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ABSTRACT

Multiple imputation (MI) is now a reference solution for handling missing data. The default
method for Ml is the Multivariate Normal Imputation (MNI) algorithm which is based on the
multivariate normal distribution. In the presence of longitudinal ordinal missing data, where the
Gaussian assumption is no longer valid, application of the MNI method is questionable. This
simulation study compares the performance of the MNI and ordinal imputation regression model
for incomplete longitudinal ordinal data for situations covering various numbers of categories of
the ordinal outcome, time occasions, sample sizes, rates of missingness, well-balanced and skewed

data.
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1 Introduction

Longitudinal ordinal data arise naturally in many clinical settings. For example, in randomized
treatment trials, the regular assessment of the patient’s quality of life (QoL) by means of a Likert-
type scale has become popular. In such longitudinal studies, however, subjects may drop out
prematurely while others may miss one or more assessments. Rather than deleting missing values,
it has been recommended to ‘impute’ them. The question of how to obtain valid inferences from
imputed data was formally addressed by Rubin (1978) who introduced the multiple imputation
(MI) method that replaces each missing value not only once but by a $¢t(&f > 1) plausible

values whence reflecting the uncertainty about the prediction of the unknown missing values.

It is not uncommon in Ml to rely on the assumption that the outcome variable follows a Normal
distribution and hence ignore the categorical responses in the ordinal outcome. The present sim-
ulation study was designed to evaluate two MI methods for incomplete longitudinal ordinal data,
one considering the outcome as continuous and the other as ordinal. The MI method for continu-
ous outcome is based on the Markov Chain Monte Carlo (MCMC) method of data augmentation,
while the MI method for ordinal outcome uses the proportional odds property of the ordinal logis-
tic regression model. The paper will compare the performance of the two Ml methods by focusing
on the estimation of the parameters of the longitudinal ordinal logistic model. Both imputation
methods were evaluated through Monte Carlo simulated artificial data sets. The simulations not

only cover well-balanced data but also skewed distribution, as often observed in QoL studies.

The proportional odds model to analyze longitudinal ordinal data is briefly reviewed in Section 2,
while a general overview of the problem of missing data is given in Section 3. Section 4 outlines the
theoretical background of multiple imputation including those for continuous and ordinal variables.
The simulation experimental design is described in Section 5 and results are presented in Section

6. Concluding remarks are given in Section 7.
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2 Models for longitudinal ordinal data

2.1 The proportional odds model

Consider a sample & subjects and leY be an ordered variable witk categories assessed ©n
occasions on each subject. Then Mgtdenote the assessment of the ordinal varidbier theith
subject { = 1,...,N) at the jth occasion | = 1,..., T). Hence,Y; = (Yi1, ..., Yit)’ is the vector of

the repeated assessments ofithesubject. Associated with each subject, there ps>xal vector

of covariates, say;;, measured at tim¢. Let X; = (X1,...,Xr)" denote theél x p design matrix

of theith subject. Covariates typically include time of measurement, age, gender, treatment group,

interaction terms, and so on.

The ordinal nature of the outcome variable may be accounted for by considering the cumula-
tive probabilitiesPr(Y;; < k),k = 1,---, K. The cumulative proportional odds model is a popular
choice to relate the marginal probabilitiesYofo the covariate vector (McCullagh, 1980). Specif-

ically,

logit[Pr(Yi; < kixij)] = Bok + Xi; B, (2)

wheregy = (Bos, -, Bok-1)" IS the vector of the intercept parameters gnel (54, ..., 5p)’ the vector
of codficients (= 1,..,N; j=1,...,.T; k=1,...,K=1). Under the proportional odds assumption,
B does not depend dn

2.2 Generalized estimating equations

Estimation of the regression parameters of marginal models can be approached by likelihood-based

methods. One diculty present with likelihood models resides in the complexity of the relationship
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between the parameters of the model and the joint probabilities that define the likelihood. There-
fore, alternative solutions have been explored, in particular the generalized estimating equations
(GEE), quite popular for the analysis of non-Gaussian correlated data. This approach circumvents
the specification of the joint distribution of the repeated responses by means of a ‘working’ corre-
lation matrix and only the marginal distributions are specified. Since the proportional odds model
is not part of the regular generalized linear model family, some transformations are required before
applying the GEE method. Following Lipsitz et al. (1994)Ka«1)-dimensional expanded vector

of binary responses has to be created for each subject at each ocdgsier(Y;;;, ....Y;_1y;)’

whereY:

k=1 if Y;j < kand 0 otherwise. Now,

logit[Pr(Y;; < kix;j)] = logit[Pr(Y; = 1Ix;j)], k=1,...,K-1. (2)

Since the logistic regression model is a member of the generalized linear model family, the GEE
method applies and consistent estimates of the regression parameters can be obtained by solving

the estimating equations

> Ty = 0 3
2.3V i =m) =0, 3)

whereY: = (Yi,...Y5), m = E(Y;), Vi = A’RIAY? with A; the diagonal matrix of the vari-

ance of the elements off, andpg the expanded vector of intercepts and regressiofficants.

The matrixR; is the ‘working’ correlation matrix that expresses the dependence among repeated
observations over the subjects ranging from independence to exchangeable, banded, or unstruc-

tured.

3 Missingness

The profile of incomplete observations in a longitudinal data set may exhibit a variety of pat-
terns. When an individual withdraws from the study before its completion time, we have a case of

dropout. The missingness pattern may be monotone or non-monotone. In a monotone pattern, if
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Y;; is missing for somg, thenY;, is missing for allkk > j. As a consequence, ¥; is known, so
are allYy (k < j). By contrast, in a non-monotone pattern, there will be missing data before last
available assessment. In line with the notation introduced previously, consider the missing data

indicators R;j, defined as follows:

1if Y;; is observed,
=
0 otherwise,

and letR; = (R1,...,Rt) the indicator vector corresponding Yo = (Yi1,..., Yir). NowY; can
be split into two subvectorsy@, Y{") whereY? refers to the observed componentYofand Y™
refers to the missing component part. For monotone drogus, of the form (1...,1,0,...,0)
and can be used to define the dropout indic&ip= 1 + Zszl R; which represents the time at

which subject dropped out.

When missing data occur, we are concerned with the distribution of the measurement process
together with the missing-data process. Little and Rubin (1987) and Little (1993, 1995) identified
two broad classes of joint models: the selection model and the pattern-mixture model. In the selec-
tion model, the joint distributionY(;, R;) is split into the marginal distribution of the measurement
and the distribution of the missingness process conditional on the measurém@&yt contrast,
the pattern-mixture model specifies the marginal distributioR;@nd the conditional distribution
of Y; given R;. Here we shall focus on the selection model approach in which Rubin (1987) and
Little and Rubin (1987) made essential distinctions between the processes responsible for the miss-
ingness: missing completely at random (MCAR), missing at random (MAR), and missing not at
random (MNAR). The determination of the mechanism responsible for missing data has a decisive
implication on the choice of the statistical method used to analyze the data. Under the MCAR
mechanism, the probability of an observation being missing is independent oi¥bathd Y™.

