulate the entire joint posterior distribution

of the unknown quantities through the use of Markov chains, and thereby obtain simulation-based

estimates of virtually any feature of the posterior that are of interest. For this reason, MCMC

methods are widely applied in the imputation phase of multiple imputation methods.

Assuming that data arise from a multivariate normal distribution, Schafer (1997) developed

a method based on MNI for generating proper imputations that accounts for between-imputation

variability. This approach, based on the algorithm of data augmentation (Tanner and Wong (1987)),

is a procedure that iterates between an imputation step (I-step) and a posterior step (P-step). Let

the T assessments of the ordinal outcome variable be viewed as a random vector, (Y1, ∙ ∙ ∙ ,YT)′

assumed to follow a multivariate normal distribution with mean vectorμ and covariance matrix

Σ. In the I-step, given starting values forθ = (μ,Σ), values for missing dataYm are simulated by

randomly drawing a value from the conditional multivariate normal distribution ofYm givenYo,

f (Ym|Yo, θ). The conditional mean,μm|o, and the conditional covariance matrix,Σm|o, have to be

derived. Letμ = (μo,μm) be the mean vector of the variable calculated in the observed and in the

missing part of the dataset. In the same way, suppose that the covariance matrix is partitioned as
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follows,

Σ =




Σo Σo,m

Σ′o,m Σm



,

whereΣo,m denotes the covariance matrix betweenYo andYm, Σo andΣm represent the variance

matrix forYo andYm, respectively. It has been shown (Goodnight (1979), Schafer (1997)) that the

conditional covariance matrix,Σm|o, can be expressed as:

Σm|o = Σm− Σ
′
o,mΣ

−1
o Σo,m. (4)

Thus,

f (Ym|Yo, θ) ∼ N(μm|o,Σm|o),

with μm|o = μm + Σ′o,mΣ
−1
o (Yo − μo) andΣm|o given by (4).

After the first iteration, new values forθ = (μ,Σ) are drawn from its posterior distribution. Assum-

ing a noninformative prior distribution forμ andΣ, their posterior distribution at the tth iteration

are given by a Normal and an inverted Wishart distribution (Schafer (1997)),

μ(t)
|Σ
∼ N

(

Ȳ,
1
n
Σ(t)

)

, (5)

Σ(t) ∼ W−1[n− 1, (n− 1)S], (6)

where (̄Y,S) are both determined by the observed data and the missing data imputed in the last I-

step, as follows,̄Y = 1/n
∑N

i=1 yi = 1/n(
∑N

i=1 yi1, ∙ ∙ ∙ ,
∑N

i=1 yiT )′ and (n−1)S=
∑N

i=1(yi − Ȳ)(yi − Ȳ)′.

Both steps are iterated, which creates a Markov chain (Ym
(1), θ(1)), (Ym

(2), θ(2)), ∙ ∙ ∙ where each step

depends on the previous one, introducing dependency across the steps. The two steps are then iter-

ated long enough until the distribution becomes stationary. Imputations from the last iteration are

used to impute the missing values of the dataset. The Expectation-Maximization (EM) algorithm

was used to derive initial mean and covariance estimates for the MNI method. More detail about

this procedure can be found in Schafer (1997).

When proceeding this way for an ordinal outcome, the imputed values obtained are no longer
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integer values and need then to be rounded off to the nearest integer (category) or to the nearest

plausible value. However, in the binary case, it was demonstrated that rounding is not recom-

mended because the rounded imputed values may provide biased parameter estimates (Horton et

al., 2003; Ake, 2005; Allison, 2005). In situations like ours, where one is concerned with presence

of missing values for the outcome variable, unrounded values are physically not plausible. So, the

rounding phase is unavoidable before application of the substantive model (e.g. GEE with propor-

tional odds).

4.3 Ordinal imputation method

The ordinal imputation method (OIM) appears as an alternative to the MNI approach. To impute

missing data for an ordinal outcome, one has to impose a probability model on the complete data.

Multiple imputation of a longitudinal dataset with monotone missingness patterns consists in a

sequential application of methods designed for univariate data by considering the previous fully

observed assessment times as covariates.

In the presence of an ordinal outcome variable, a proportional odds model will be consid-

ered in the first step of the imputation phase to link the ordinal outcome to a set ofq covari-

ates. In a longitudinal setting, the covariates typically include those of the substantive modelXi j ,

possible auxiliary covariatesAi j , and the previous outcomes̃Yi j = (Yi1, ...,Yi, j−1). Specifically

X∗i = (Xi j , Ai j , Ỹi j )′ and the model is written as :

logit[Pr(Yi j ≤ k)|x∗i j ] = γ0k + x′∗i jγ. (7)

Regression coefficient estimateŝΓ = (γ′0,γ
′)′, whereγ0 = (γ01, ∙ ∙ ∙ , γ0,(K−1)), and correspond-

ing covariance matrixV = V(Γ̂) are obtained by fitting the proportional odds model to the observed
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data. Based on these estimates, the algorithm to impute missing values at thejth assessment,Ym
i j ,

operates as follows:

1. Draw new values for parametersΓ, assuming large-sample normal approximationN
(
Γ̂,V(Γ̂)

)

of its posterior distribution assuming the noninformative priorPr(Γ) ∝ const. In other words,

compute

Γ∗ = Γ̂ + C′Z,

whereC′ is the upper triangular matrix of the Cholesky decomposition,V = C′C andZ is a

(K − 1)+ q vector of independent random normal variates.

2. For an observation with missingYm
i j and corresponding covariatesX∗i j , from (Eq. 7) compute

the expected probabilities,πk = P[Yi j = k|x∗i j ] (k = 1, ...,K).

3. For each observation with missingYm
i j , draw a random variate from a multinomial distribution

with the vector of probabilities (π1, ∙ ∙ ∙ , πK) derived in the previous step.

4. Repeat steps 1 to 3 to obtainM sets of imputed values (Y(1)
i j ,Y

(2)
i j , ∙ ∙ ∙ ,Y

(M)
i j ), (i = 1, ∙ ∙ ∙ ,N;

j = 1, ∙ ∙ ∙ ,T).

5 Simulation study

To assess the performance of both imputation methods (MNI and OIM), we conducted a large

simulation study as described hereafter.

5.1 Longitudinal ordinal data-generating model

Correlated ordinal responses were generated with the SAS macro developed by Ibrahim and Suliadi

(2011) and based on Lee’s algorithm (Lee, 1997). The basic measurement model utilized in this

study includes as covariates a binary group effect (X = 0 or 1), an assessment time (T) and an
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interaction term between group and time, so that the proportional odds model (Eq. 1) is written as

(i = 1, ∙ ∙ ∙ ,N; j = 1, ∙ ∙ ∙ ,T; k = 1, ∙ ∙ ∙ ,K − 1):

logit[Pr(Yi j ≤ k|xi , t j)] = β0k + βxxi + βtt j + βtxxit j . (8)

The required arguments in Ibrahim’s macro are: the marginal probabilities at each time point,

the correlation structure and the sample size. To generate the longitudinal data in the two groups

defined by the binary variable (i.e.,X = 0,1), the macro was applied twice. The corresponding

marginal probabilities at each time point were derived using Eq. (8). As an example, for the

group defined byX = 1, the value of the group parameter,xi, was fixed to 1, the value of the

time parameter,t j, was fixed to 1, ∙ ∙ ∙ ,T and the interaction term,xit j, was given by the product

of the two previously fixed parameters. Based on these values and using the theoretical values of

the model parameters displayed in Table 1, the probabilities to be in each modalities of the ordinal

outcomeY at each time point was determined for the groupX = 1. For the correlation structure,

the following exchangeable correlation structure was assumed:

Corr(Yi j ,Yik) =





1 j = k

0.2 j , k

(i = 1, ∙ ∙ ∙ ,N; j, k = 1, ∙ ∙ ∙ ,T).

Within the GEE framework, Liang and Zeger (1986) demonstrated that consistent estimates are

obtained whatever the choice of the working correlation matrix. As a consequence, the correlation

structure chosen in the simulations will have no impact on the derived results.