Under the MAR mechanism, the probability of an observation being missing is independ€ht of

givenY?°. When neither MCAR nor MAR holds, the missingness mechanism is said to be MNAR,
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so that the probability of an observation being missing depend§Ton

Liang and Zeger (1986) pointed out that GEE are only valid under the restrictive assumption
that the data are missing completely at random (MCAR). Alternative methods were investigated
to allow the analysis of data under less strict missingness assumptions. Robins et al. (1995a,
1995b) developed an extension of the GEE, known as the weighted generalized estimating equa-
tions (WGEE), that provide consistent estimates of the regression parameters even under the MAR
assumption. With their method, each subject’'s measurements is weighted in the GEE by the in-
verse probability of dropping out at that time point. Another alternative to analyze the data under
the MAR assumption is multiple imputation based on GEE (MI-GEE). In this approach, missing
values are imputed several times (Rubin, 1976, 1978) and the resulting completed datasets are
analyzed using standard GEE methods. Using Rubin’s rules, the final results obtained from the
completed datasets are combined into a single inference. In the context of longitudinal binary data,
Beunckens et al. (2008) showed by simulations that, in spite of the asymptotic unbiasedness of
WGEE, the combination of GEE and multiple imputation is both less biased and more accurate in
small to moderate sample sizes which typically arise in clinical trials. In this paper, focus will be

on MI-GEE methods.

4  Multiple imputation

4.1 Theoretical framework

The idea behind multiple imputation is that instead of filling in a single value for each missing data,
the technique is to replace each missing value with a skt sf1 plausible values drawn from the
conditional distribution of the missing data given the observed data. This conditional distribution
represents the uncertainty about the right value to impute in the sense that thévsehptited

values properly represents the information about the missing value that is contained in the observed
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data. Thes®& complete data sets are then analyzed by the method that would have been appropri-
ate if the data had been complete. The model used in this last step is called the substantive model,
while the model used in the imputation task is called the imputation model. Results derived from
the substantive model are then combined using simple rules provided by Rubin (1987), resulting in

a single inference about the parameters of interest that accounts for uncertainty due to missing data.

Using the notation introduced in previous sectionsfletpresent the parameter vector of the
distribution of the respons¥; = (Y?,Y["). Note that§ may difer from the paramete8 of the
substantive model. The observed d#fawill be used to estimate the conditional distribution of
Y™ givenY®, f(Y™Y?°,80). If 8is known, the values forY™ can be drawn fronf(Y™Y?°, 8). For@
unknown, an estimate is obtained from the data,éaken missing values will be imputed using
f(YMY®°,6). Frequentists incorporate uncertaintyéirby using bootstrap or other methods. A
Bayesian prior distribution fof can also be chosen. Given this distribution, a déave generated
and now values fol¥™ can be drawn fronf(Y™MY?°, 8%). These two steps for the construction of
the imputed data are the first phase of MI. Then the substantive model is applied to each of the
M completed dataY(®, Y™). Let [im and U, be the vector of estimates and the corresponding
variance-covariance matrix for tmé" imputed data setnf = 1, ..., M), respectively. The last step
of Ml is the combination of thé/ results. The MI point estimate f@is simply the average of the

M complete-data point estimates (Rubin, 1987; Schafer, 1997),
1A
B == B
A measure of the precision @* is obtained by Rubin’s variance formula (Rubin, 1987) which

combines the within- and the between-imputation variability. DeWiethe within-imputation

variance, as the average of thlewithin imputation variance estimat€ky,
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andB, the between-imputation variance, measuring the variability across the imputed values,
1 5. .
B=— ~B)B.-B).
M_lmzﬂwm B)Bn-5)
Then, the variance estimate associated ﬁfths the total variance

1
T=W+|1+—|B,
(1)

Where(l + %) is a correction factor for the finite number of imputations.

4.2 Multivariate Normal Imputation Method

MCMC methods have been considered to explore and simulate the entire joint posterior distribution
of the unknown quantities through the use of Markov chains, and thereby obtain simulation-based
estimates of virtually any feature of the posterior that are of interest. For this reason, MCMC

methods are widely applied in the imputation phase of multiple imputation methods.

Assuming that data arise from a multivariate normal distribution, Schafer (1997) developed
a method based on MNI for generating proper imputations that accounts for between-imputation
variability. This approach, based on the algorithm of data augmentation (Tanner and Wong (1987)),
is a procedure that iterates between an imputation step (I-step) and a posterior step (P-step). Let
the T assessments of the ordinal outcome variable be viewed as a random végtor; (Y1)’
assumed to follow a multivariate normal distribution with mean vegtand covariance matrix
Y. In the I-step, given starting values fér= (u, X), values for missing dat{€™ are simulated by
randomly drawing a value from the conditional multivariate normal distributiod"BQivenY?,
f(Y™MY®,8). The conditional meanu,,, and the conditional covariance matri;,, have to be
derived. Letu = (1, u,,) be the mean vector of the variable calculated in the observed and in the

missing part of the dataset. In the same way, suppose that the covariance matrix is partitioned as
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follows,
Z0 Zo,m
Y= ,
zg,m Xm
whereX, , denotes the covariance matrix betweééhandY™, X, andX, represent the variance
matrix for Y° andY™, respectively. It has been shown (Goodnight (1979), Schafer (1997)) that the

conditional covariance matriX,,, can be expressed as:
-1
Zmlo = Em - Zg’mxo Zo’m. (4)

Thus,
FOY™Y®,0) ~ N(tpy00 Emo)s

With g6 = pm + 2 mEo (Y© — p1o) andZie given by (4).
After the first iteration, new values fé@r= (u, X) are drawn from its posterior distribution. Assum-
ing a noninformative prior distribution fqr andX, their posterior distribution at théttiteration

are given by a Normal and an inverted Wishart distribution (Schafer (1997)),

—1
O Zy(®)
Hy N (Y, nE ), 5)
O ~ wWln-1(n-21)9, (6)

where (7 S) are both determined by the observed data and the missing data imputed in the last I-
step, as followsY = 1/n3N,yi = 1/n(EN i -+, SN yir) and o-1)S = TN (vi - Y)(yi - Y)'.

Both steps are iterated, which creates a Markov ch‘ém,@(l)), (Y[‘;), 0). - -- where each step
depends on the previous one, introducing dependency across the steps. The two steps are then iter-
ated long enough until the distribution becomes stationary. Imputations from the last iteration are
used to impute the missing values of the dataset. The Expectation-Maximization (EM) algorithm
was used to derive initial mean and covariance estimates for the MNI method. More detail about

this procedure can be found in Schafer (1997).

When proceeding this way for an ordinal outcome, the imputed values obtained are no longer
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integer values and need then to be rounddmthe nearest integer (category) or to the nearest
plausible value. However, in the binary case, it was demonstrated that rounding is not recom-
mended because the rounded imputed values may provide biased parameter estimates (Horton et
al., 2003; Ake, 2005; Allison, 2005). In situations like ours, where one is concerned with presence

of missing values for the outcome variable, unrounded values are physically not plausible. So, the
rounding phase is unavoidable before application of the substantive model (e.g. GEE with propor-

tional odds).

4.3 Ordinal imputation method

The ordinal imputation method (OIM) appears as an alternative to the MNI approach. To impute
missing data for an ordinal outcome, one has to impose a probability model on the complete data.
Multiple imputation of a longitudinal dataset with monotone missingness patterns consists in a
sequential application of methods designed for univariate data by considering the previous fully

observed assessment times as covariates.

In the presence of an ordinal outcome variable, a proportional odds model will be consid-
ered in the first step of the imputation phase to link the ordinal outcome to a sgt@fari-
ates. In a longitudinal setting, the covariates typically include those of the substantive Xpodel
possible auxiliary covariatesy;, and the previous outcomés,- = (Yi1, ..., Yij-1). Specifically

X = (Xij, Aij,\?ij)’ and the model is written as :

logit[Pr(Y; < K)IXj;] = v+ X7 (7)

Regression cdicient estimate$ = (vo,7')» whereyy = (you, - - -, Yok-1)), and correspond-

ing covariance matri¥ = V(') are obtained by fitting the proportional odds model to the observed
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data. Based on these estimates, the algorithm to impute missing valuegthtahsessmen {J”

operates as follows:

1. Draw new values for parametdisassuming large-sample normal approximaﬁt(rf, V(f))
of its posterior distribution assuming the noninformative pRofl") « const In other words,
compute

r'=r+cz,
whereC'’ is the upper triangular matrix of the Cholesky decompositibrs; C'C andZ is a

(K — 1) + g vector of independent random normal variates.

2. For an observation with missingj“ and corresponding covariatﬁﬁ, from (Eqg. 7) compute

the expected probabilities, = P[Y;; = kixj;] (k= 1,..., K).

3. For each observation with missih(g‘, draw a random variate from a multinomial distribution

with the vector of probabilitiest(, - - - , 7) derived in the previous step.

4. Repeat steps 1 to 3 to obtdif sets of imputed valueg(i@ YO, YWy i =1, N;

’|J’ ’|]

j:]_’...’T)_

5 Simulation study

To assess the performance of both imputation methods (MNI and OIM), we conducted a large

simulation study as described hereatfter.

5.1 Longitudinal ordinal data-generating model

Correlated ordinal responses were generated with the SAS macro developed by Ibrahim and Suliadi

(2011) and based on Lee’s algorithm (Lee, 1997). The basic measurement model utilized in this

study includes as covariates a binary grotiigee (X = 0 or 1), an assessment tim€)(and an
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interaction term between group and time, so that the proportional odds model (Eg. 1) is written as

(=L N j=L---,T:k=1--- K-1)
logit[Pr(Yij < Kixi, tj))] = Bok + BxXi + Bitj + BuXitj. (8)

The required arguments in Ibrahim’s macro are: the marginal probabilities at each time point,
the correlation structure and the sample size. To generate the longitudinal data in the two groups
defined by the binary variable (i.e = 0,1), the macro was applied twice. The corresponding
marginal probabilities at each time point were derived using Eq. (8). As an example, for the
group defined byX = 1, the value of the group parametey, was fixed to 1, the value of the
time parametert;, was fixed to 1--- , T and the interaction ternx;t;, was given by the product
of the two previously fixed parameters. Based on these values and using the theoretical values of
the model parameters displayed in Table 1, the probabilities to be in each modalities of the ordinal
outcomeY at each time point was determined for the groUg: 1. For the correlation structure,

the following exchangeable correlation structure was assumed:

1 j=k
02 j#k

Corr(Y;j, Yi) =

(=1 N jk=1,---,T).

Within the GEE framework, Liang and Zeger (1986) demonstrated that consistent estimates are
obtained whatever the choice of the working correlation matrix. As a consequence, the correlation

structure chosen in the simulations will have no impact on the derived results.

5.2 Missing data generating mechanisms

The mechanism used to generate MAR missingness data is based on the following binary logistic

regressionmodel& 1,--- ,N; j=1,--- ,T; k=1,--- ,K-1):

ACCEPTED MANUSCRIPT
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logit[Pr(D; = jIX, Yi(j-1)] = Yo + ¥xX + YpreWi (j-1)- 9)

Thus, the probability of drop out at a certain time pgidepends on the binary covariateand
the outcome value at the previous time poify_1). Verbiage about how to choose the population

parameters to generate missing data was added in Appendix 8.2.

5.3 Simulation patterns

Theoretical values of the model parameters (see (Eqg. 8)) considered in our simulations are given
in Table 1 for well-balanced and skewed distributions. As an illustration, Figure 1 displays the
distribution of the theoretical probabilities derived from Table 1 in each group and at each time
point for K = 4 for a short studyT = 3) under well-balanced and skewed settings.

Three distinct sample sizé¢ were considered for the simulation: 100, 300 and 500, equally
distributed between both groups. This covers small (50 suligenty to large studies (250 sub-
jectgarm). For the assessment time poiltstwo possibilities were envisaged corresponding to
short T = 3) or long (T = 5) longitudinal study. Note that for skewed data, ol 3 was con-
sidered. The ordinal outcome variabdecovered various numbers of categories- 2, 3,4,5 and
7, respectively. Finally, the population parameters of (EQ.y¢8)&x, ¥ prev) Were chosen to yield
a rate of missingness approximatively equal to 10%, 30% and 50%, respectively. The complete
data case (0% missingness) was also considered. Thus, both imputation methods (MNI and OIM)
were assessed on 9(fdrent combination patterns. For each patters;, S0 random samples
were generated. The two Ml methods (MNI and OIM) were applied to impute missing data on the
same incomplete dataset allowing a paired comparaison of the two approaches. A GEE model was
then fitted to the resulting multiply imputed datasets. For each Ml method, the number of multiple
imputation was fixed td&1 = 20 (Rubin, 1987; Graham et al., 2007). As the generation of the MAR
missingness was based on the binary covatiatthe latter had to be included in the imputation

model. In the GEE model, the same working correlation as the one used in the generation data
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process was considered, that is an exchangeable correlation matrix. The MI based on MNI and on
OIM were carried out using the SAS MI procedure. The GEE SAS macro based on the extension
of Lipsitz et al. method (1994) and implemented by Williamson et al. (1999) was used to analyze
the imputed datasets. Ultimately, the SAS MIANALYZE procedure was used to pool the results

obtained.

5.4 Evaluation criteria

For each simulation pattern, the relative bRB= /5 expressed in percent was averaged over the

S = 500 replicated datasets. Likewise, the mean square error was calculated as
MS E = Bias’ + Var(B),

. ~ 5 A2 ~ 5 . ~
with Var(g) = 33, (fé_ﬁl)) ,B=7Y2,%5 andBias= 5 -p.

The dfect of the modeling parameters on RB was assessed by multiple regression analysis
and so was the fference between RB obtained by MCMC and OIM, respectively. This statistical

scheme was applied to both kinds of generated ordinal data, well-balanced and skewed distribution.

6 Results

The values of the relative bias (%) and the MSE calculated over the 500 replicate samples are de-

tailed in Appendices for both imputation methods. For clarity, results for intercepts were omitted.

6.1 Well-balanced distributions

Relative bias Table 2 presents the meanSD) of RB of each regression parameter derived from
both imputation methods as well as theiffdience. Globally, the MNI method yielded highly un-

derestimated values of the model parameters, whereas for the OIM method estimates were almost
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unbiased. Therefore, the RBfidirence between the two imputation methods was highly significant
(p < 0.0001) for all parameters, ranging from 9% to 16%. A closer look at the results revealed
that for the binary ffect parametegy, the relative bias using MNI was unchanged KarN and

rate of missingness, and varied only slightly with the number of time points. Specifically, RB
was lower in long term than in short term studies (92.32.0 % vs 86.5+ 13.5 %;p = 0.034).

The RB for the time ffect parametef;, decreased significantly with the number of categoKies

(p < 0.0001) and with the percentage of missingngss 0.0001) but was urféected byN andT.