5.2 Missing data generating mechanisms

The mechanism used to generate MAR missingness data is based on the following binary logistic

regression model (i = 1, ∙ ∙ ∙ ,N; j = 1, ∙ ∙ ∙ ,T; k = 1, ∙ ∙ ∙ ,K − 1):
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logit[Pr(Di = j|xi , yi,( j−1))] = ψ0 + ψxxi + ψprevyi,( j−1). (9)

Thus, the probability of drop out at a certain time pointj depends on the binary covariateXi and

the outcome value at the previous time pointYi,( j−1). Verbiage about how to choose the population

parameters to generate missing data was added in Appendix 8.2.

5.3 Simulation patterns

Theoretical values of the model parameters (see (Eq. 8)) considered in our simulations are given

in Table 1 for well-balanced and skewed distributions. As an illustration, Figure 1 displays the

distribution of the theoretical probabilities derived from Table 1 in each group and at each time

point for K = 4 for a short study (T = 3) under well-balanced and skewed settings.

Three distinct sample sizesN were considered for the simulation: 100, 300 and 500, equally

distributed between both groups. This covers small (50 subjects/arm) to large studies (250 sub-

jects/arm). For the assessment time pointsT, two possibilities were envisaged corresponding to

short (T = 3) or long (T = 5) longitudinal study. Note that for skewed data, onlyT = 3 was con-

sidered. The ordinal outcome variableY covered various numbers of categoriesK = 2,3,4,5 and

7, respectively. Finally, the population parameters of (Eq. 9) (ψ0, ψx, ψprev) were chosen to yield

a rate of missingness approximatively equal to 10%, 30% and 50%, respectively. The complete

data case (0% missingness) was also considered. Thus, both imputation methods (MNI and OIM)

were assessed on 90 different combination patterns. For each pattern, S= 500 random samples

were generated. The two MI methods (MNI and OIM) were applied to impute missing data on the

same incomplete dataset allowing a paired comparaison of the two approaches. A GEE model was

then fitted to the resulting multiply imputed datasets. For each MI method, the number of multiple

imputation was fixed toM = 20 (Rubin, 1987; Graham et al., 2007). As the generation of the MAR

missingness was based on the binary covariateX, the latter had to be included in the imputation

model. In the GEE model, the same working correlation as the one used in the generation data
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process was considered, that is an exchangeable correlation matrix. The MI based on MNI and on

OIM were carried out using the SAS MI procedure. The GEE SAS macro based on the extension

of Lipsitz et al. method (1994) and implemented by Williamson et al. (1999) was used to analyze

the imputed datasets. Ultimately, the SAS MIANALYZE procedure was used to pool the results

obtained.

5.4 Evaluation criteria

For each simulation pattern, the relative biasRB= β̂/β expressed in percent was averaged over the

S = 500 replicated datasets. Likewise, the mean square error was calculated as

MS E= Bias2 + Var(β̂),

with Var(β̂) =
∑S

s=1
(β̂s−

ˉ̂β)2

(S−1) , ˉ̂β =
∑S

s=1
β̂s

S andBias= ˉ̂β − β.

The effect of the modeling parameters on RB was assessed by multiple regression analysis

and so was the difference between RB obtained by MCMC and OIM, respectively. This statistical

scheme was applied to both kinds of generated ordinal data, well-balanced and skewed distribution.

6 Results

The values of the relative bias (%) and the MSE calculated over the 500 replicate samples are de-

tailed in Appendices for both imputation methods. For clarity, results for intercepts were omitted.

6.1 Well-balanced distributions

Relative bias. Table 2 presents the mean (±SD) of RB of each regression parameter derived from

both imputation methods as well as their difference. Globally, the MNI method yielded highly un-

derestimated values of the model parameters, whereas for the OIM method estimates were almost
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unbiased. Therefore, the RB difference between the two imputation methods was highly significant

(p < 0.0001) for all parameters, ranging from 9% to 16%. A closer look at the results revealed

that for the binary effect parameter,βx, the relative bias using MNI was unchanged forK, N and

rate of missingness, and varied only slightly with the number of time points. Specifically, RB

was lower in long term than in short term studies (92.3± 12.0 % vs 86.5± 13.5 %; p = 0.034).

The RB for the time effect parameter,βt, decreased significantly with the number of categoriesK

(p < 0.0001) and with the percentage of missingness (p < 0.0001) but was unaffected byN andT.

It decreased from 96.4± 5.31 % for K=2 to 76.6± 9.07 % for K=7 and from 90.9± 4.08 % for

10% of missingness to 80.2± 14.0 % for 50% of missingness. The same observation was made

for the interaction term,βtx, except that a significant effect was noted forT (91.7± 5.82 % vs 89.4

± 5.47 %;p = 0.007). By contrast, when focusing on the OIM appraoch, the relative bias behaved

similarly for each regression parameter. RB decreased significantly with the number of categories

K (p < 0.0001), as well as with the number of time occasionsT (p < 0.05) but increased with the

sample sizeN (p < 0.05). Contrary to the MNI method, no effect of the percentage of missingness

was observed. Looking at the RB differences between the two approaches, results for model pa-

rameters were comparable except for the time parameterβt where the bias was substantiably larger

for T = 3 as compared toT = 5 (p = 0.001).

Mean square error. The mean square error (mean± SD) of each regression parameters under

both imputation methods and their difference are given in Table 3. Globally, although results

were highly significant (p < 0.0001), difference between MNI and OIM were minute and not

practically relevant. From this perspective, MNI and OIM were similar. As expected, under both

imputation methods and for each model parameter, the MSE decreased significantly (p< 0.0001)

with the sample sizeN. A decrease was also observed withT (p < 0.0001). MSE values also got

lower as the number of categoriesK increased but the relationship did not always reach statistical

significance. The rate of missingness did not really affect MSE except for the time parameter in
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both imputation methods (MNI:p = 0.015 and OIM:p = 0.0005).

6.2 Skewed distributions

As already mentioned, the case of skewed ordinal data was investigated in the context of a short

term study only, that isT = 3. Simulation results are summarized in the Appendices.

Multiple linear regression of the MNI relative bias on all modeling parameters (K, N and miss-

ingness) showed that, except for the time effect, RB increased significantly with the number of

categoriesK (βx: p < 0.0001,βt: p = 0.068,βtx: p = 0.0002) and with the percentage of miss-

ingness (βx: p < 0.0001,βt: p = 0.57, βtx: p = 0.0005). No relationship was observed between

the OIM relative bias and the modeling parameters. Contrary to the well-balanced case, the MNI

method overestimated the binary and the interaction term parameters of the model, while at the

same time underestimated the time parameterβt. As before, the OIM method yielded less biased

estimates (see Figures 2 and 3). The RB of the time parameter,βt, was more affected by the skew-

ness of the ordinal outcome than the other model parameters and this effect was even more marked

with the MNI method. In fact, the lowest RB value ofβt was equal to 42.1% and the highest RB

value was equal to 265.5%; both extremes were obtained under the MNI method. The correspond-

ing OIM relative biases were equal to 103.9% and 169.7%, respectively.

The MSE of each regression parameter under both imputation methods and their differences

are displayed in Table 4. Comparison of the MSE calculated in presence of skewed ordinal out-

comes with those derived in well-balanced setting showed that MSE values were larger in presence

of skewness. The conclusions made previously on MSE values in case of well-balanced distribu-

tions can be transported here. Specifically, MNI and OIM mean square errors were similar and

differences of MSE under both methods were not meaningful, even if statistically significant. As

expected, the MSE decreased significantly (p < 0.0001) with the sample size. The MSE decreased
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with the number of categories of the ordinal outcome for the binary effect under OIM (p = 0.009)

and less markedly for both time effect and interaction terms of the model. The effect of the rate of

missingness on MSE was significant for the time effect parameter, under both imputation methods

(MNI: p = 0.001 and OIM:p < 0.0001) and the MSE of the interaction term of the model de-

rived under OIM (p= 0.017). Although not relevant, the difference in the MSE of both imputation

methods decreased with the sample size for the time and the interaction term of the model. The

MSE difference for the latter further deteriorated with higher rates of missingness (p < 0.0001).