It decreased from 96.4 5.31 % for K=2 to 76.6+ 9.07 % for K=7 and from 90.9+ 4.08 % for

10% of missingness to 802 14.0 % for 50% of missingness. The same observation was made
for the interaction term3., except that a significantfect was noted fof (91.7+ 5.82 % vs 89.4

+ 5.47 %;p = 0.007). By contrast, when focusing on the OIM appraoch, the relative bias behaved
similarly for each regression parameter. RB decreased significantly with the number of categories
K (p < 0.0001), as well as with the number of time occasidng < 0.05) but increased with the
sample sizéN (p < 0.05). Contrary to the MNI method, ndfect of the percentage of missingness
was observed. Looking at the RBfigirences between the two approaches, results for model pa-
rameters were comparable except for the time pararggtdnere the bias was substantiably larger

for T = 3 as compared td =5 (p = 0.001).

Mean square error. The mean square error (mearSD) of each regression parameters under
both imputation methods and theirfidirence are given in Table 3. Globally, although results
were highly significantf < 0.0001), diference between MNI and OIM were minute and not
practically relevant. From this perspective, MNI and OIM were similar. As expected, under both
imputation methods and for each model parameter, the MSE decreased significan@y0o(01)
with the sample siz&l. A decrease was also observed witljp < 0.0001). MSE values also got
lower as the number of categoriksincreased but the relationship did not always reach statistical

significance. The rate of missingness did not reaffge MSE except for the time parameter in
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both imputation methods (MNp = 0.015 and OIM:p = 0.0005).

6.2 Skewed distributions

As already mentioned, the case of skewed ordinal data was investigated in the context of a short

term study only, that i3 = 3. Simulation results are summarized in the Appendices.

Multiple linear regression of the MNI relative bias on all modeling paramekersl(and miss-
ingness) showed that, except for the tinfeeet, RB increased significantly with the number of
categorieX (Byx:. p < 0.0001,8:: p = 0.068,8: p = 0.0002) and with the percentage of miss-
ingness B«: p < 0.0001,8;: p = 0.57,B: p = 0.0005). No relationship was observed between
the OIM relative bias and the modeling parameters. Contrary to the well-balanced case, the MNI
method overestimated the binary and the interaction term parameters of the model, while at the
same time underestimated the time paramgteAs before, the OIM method yielded less biased
estimates (see Figures 2 and 3). The RB of the time paranseteras more fiected by the skew-
ness of the ordinal outcome than the other model parameters anéféaisreas even more marked
with the MNI method. In fact, the lowest RB value g@fwas equal to 42.1% and the highest RB
value was equal to 265.5%; both extremes were obtained under the MNI method. The correspond-

ing OIM relative biases were equal to 103.9% and 169.7%, respectively.

The MSE of each regression parameter under both imputation methods and fileeegndies
are displayed in Table 4. Comparison of the MSE calculated in presence of skewed ordinal out-
comes with those derived in well-balanced setting showed that MSE values were larger in presence
of skewness. The conclusions made previously on MSE values in case of well-balanced distribu-
tions can be transported here. Specifically, MNI and OIM mean square errors were similar and
differences of MSE under both methods were not meaningful, even if statistically significant. As

expected, the MSE decreased significanply(0.0001) with the sample size. The MSE decreased
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with the number of categories of the ordinal outcome for the binfigceunder OIM f = 0.009)

and less markedly for both timéfect and interaction terms of the model. Tlikeet of the rate of
missingness on MSE was significant for the tinfieet parameter, under both imputation methods
(MNI: p = 0.001 and OIM:p < 0.0001) and the MSE of the interaction term of the model de-
rived under OIM (p= 0.017). Although not relevant, theftkrence in the MSE of both imputation
methods decreased with the sample size for the time and the interaction term of the model. The
MSE difference for the latter further deteriorated with higher rates of missingpess)(0001).

The number of categories of the ordinal outconfiected diferently the MSE dterence of the
binary and the interaction terms of the model. For the binéigceof the model, the éierence in

MSE increased with the number of categories of the ordinal outcgme@0001), while for the

interaction term the MSE fference decreaseg € 0.0009).

7 Discussion

This paper compared the performance of two imputation methods available in statistical packages,
namely the MNI algorithm and the ordinal imputation regression model, in the context of lon-
gitudinal ordinal datasets with missing values. The comparison was based on a comprehensive
simulation plan covering a wide range of real life situations. Specifically, the parameters of the
experimental design included the number of categories of the ordinal outdonéhé number

of time points ), the sample sizeN) and the rate of missingness (%) but also the form of the
distribution (well-balanced or skewed) of the ordinal outcome data. The performance of the two
methods (MNI and OIM) was appraised by the relative bias and the mean square error of the re-
gression parameters of the model. The latter included a grifept@nd a time féect, as well as

their interaction.

In the well-balanced setting, the estimates of the model parameters obtained with the MNI ap-

proach were markedly underestimated (RB 100%). By contrast, estimates derived with the
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OIM method were almost unbiased. These general observations however have to be tempered ac-
cording to the study pattern. For example, RBatiences between MNI and OIM for the binary

and the interaction model parameters vanished with incredsjrige number of categories. By
contrast, for the timeféect parameter, the RB ftierence increased witk but decreased witfh,

the number of time points. For all regression parameters, the MSE of both imputation methods
were almost equal but departed slightly for larger sample sizes and higher missingness rates. For
skewed data, estimates under MNI method were positively biased, except for thefecteand

MSE were comparable.

In conclusion, based on the results of this large simulation study, the MNI method is not really
recommended to analyze longitudinal ordinal data with missing values. Preferably, it is advisable
to impute missing ordinal data using an appropriate regression model. The OIM method however
requires the construction of an imputation model. Meng (1994) showed that, as long as the impu-
tation model is not grossly misspecified, Ml approach will perform well. From a practical point of
view, the imputation model should at least include any variable structure (e.g. interaction) present
in the substantive model (Fay, 1992). The inclusion of other available covariates, which are not
necessarily of interest in the substantive model, is unlikely to produced biased results. Therefore,
Rubin’s rule which consists in including as many variables as possible when performing multiple
imputation (Rubin,1996) is recommended. Furthermore, in the binary setting with MAR missing-
ness, Beunckens et al. (2008) demonstrated the robustness of MI-GEE when misspecifying either
the imputation or measurement model. Those findings were extended in the MNAR case (Birhanu

etal., 2011).

As a final remark, we should noted that, contrary to the MNI method, the use of the OIM
method is limited to the situation of monotone missingness. In the presence of non-monotone

missingness, a solution to minimize the imputation’s bias could be to iterate between application
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of MNI and OIM methods to first monotonize the dataset before application of the OIM method.