The number of categories of the ordinal outcome affected differently the MSE difference of the

binary and the interaction terms of the model. For the binary effect of the model, the difference in

MSE increased with the number of categories of the ordinal outcome (p < 0.0001), while for the

interaction term the MSE difference decreased (p = 0.0009).

7 Discussion

This paper compared the performance of two imputation methods available in statistical packages,

namely the MNI algorithm and the ordinal imputation regression model, in the context of lon-

gitudinal ordinal datasets with missing values. The comparison was based on a comprehensive

simulation plan covering a wide range of real life situations. Specifically, the parameters of the

experimental design included the number of categories of the ordinal outcome (K), the number

of time points (T), the sample size (N) and the rate of missingness (%) but also the form of the

distribution (well-balanced or skewed) of the ordinal outcome data. The performance of the two

methods (MNI and OIM) was appraised by the relative bias and the mean square error of the re-

gression parameters of the model. The latter included a group effect and a time effect, as well as

their interaction.

In the well-balanced setting, the estimates of the model parameters obtained with the MNI ap-

proach were markedly underestimated (RB<< 100%). By contrast, estimates derived with the
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OIM method were almost unbiased. These general observations however have to be tempered ac-

cording to the study pattern. For example, RB differences between MNI and OIM for the binary

and the interaction model parameters vanished with increasingK, the number of categories. By

contrast, for the time effect parameter, the RB difference increased withK but decreased withT,

the number of time points. For all regression parameters, the MSE of both imputation methods

were almost equal but departed slightly for larger sample sizes and higher missingness rates. For

skewed data, estimates under MNI method were positively biased, except for the time effect, and

MSE were comparable.

In conclusion, based on the results of this large simulation study, the MNI method is not really

recommended to analyze longitudinal ordinal data with missing values. Preferably, it is advisable

to impute missing ordinal data using an appropriate regression model. The OIM method however

requires the construction of an imputation model. Meng (1994) showed that, as long as the impu-

tation model is not grossly misspecified, MI approach will perform well. From a practical point of

view, the imputation model should at least include any variable structure (e.g. interaction) present

in the substantive model (Fay, 1992). The inclusion of other available covariates, which are not

necessarily of interest in the substantive model, is unlikely to produced biased results. Therefore,

Rubin’s rule which consists in including as many variables as possible when performing multiple

imputation (Rubin,1996) is recommended. Furthermore, in the binary setting with MAR missing-

ness, Beunckens et al. (2008) demonstrated the robustness of MI-GEE when misspecifying either

the imputation or measurement model. Those findings were extended in the MNAR case (Birhanu

et al., 2011).

As a final remark, we should noted that, contrary to the MNI method, the use of the OIM

method is limited to the situation of monotone missingness. In the presence of non-monotone

missingness, a solution to minimize the imputation’s bias could be to iterate between application
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of MNI and OIM methods to first monotonize the dataset before application of the OIM method.

This proposal, however, requires additional researches.
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Table 1: Values of the model parameters used for generating longitudinal ordinal dataset (well-balanced and skewed
distributions)

Distribution K β01 β02 β03 β04 β05 β06 βx βt βtx

Well-balanced
2 -0.25 - - - - - 0.10 0.10 -0.15
3 -0.71 0.66 - - - - 0.10 0.10 -0.15
4 -1.10 0.00 1.10 - - - 0.10 0.10 -0.15
5 -1.39 -0.41 0.41 1.39 - - 0.10 0.10 -0.15
7 -1.79 -0.92 -0.29 0.29 0.92 1.79 0.10 0.10 -0.15

Skewed
2 1.00 - - - - - 0.80 0.10 -0.25
3 -2.20 -0.85 - - - - 0.80 0.10 -0.25
4 -0.41 0.00 0.41 - - - 0.80 0.10 -0.25
5 -0.85 -0.20 0.20 0.85 - - 0.80 0.10 -0.25
7 -1.39 -0.66 -0.16 0.16 0.66 1.39 0.80 0.10-0.25