This proposal, however, requires additional researches.
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Table 1: Values of the model parameters used for generating longitudinal ordinal dataset (well-balanced and skewed
distributions)

Distribution K Bo1  Bo2  Boz  Posa Pos Bos Bx Bt Bix
Well-balanced

2 -025 - - - - - 0.10 0.10 -0.15
3 -0.71 066 - - - - 0.10 0.10 -0.15
4 -110 0.00 110 - - - 0.10 0.10 -0.15
5 -139 -041 041 139 - - 0.10 0.10 -0.15
7 -179 -092 -029 0.29 092 179 0.10 0.10 -0.15
Skewed

2 100 - - - - - 0.80 0.10 -0.25
3 -220 -0.85 - - - - 0.80 0.10 -0.25
4 -0.41 000 041 - - - 0.80 0.10 -0.25
5 -0.85 -0.20 0.20 0.85 - - 0.80 0.10 -0.25
7 -139 -066 -0.16 0.16 0.66 1.39 0.80 0.160.25

Table 2: Relative bias (meanSD) of the parameters of the substantive model after imputation of the ordinal outcome
using MCMC and OIM methods. Globally and according to the modeling parameters

Bx Bt Bix
MNI OIM MNI-OIM MNI OIM MNI-OIM MNI OIM MNI-OIM

Global 89.4+ 13.1 99.5+ 15.5 -10.1+ 8.91 84.6+ 10.4 100.9+ 8.95 -16.4+ 9.58 90.6+ 5.73 99.7+ 5.37 -9.10+ 4.60
< 0.0001 < 0.0001 < 0.0001
K 2 91.7+14.3 106.7+ 11.8 -15.0+ 7.39 96.4+ 5.31 104.3+ 7.74 -7.91+ 4.26 92.9+5.18 101.2+ 2.93 -8.35+ 4.29
3 95.5+ 10.9 106.9+ 13.1 -11.4+5.78 89.4+ 5.69 103.8+ 5.34 -14.4+ 6.13 94.1+ 2.98 103.4+ 4.23 -9.35+ 4.34
4 81.3+17.8 94.9+ 19.6 -13.6+ 5.28 80.0+ 8.52 102.1+ 6.79 -22.1+ 9.92 88.0+ 6.71 99.1+ 6.05 -11.1+ 4.66
5 86.4+ 7.95 96.4+ 11.1 -9.94+ 7.09 80.5+ 8.36 102.6+ 8.36 -22.1+11.2 89.1+ 5.36 99.5+ 3.09 -10.4+ 4.70
7 92.1+7.51 92.6+ 15.7 -0.52+ 10.6 76.6+ 9.07 92.0+10.3 -15.4+ 7.14 88.7+ 5.56 95.0+ 6.12 -6.34+ 3.87
0.63 0.0005 < 0.0001 < 0.0001 < 0.0001 0.0014 < 0.0001 < 0.0001 0.034
T 3 92.3+12.0 103.0+ 12.8 -10.7+ 8.06 85.1+11.4 103.5+ 9.08 -18.4+ 11.2 91.7+ 5.82 100.9+ 5.34 -9.26+ 4.73
5 86.5+ 13.5 96.0+ 17.2 -9.46+9.73 84.0+9.31 98.4+ 8.12 -14.3:+7.23 89.4+ 5.47 98.4+ 5.14 -8.94+ 4.51

0.034 0.018 0.39 0.46 0.001 0.009 0.007 0.009 0.61
N 100 87.4+17.1 93.2+ 20.7 -5.82+10.8 84.1+ 115 97.4+10.4 -13.3+ 8.16 90.5+ 6.60 97.7+ 6.73 -7.22+4.18
300 91.0+12.2 102.8+ 13.0 -11.8+7.26 84.6+9.88 102.1+ 8.02 -17.5+ 9.58 90.9+ 5.37 100.8+ 4.77 -9.88+4.48
500 89.8+ 8.67 102.5+ 8.96 -12.6+ 6.82 85.0+ 9.98 103.4:7.24 -18.4+ 10.4 90.2+ 5.29 100.4+ 3.85 -10.2+ 4.67

0.47 0.012 0.0003 0.61 0.002 0.008 0.74 0.027 0.0002
Missingness 10 92.611.3 99.5+ 11.5 -6.89+ 1.68 90.9+ 4.08 99.8+3.24 -8.91+ 3.54 95.4+ 2.65 100.1+ 2.47 -4.64+ 0.94
30 87.9+11.9 99.9+ 14.0 -12.0+ 6.08 82.6+ 7.26 101.2+ 5.59 -18.6+ 7.36 89.9+ 3.23 99.9+ 3.57 -9.94+ 2.21
50 87.7+15.4 99.1+ 20.2 -11.4+ 13.7 80.2+ 14.0 101.8+ 14.2 -21.6+11.1 86.3+ 6.29 99.0+ 8.31 -12.7+ 4.92
0.14 0.90 0.014 < 0.0001 0.29 < 0.0001 < 0.0001 0.37 < 0.0001
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Table 3: Mean square error (mearSD) of the parameters of the substantive model after imputation of the ordinal
outcome using MCMC and OIM methods. Globally and according to the modeling parameters

Bx Bt Bix

MNI OIM MNI-OIM MNI OIM MNI-OIM MNI OIM MNI-OIM
Global 0.123+ 0.098 0.119+ 0.095 0.004+ 0.009 0.011 0.012 0.013: 0.014 -0.001 0.003 0.02Gt 0.022 0.022+ 0.024 -0.001 0.003
< 0.0001 < 0.0001 < 0.0001
K 2 0.136+ 0.107 0.14% 0.112 -0.005+ 0.007 0.013+ 0.015 0.015+ 0.017 -0.002+ 0.003 0.024+ 0.026 0.027% 0.029 -0.002+ 0.004
3 0.131+ 0.106 0.128+ 0.104 0.003+ 0.003 0.012- 0.013 0.013: 0.015 -0.002- 0.003 0.022+ 0.024 0.024+ 0.027 -0.002+ 0.003
4 0.124+ 0.111 0.117% 0.104 0.00% 0.008 0.01%0.013 0.012- 0.015 -0.00% 0.002 0.020: 0.023 0.021+ 0.024 -0.00k 0.002
5 0.111+ 0.086 0.105: 0.081 0.00% 0.007 0.010: 0.011 0.012- 0.014 -0.002- 0.004 0.018+ 0.018 0.019: 0.020 -0.00k 0.002
7 0.114+ 0.085 0.104+ 0.078 0.009: 0.011 0.009: 0.009 0.01% 0.011 -0.00% 0.002 0.017% 0.017 0.017% 0.018 -0.000Q: 0.001

0.063 0.005 < 0.0001 0.068 0.095 0.51 0.034 0.013 0.0003

T 3 0.159+ 0.113 0.154: 0.111 0.004+ 0.010 0.018: 0.014 0.021+ 0.016 -0.003+ 0.003 0.033: 0.024 0.036+ 0.026 -0.002: 0.003
5 0.087+ 0.063 0.084+ 0.060 0.004+ 0.008 0.004+ 0.003 0.004+ 0.004 -0.000: 0.001 0.00% 0.005 0.008+ 0.006 -0.000: 0.001
< 0.0001 < 0.0001 0.78 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
N 100 0.242+ 0.077 0.234: 0.078 0.009: 0.014 0.022: 0.015 0.025: 0.018 -0.003: 0.004 0.04Q: 0.027 0.042: 0.030 -0.002: 0.004
300 0.080+ 0.026 0.078: 0.026 0.002: 0.004 0.007% 0.005 0.008: 0.006 -0.00% 0.001 0.013+ 0.009 0.014+ 0.010 -0.00% 0.001
500 0.047+ 0.016 0.046t 0.016 0.001 0.002 0.004+ 0.003 0.005+ 0.004 -0.00G: 0.001 0.008t 0.005 0.008t 0.006 -0.00Q: 0.001
< 0.0001 < 0.0001 0.0002 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Missingness 10 0.115 0.094 0.113+ 0.093 0.002: 0.003 0.009: 0.010 0.01G: 0.010 -0.00Q: 0.000 0.018t 0.020 0.018+ 0.020 -0.00Q: 0.001
30 0.123+ 0.099 0.119: 0.097 0.004+ 0.007 0.011 0.011 0.012- 0.013 -0.00%k 0.001 0.020: 0.022 0.021+ 0.023 -0.00% 0.002
50 0.131+ 0.103 0.125+ 0.099 0.006+ 0.013 0.013: 0.014 0.017% 0.018 -0.003+ 0.004 0.023+ 0.024 0.025+ 0.027 -0.003: 0.004
0.15 0.29 0.024 0.015 0.0005 < 0.0001 0.099 0.028 < 0.0001