Table 2: Relative bias (mean± SD) of the parameters of the substantive model after imputation of the ordinal outcome
using MCMC and OIM methods. Globally and according to the modeling parameters

βx βt βtx
MNI OIM MNI-OIM MNI OIM MNI-OIM MNI OIM MNI-OIM

Global 89.4± 13.1 99.5± 15.5 -10.1± 8.91 84.6± 10.4 100.9± 8.95 -16.4± 9.58 90.6± 5.73 99.7± 5.37 -9.10± 4.60
< 0.0001 < 0.0001 < 0.0001

K 2 91.7± 14.3 106.7± 11.8 -15.0± 7.39 96.4± 5.31 104.3± 7.74 -7.91± 4.26 92.9± 5.18 101.2± 2.93 -8.35± 4.29
3 95.5± 10.9 106.9± 13.1 -11.4± 5.78 89.4± 5.69 103.8± 5.34 -14.4± 6.13 94.1± 2.98 103.4± 4.23 -9.35± 4.34
4 81.3± 17.8 94.9± 19.6 -13.6± 5.28 80.0± 8.52 102.1± 6.79 -22.1± 9.92 88.0± 6.71 99.1± 6.05 -11.1± 4.66
5 86.4± 7.95 96.4± 11.1 -9.94± 7.09 80.5± 8.36 102.6± 8.36 -22.1± 11.2 89.1± 5.36 99.5± 3.09 -10.4± 4.70
7 92.1± 7.51 92.6± 15.7 -0.52± 10.6 76.6± 9.07 92.0± 10.3 -15.4± 7.14 88.7± 5.56 95.0± 6.12 -6.34± 3.87

0.63 0.0005 < 0.0001 < 0.0001 < 0.0001 0.0014 < 0.0001 < 0.0001 0.034

T 3 92.3± 12.0 103.0± 12.8 -10.7± 8.06 85.1± 11.4 103.5± 9.08 -18.4± 11.2 91.7± 5.82 100.9± 5.34 -9.26± 4.73
5 86.5± 13.5 96.0± 17.2 -9.46± 9.73 84.0± 9.31 98.4± 8.12 -14.3± 7.23 89.4± 5.47 98.4± 5.14 -8.94± 4.51

0.034 0.018 0.39 0.46 0.001 0.009 0.007 0.009 0.61

N 100 87.4± 17.1 93.2± 20.7 -5.82± 10.8 84.1± 11.5 97.4± 10.4 -13.3± 8.16 90.5± 6.60 97.7± 6.73 -7.22± 4.18
300 91.0± 12.2 102.8± 13.0 -11.8± 7.26 84.6± 9.88 102.1± 8.02 -17.5± 9.58 90.9± 5.37 100.8± 4.77 -9.88± 4.48
500 89.8± 8.67 102.5± 8.96 -12.6± 6.82 85.0± 9.98 103.4± 7.24 -18.4± 10.4 90.2± 5.29 100.4± 3.85 -10.2± 4.67

0.47 0.012 0.0003 0.61 0.002 0.008 0.74 0.027 0.0002

Missingness 10 92.6± 11.3 99.5± 11.5 -6.89± 1.68 90.9± 4.08 99.8± 3.24 -8.91± 3.54 95.4± 2.65 100.1± 2.47 -4.64± 0.94
30 87.9± 11.9 99.9± 14.0 -12.0± 6.08 82.6± 7.26 101.2± 5.59 -18.6± 7.36 89.9± 3.23 99.9± 3.57 -9.94± 2.21
50 87.7± 15.4 99.1± 20.2 -11.4± 13.7 80.2± 14.0 101.8± 14.2 -21.6± 11.1 86.3± 6.29 99.0± 8.31 -12.7± 4.92

0.14 0.90 0.014 < 0.0001 0.29 < 0.0001 < 0.0001 0.37 < 0.0001
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Table 3: Mean square error (mean± SD) of the parameters of the substantive model after imputation of the ordinal
outcome using MCMC and OIM methods. Globally and according to the modeling parameters