Table 4. Mean square error (mea&rSD) of the parameters of the substantive model after imputation of the ordinal
outcome using MNI and OIM methods, globally and according to the modeling parameters (skewed distribution)

Bx Bt Bitx

MNI OIM MNI-OIM MNI OIM MNI-OIM MNI OIM MNI-OIM
Global 0.192+ 0.144 0.184: 0.144 0.008: 0.018 0.022: 0.016 0.023: 0.017 -0.00Q: 0.006 0.038: 0.029 0.042: 0.034 -0.004: 0.006
< 0.0001 0.61 < 0.0001
K 2 0.241+ 0.197 0.254+ 0.210 -0.013: 0.017 0.026+ 0.018 0.027% 0.020 -0.00Q: 0.003 0.050t 0.041 0.058+ 0.049 -0.008: 0.010
3 0.173+ 0.126 0.171 0.125 0.002: 0.003 0.033t 0.020 0.026+ 0.019 0.00% 0.007 0.036t 0.026 0.040: 0.029 -0.004+ 0.005
4 0.186+ 0.138 0.17G: 0.129 0.016+ 0.012 0.01% 0.012 0.020: 0.015 -0.003+ 0.004 0.035t 0.027 0.040: 0.030 -0.005t 0.005
5 0.194+ 0.138 0.178+ 0.130 0.016+ 0.010 0.017% 0.013 0.020: 0.017 -0.003+ 0.006 0.038+ 0.027 0.041+ 0.031 -0.003t 0.005
7 0.169+ 0.131 0.148: 0.117 0.021 0.019 0.017% 0.013 0.019: 0.016 -0.002+ 0.004 0.032+ 0.025 0.033+ 0.026 -0.00G: 0.002

0.088 0.010 < 0.0001 0.0005 0.012 0.04 0.026 0.007 0.0009

N 100 0.384+ 0.070 0.371+ 0.089 0.013: 0.028 0.040: 0.012 0.044+ 0.012 -0.004+ 0.007 0.076+ 0.017 0.085+ 0.024 -0.009: 0.009
300 0.119+ 0.015 0.112- 0.016 0.00% 0.010 0.016+ 0.009 0.015+ 0.004 0.001+ 0.005 0.024+ 0.004 0.026+ 0.005 -0.002+ 0.002
500 0.075+ 0.014 0.070: 0.016 0.005+ 0.008 0.010: 0.007 0.009: 0.003 0.001+ 0.005 0.015+ 0.003 0.016+ 0.005 -0.001 0.002
< 0.0001 <0.0001 0.11 <0.0001 <0.0001 0.020 <0.0001 <0.0001 <0.0001
Missingness 10 0.17¥0.138 0.174: 0.38 0.003+ 0.006 0.017% 0.012 0.017% 0.013 -0.000: 0.001 0.035t 0.027 0.036+ 0.028 -0.00%+ 0.001
30 0.192+ 0.147 0.183: 0.145 0.01Q: 0.015 0.021+ 0.014 0.021 0.015 0.00Q: 0.003 0.038: 0.029 0.041+ 0.032 -0.003: 0.003
50 0.209+ 0.155 0.19% 0.158 0.012: 0.027 0.028: 0.020 0.030Q: 0.021 -0.002: 0.010 0.043: 0.032 0.05% 0.040 -0.008: 0.009
0.19 0.36 0.092 0.001 <0.0001 0.45 0.11 0.017 <0.0001

ACCEPTED MANUSCRIPT
23



ACCEPTED MANUSCRIPT

¥008096 v00'0  €€8 000  9'86 000  ¥'06 €000  T'66 €000  L'S6 €000 00T xg
2000 666 2000 1.8 2000 €001 2000 926 2000 866 1000  L'96 2000  97T0T g
LE00  9C6 G600 089 L1800 VL6 LE00  TT8 GE0'0 266 €00  2'T6 GE00  €0TT X 00§ G
1000 666 9000  ¥'66 9000  §'98 9000 €716 5000 2001 5000  ¥'16 5000 9201 Xy
¥00'0  8720T €000 606 €000  €00T €000 26 €000  ¥'66 €000 €96 €000  L'VOT g
200  LTIT 9900  8¥8 1900  00TT 900 2’16 1900 STTT 1900  ¥'v0T 8500  9'60T X 00e S
2200  ¥'86 0z00 €48 8100  T'20T LT00  6'€6 9100  0'T0T 9100  §'/6 9100  0'90T X
€100 00T 1100 126 1100  8'S0T 0T00  §'/6 6000 9001 6000  ¥'16 8000  0'80T g
S0C0 896 16T0  T'LL €6T0 980T 98T0  §¢6 €8T°0  0'90T 810  2'86 06T0  9GTT X 00T G
1200  6'T0T L1000 9'T0T 9100 €48 ST00 2101 ¥100  0'€6 ¥100  2'86 ¥100  T'L6 xg
€100  8€ZT 0T00  9'€0T 6000  T'80T 8000  Z'00T 000  T'S6 000 ¥'26 L0000 086 g
/00  ¥'¥0T 0,00  6T0T 1900  G'6L 900  ¥'20T 1900 L8 9900 9.6 200  ¥'86 X 005 €
2€00  TYOT 1200 068 6200 996 1200  §'88 1200  §20T 9200 686 200  §'66 xg
1200 6'¢2T 100 6'90T ST00  €7T0T €100  €€6 100  +'T0T ¥100 8.6 €100  9'86 g
TZT0  €€0T 9TT'0  8'8L €210 T'68 0ZT0  S9L €2T0  §00T 2210 L'v6 SZT0  ¥LTT X 00 €
T0T0  0'90T G800  ¥'€6 800 97201 8.00  T00T €.00  S€0T 200 666 1800 S'66 xg
900  OVIT 2500  §'€0T 700 ¥'20T 000 856 1600 ¥'S6 9600 L'T6 8600 986 g
69€0  P'OET e0o  L0TT 8560  0°ZET ZvE0  86TT 0vE'0 8221 LEE0  6'STT 260 ¥LTT X 00T €
3Sn (w)ad ES (%)ay ES (%)ay 3s [CAkE] IS (%)ay ESA (v)ad ESA (%)ay  wired N 1
WIO INW WIO INW WIO INW
%05 %0€ %0T %0