βx βt βtx
MNI OIM MNI-OIM MNI OIM MNI-OIM MNI OIM MNI-OIM

Global 0.123± 0.098 0.119± 0.095 0.004± 0.009 0.011± 0.012 0.013± 0.014 -0.001± 0.003 0.020± 0.022 0.022± 0.024 -0.001± 0.003
< 0.0001 < 0.0001 < 0.0001

K 2 0.136± 0.107 0.141± 0.112 -0.005± 0.007 0.013± 0.015 0.015± 0.017 -0.002± 0.003 0.024± 0.026 0.027± 0.029 -0.002± 0.004
3 0.131± 0.106 0.128± 0.104 0.003± 0.003 0.012± 0.013 0.013± 0.015 -0.002± 0.003 0.022± 0.024 0.024± 0.027 -0.002± 0.003
4 0.124± 0.111 0.117± 0.104 0.007± 0.008 0.011± 0.013 0.012± 0.015 -0.001± 0.002 0.020± 0.023 0.021± 0.024 -0.001± 0.002
5 0.111± 0.086 0.105± 0.081 0.007± 0.007 0.010± 0.011 0.012± 0.014 -0.002± 0.004 0.018± 0.018 0.019± 0.020 -0.001± 0.002
7 0.114± 0.085 0.104± 0.078 0.009± 0.011 0.009± 0.009 0.011± 0.011 -0.001± 0.002 0.017± 0.017 0.017± 0.018 -0.000± 0.001

0.063 0.005 < 0.0001 0.068 0.095 0.51 0.034 0.013 0.0003

T 3 0.159± 0.113 0.154± 0.111 0.004± 0.010 0.018± 0.014 0.021± 0.016 -0.003± 0.003 0.033± 0.024 0.036± 0.026 -0.002± 0.003
5 0.087± 0.063 0.084± 0.060 0.004± 0.008 0.004± 0.003 0.004± 0.004 -0.000± 0.001 0.007± 0.005 0.008± 0.006 -0.000± 0.001

< 0.0001 < 0.0001 0.78 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

N 100 0.242± 0.077 0.234± 0.078 0.009± 0.014 0.022± 0.015 0.025± 0.018 -0.003± 0.004 0.040± 0.027 0.042± 0.030 -0.002± 0.004
300 0.080± 0.026 0.078± 0.026 0.002± 0.004 0.007± 0.005 0.008± 0.006 -0.001± 0.001 0.013± 0.009 0.014± 0.010 -0.001± 0.001
500 0.047± 0.016 0.046± 0.016 0.001± 0.002 0.004± 0.003 0.005± 0.004 -0.000± 0.001 0.008± 0.005 0.008± 0.006 -0.000± 0.001

< 0.0001 < 0.0001 0.0002 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Missingness 10 0.115± 0.094 0.113± 0.093 0.002± 0.003 0.009± 0.010 0.010± 0.010 -0.000± 0.000 0.018± 0.020 0.018± 0.020 -0.000± 0.001
30 0.123± 0.099 0.119± 0.097 0.004± 0.007 0.011± 0.011 0.012± 0.013 -0.001± 0.001 0.020± 0.022 0.021± 0.023 -0.001± 0.002
50 0.131± 0.103 0.125± 0.099 0.006± 0.013 0.013± 0.014 0.017± 0.018 -0.003± 0.004 0.023± 0.024 0.025± 0.027 -0.003± 0.004

0.15 0.29 0.024 0.015 0.0005 < 0.0001 0.099 0.028 < 0.0001

Table 4: Mean square error (mean± SD) of the parameters of the substantive model after imputation of the ordinal
outcome using MNI and OIM methods, globally and according to the modeling parameters (skewed distribution)

βx βt βtx
MNI OIM MNI-OIM MNI OIM MNI-OIM MNI OIM MNI-OIM

Global 0.192± 0.144 0.184± 0.144 0.008± 0.018 0.022± 0.016 0.023± 0.017 -0.000± 0.006 0.038± 0.029 0.042± 0.034 -0.004± 0.006
< 0.0001 0.61 < 0.0001

K 2 0.241± 0.197 0.254± 0.210 -0.013± 0.017 0.026± 0.018 0.027± 0.020 -0.000± 0.003 0.050± 0.041 0.058± 0.049 -0.008± 0.010
3 0.173± 0.126 0.171± 0.125 0.002± 0.003 0.033± 0.020 0.026± 0.019 0.007± 0.007 0.036± 0.026 0.040± 0.029 -0.004± 0.005
4 0.186± 0.138 0.170± 0.129 0.016± 0.012 0.017± 0.012 0.020± 0.015 -0.003± 0.004 0.035± 0.027 0.040± 0.030 -0.005± 0.005
5 0.194± 0.138 0.178± 0.130 0.016± 0.010 0.017± 0.013 0.020± 0.017 -0.003± 0.006 0.038± 0.027 0.041± 0.031 -0.003± 0.005
7 0.169± 0.131 0.148± 0.117 0.021± 0.019 0.017± 0.013 0.019± 0.016 -0.002± 0.004 0.032± 0.025 0.033± 0.026 -0.000± 0.002

0.088 0.010 < 0.0001 0.0005 0.012 0.04 0.026 0.007 0.0009

N 100 0.384± 0.070 0.371± 0.089 0.013± 0.028 0.040± 0.012 0.044± 0.012 -0.004± 0.007 0.076± 0.017 0.085± 0.024 -0.009± 0.009
300 0.119± 0.015 0.112± 0.016 0.007± 0.010 0.016± 0.009 0.015± 0.004 0.001± 0.005 0.024± 0.004 0.026± 0.005 -0.002± 0.002
500 0.075± 0.014 0.070± 0.016 0.005± 0.008 0.010± 0.007 0.009± 0.003 0.001± 0.005 0.015± 0.003 0.016± 0.005 -0.001± 0.002

< 0.0001 <0.0001 0.11 <0.0001 <0.0001 0.020 <0.0001 <0.0001 <0.0001

Missingness 10 0.177± 0.138 0.174± 0.38 0.003± 0.006 0.017± 0.012 0.017± 0.013 -0.000± 0.001 0.035± 0.027 0.036± 0.028 -0.001± 0.001
30 0.192± 0.147 0.183± 0.145 0.010± 0.015 0.021± 0.014 0.021± 0.015 0.000± 0.003 0.038± 0.029 0.041± 0.032 -0.003± 0.003
50 0.209± 0.155 0.197± 0.158 0.012± 0.027 0.028± 0.020 0.030± 0.021 -0.002± 0.010 0.043± 0.032 0.051± 0.040 -0.008± 0.009

0.19 0.36 0.092 0.001 <0.0001 0.45 0.11 0.017 <0.0001
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8.2 Selection of population parameters to generate missing data

The population parameters in (Eq. 9) were chosen using the following pragmatic way. First,

rewrite the dropout probability model as follows,

Pr(Di = j|xi , yi,( j−1)) =
eψ0+ψxxi+ψprevyi,( j−1)

1+ eψ0+ψxxi+ψprevyi,( j−1)
.

Let us assume that the ordinal outcomeY hasK categories and that their probabilities of occurring,

py(y), are known. Let us also assume thatX has two categories and that we know their probabilities

of occurrencepx(x). In line with our simulation plan, assume that these two occurrences are

independent, so thatp(x, y) = px(x)py(y). Then, we chose parameter values forψx andψprev,

leaving onlyψ0 unspecified. Let the proportion of missingness aimed for beπ (e.g. 10%, 30%, or

50% ), we then found the values forψ0 (by trial and error) that satisfied

π =
∑

x

∑

y

p(x, y)
eψ0+ψxxi+ψprevyi,( j−1)

1+ eψ0+ψxxi+ψprevyi,( j−1)
.
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Figure 1: Distribution of the theoretical probabilities under well-balanced and skewed setting - K= 4 - T = 3
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Figure 2: Relative bias (%) of the model parameters (top to bottom:βx, βt, βtx) according toK the number of categories
of the ordinal outcome (MNI= shaded boxplot - OIM=empty boxplot)
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Figure 3: Relative bias (%) of the model parameters (top to bottom:βx, βt, βtx) according to the rate of missingness
(MNI= shaded boxplot - OIM=empty boxplot)
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