(uonnquisip pasuefed-|jaM -X) SPOYIBW IO PUE ININ PaSeq DI S} 10} SYNSal uolejnwIS :§ jgeL

spoylaw IO Pue [NIN paseq 3IO-|IN 83 4o} S)Nsal uoejnwis  T'8

soolpuaddy g

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

24

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

¥00060T €000 6'T6 €000  Z'€0T €000 T'Z6 2000 866 2000 956 2000 066 xg
2000  Z'60T 2000  9'€8 2000 67201 2000 2'S8 1000 €66 1000 126 1000 966 g
9800  9'¥eT 9€0'0  6°00T €00  €TTT 2€00 676 0600  Z'20T 0600  L'¥6 1200 €788 X 00§ S
1000 8'80T 9000 916 9000  T'00T 9000 068 5000 €66 5000 256 €000  S'66 Xy
000  ¥'0TT €000 ¥'¥8 €000  0°00T €000 28 2000  9'86 2000 916 2000  S00T g
2900  L'€TT €900  0TOT 6500 1’86 1900 918 €500 086 €500 T'16 P00 168 X 00e S
6100 €201 LT00 Ov6 9100  920T ST00  T'€6 ¥100  STOT ¥100  §'/6 €100  0'€0T xg
2100 L°0TT 0100  ¥'06 8000  Z'SOT 8000 006 1000 9'€0T 1000 996 1000 §'SOT i
9.T0  LVET 08T0  9722T ¥.T0  ¥'6TT 08T0  9'S0T T9T0  8ETT ¥9T'0 2,01 GST0  6LTT X 00T G
1100 ¥'80T G100 €66 ST00  ¥'T0T 100 016 100  §'86 €100  L'€6 1100  ¥'¥0T Xy
0T00  L'€TT 8000  ¥'96 1000  €00T L0000 628 9000  6'96 9000 2.8 9000  2'90T g
9900 L'TIT 0,00 866 9900 266 6900  2'98 G900  T'Z6 9900 678 €500  L'60T X 005 €
0€00  9°0TT 9z00  9'86 5200  9T0T vZ00  T'¢6 2z00 2001 1200 €56 0zZ00  0°20T xg
6100  T'TIT ¥Y100  6'26 €100 966 2100  €£€8 0T00 926 0T00 628 0T00  STIT g
6IT0  S.TT 1210  6'90T TIT0 7’86 yIT0 628 L0T0  ¥'16 80T0 906 600  L'9TT X 00 €
1600  S'60T 6,00  6°00T S.00 866 200 TT6 8900 866 9900  9'S6 6500  8'€0T xg
1500  ¥'20T S¥00  800T 0v0'0  6°00T LE00 0S8 ¥€0'0  §00T €600 €716 6200  SETT g
6E€0 866 8ve'0 8.6 0€€E0 €16 66€0 608 1260 T06 22€0 08 v620  €€0T ) 00T €
IS (w)ad EN (%)ay ER (%)ay 3s (%)ayd 3sw (%)ay ESA (w)ay 3sn (%)ay  wired N 1
WIO INW WIO INW WIO INW
%05 %0€ %0T %0

(uonnquisip pasueled-|[M B SPOYIdW IO PUE ININ UO Paseq JI9-I Sy} 10} SHNSal uole|nwIS 9 djgeL

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

25

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

£0080L6 ¥00'0 228 €000  6'86 €000 898 2000 066 2000  6'€6 2000  T'l6 xg
2000  8'€0T 2000 09 2000  6T0T 2000 208 1000  T'20T 1000 €26 1000 896 7l
0600  6'S6 €€0°0 808 1200  8'S6 6200 208 1200 1’96 8200  §'88 1200  T'Z8 X 00§ S
G000 €96 50000 908 000  T'S6 5000  ¥'€8 Y000  ¥'96 7000  T'16 €000 696 Xy
€000  Z'€0T €000 9'9L 2000  ¥'00T €000  T6L 2000  T'66 2000 €68 2000  S'96 g
2500 6712 1500 979 8v00 29 2500 909 9v00  9'6L 6v00 STL 9¥00 628 X 00e S
9100  L'T6 9100 6'8L €T00  §¢6 €T00 €78 T100 §'S6 1100 628 0T00 066 xg
6000 ¥'T6 6000 00L 8000 676 1000  0'6L 9000  ¥'S6 9000 998 G000  2'S6 7l
69T0 6¢CL €8T°0 265 6vT0  TTL 95T0  T'L9 €VT0 686 8yT0  T'Z9 9¥T0  §96 X 00T G
8100  0'S0T 9100 ¥'/8 €100  0'S0T 2100 L'16 1100  2€0T 1100  §'16 17100  T00T X
0100  .2TT 8000 92L 9000  80TT 9000 208 000  9'90T 5000  L'€6 5000  2'TOT g
9900  8VIT 0L00 6'€6 1500  09TT 0900  L'16 ¥S00  TOTT G500  ¥'T0T 8500  Z'S0T X 008 €
1200 9TIT €200 9v6 0z00  8'90T 0Z00  8'€6 LT00  ¥'SOT 9100 866 8100  ¥'00T xg
9100  8VIT €100 9L 1100 €601 0T00 018 6000 20T 6000 T'T6 8000  L'€0T 7l
6600  ZCET S0T°0 S0TT 1600  6°02T 1600  L'20T 2800  8LTT ¥800  860T 8600 €01 X 00 €
2800 1’68 1L0°0 Ly 6900  T'86 8900  ¥'S8 1900  T'L6 1900  L°06 2500 8201 X
€500  9'S6 500 €729 6600  L'S6 LE00 269 0E00  ¥'S6 TE00  0°€8 1200 2'90T g
SvE'0 €08 €L€°0 1'09 22€0 016 90 T'EL €00 €88 €T€E0  €8L ¥920  €eet Xy 00T €
IS (%)ad ERS (%)ay ES (%)ay 3sn (%)ay 3sn (%)ay ERL (%)ay 3s (%)ay  wired N 1
WIO INW IO INW NIO INW
%05 %0€ %0T %0

(uonnquisip pasueled-|[M S SPOYIdW IO PUE INIA UO Paseq 9| Sy} 10} SHNSa1 uolejnwIs :/ djgeL

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

26

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

€00IM0T €000 978 2000  ¥'T0T €000  ¥'68 2000  TTOT 2000 956 2000 866 xg
2000  L'96 2000 6T 1000  #'20T 2000 T8 1000  ¥'20T 1000 226 1000 966 g
¥€0'0  2'80T 1€00  T'96 0600 8901 €00  L'T6 6200  T'L0T 0€00  §'86 8200  S'€0T X 00§ S
9000 2'/6 9000  §'¢8 000 §°00T 7000  T'68 7000  0'86 7000 126 €000  2°00T Xy
€000 186 €000 TOL €000  T'TOT €000 208 2000  9'86 2000  T'68 2000  200T g
9500 866 1900 §'88 0500  L'T0T €500 €68 P00 06 8y00 2’98 ¥00  ¥'€0T X 00e S
8100  L'06 9100 S8 €100  ¥'LL €700 9'88 2100  §'86 200  L'€6 0100  0T0T xg
€100 ¥'18 0T00  8'S9 L1000 816 L0000 €08 9000 0.6 9000 €88 5000 87201 i
v.T0 289 S6T0 €. 9ST0  §08 69T0  8¥L 8vT0 08 €ST0  SLL 8yT0 €716 X 00T G
G100 966 G100  T'08 2100 1201 1100 878 0T00 €001 0100  ¥'¥6 0T00 €96 Xy
2100 01T 6000  TOL L0000  8'60T 9000  ¥'LL 9000  ¥'¥OT 9000 006 5000  ¥'TOT g
500  L'S6 6500 8TL 0500  ¥'20T €500 T8 9700  ¥'00T 8v00 026 1500  §'S8 X 005 €
200 9201 €200 Sv8 6T00  2'20T 8100 006 GT00  0°€0T ST00 896 LT00  ¥'16 xg
8100  9'GIT ¥100  G'€L 1100  ¥TITT 0T00  T08 6000  O'¥0T 6000 968 8000  §'SOT g
8800  T¥0T 1600  T'¥8 €800  €G0T /800  T'06 9/00  T'SOT 6,00 296 800  L'06 X 00 €
6900 0'S6 0900 678 6500 €86 500 006 8700 00T 8v00  T1'86 0500  ¥'66 xg
G500  6°20T 9800  TSL 9600  Z'€0T TE00 808 8200  0°€0T 1200 8726 ¥Z00  T'YOT g
1620 G728 9/20 808 2920 06 €20 T8 v20 216 €520 §6 1520 8.8 ) 00T €
IS (w)ad EN (%)ay ER (%)ay 3s (%)ayd 3sw (%)ay ESA (w)ay 3sn (%)ay  wired N 1
WIO INW WIO INW WIO INW
%05 %0€ %0T %0

(uonnquisip pasueled-|[M B SPOYIdW IO PUE ININ UO Paseq JI9-I Sy} 10} SHNSal uole|nwIS g djqeL

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

27

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

£00/068 Y000 06 2000  ¥'86 €000 98 2000 €001 2000  L'¥6 2000 220t xg
2000 098 €000 S99 1000 §'86 2000  ¥'9L 1000 666 1000 888 1000  TTOT g
€600 0/ LE00 908 0€00 996 €600 788 8200  L°00T 6200 626 8200  86TT X 00§ S
G000 9'T6 9000 ¢'¢8 7000 966 000  ¥'06 €000  T'20T €000  ¥'96 €000 87201 Xy
Y000  9'S8 €000  ¥'69 2000  ¥'66 €000  €6L 2000 220t 2000 016 2000  8TOT g
G500 098 €900 9€6 0500 2201 500 8.6 9v0'0  Z'S0T 8v00  L'16 6v00 92T X 00e S
¥100  0'6L ST00 S8 €100 L'T6 2100 €48 0T00 €66 0T00  0'6L 100  2°00T xg
2100 T'S9 8000 879 8000 S8 000 STL 9000  ¥'€6 9000 S99 5000 8001 i
ovT0  €¢S ¥8T'0  ¥'08 €ST0 689 89T0  0'8L vT0  Ce8 6vT0 908 6vT0  §eT X 00T G
Y100 826 ¥100 S8 2100  ¥'.6 2100  Z'88 1100  L'66 T100  T'S6 0T00  2'90T Xy
0100  9'S6 8000 90 1000 1’66 1000  2'SL 9000  Z'T0T 9000 888 5000  6°00T g
8500  1'96 €900 606 1500 €701 6500  T'S6 2500 2’801 €500 €201 0500 62T X 005 €
€200 8726 2Z00  T'€8 T200 1’86 0Z00  ¥'68 LT00 066 1T00 Sv6 1T00  L°L0T Xig
G100 978 2100 029 0T00 996 0100  ¥'2L 6000  T'S6 6000  Z'€8 8000  ¥'20T g
1600 2’66 L0T0 676 1600  €0TT T0T0  07TOT 9800  ¢'L0T 6800  ¥'TOT 0600  0'9ZT X 00 €
2900 g8€8 0900 8v8 2500 7’96 0500 668 9¥0'0  L'L6 ¥00  8'€6 1500 2’601 xg
/00  0'GL v€0'0  T'89 0E00 €66 1200 L'6L 200 €16 ¥200  +'98 ¥Z0'0  L'20T g
8520 T9L 8820 996 vS20  S'96 8920 §¢6 vz0 296 0520 €26 v.20 €701 ) 00T €
IS (w)ad EN (%)ay ER (%)ay 3s (%)ayd 3sw (%)ay ESA (w)ay 3sn (%)ay  wired N 1
WIO INW WIO INW WIO INW
%05 %0€ %0T %0

(uonnquisip pasueled-|[M ) SPOYISW IO PUE INIA UO Paseq 9| Sy} 10} SHNSa1 Uoe|NwWIS :6 d|geL

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

28

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

8TE®OT ST00  ¥TIT 9100  Z'TI0T ¥T00  ¥'80T ¥T00 8001 €700  0'¥0T ¥100 8201 xg
ST00  €9ST €600  L'¥Se 0700 €921 LT00  ¥'€6T 8000  2'S0T 8000  L'TET 8000  €20T 7l
8900  Z'00T 6900  T'SOT 5900  S66 9900  €€0T G900  S'66 9900  T'TOT G900  8TOT Xy 005 €
0€00  6'90T G200  SSTT 5200  Z'90T €200 ZTIT €200  L'€0T 2200  §'90T G200  0°S0T xg
S200  L'69T €400 SS9 LT00  TGET €200  Z66T €T00  E€VTT 100 2OVl ¥T00  0°€0T ¥
TIT0  T'€0T SIT0  2'80T 2IT0 6207 GTT'0 80T ¥IT0  87T0T €TT0  T'€0T GIT0  2'20T Xy 00 €
0600  O'STT 500  T6TT 9,00 61T 6900  L°0ZT 1900  TOTT G900  TETT 6,00 90TT xg
0600  ¥'8LT §/00 8€se 9,00  S¥ST 6900 9602 6€00  9'6TT 8600  9EVT w00  ¥TITT i
95€'0 G901 8560  90TT 1260 00T 9e€'0  SOTT 2260 2'S0T €260 8901 T80  ¥'90T Xy 00T €
IS (%)ay ESI (%)ay ESI (v)gy ESI (%)ay ESI (%)ay ESIL (v)gy ESIA (%)gy  wied N 1
WIO INW WIO INW WIO INW
%05 %0€ %0T %0

(uonnquUISIp PaMaXS B SPOLISW INIO PUE [NIA U0 pased JID-|IN U Joj S)Nsal uonenwis :TT ajqeL

SEMMOT 8200 T'/6 8200  T'TOT 5200  S'86 200 §00T €200  ¥'66 1200 676 Xy
1100  9'S0T 6100 Vv 100 8'€0T ¥100 €99 1100  6'T0T 100 768 0T00  T'68 g
YET'0  §00T 22T0 1’86 1210 9001 SIT0 266 9TT'0  ¥'00T STT0 866 2010  L'96 X 005 €
v00  T'86 8600  0'S6 €00  9'/6 8600  2'S6 L€00  T00T 9€00  9'86 GE00 066 xg
1200  6'€0T 8200  Tev 1200 816 2200 609 8100  6'T0T 8100 08 LT00  ¥'S6 g
/8T0 066 2LT0 896 88T0  ¥'86 8LT0  T'L6 S/T0 €66 v.T0 1’86 S/TO  ¥'66 X 00 €
96T0  ¥'96 8yT'0  T'96 ZvT0  T'80T €ET0  8'GOT 62T0  6'S0T €210  2'S0T 9IT0 866 xg
600  6'¢6 2800 0Ly 900  9°20T 0900  8'SL 500  T'60T 2500 6.6 €500 06 g
1620 6°00T /90 866 9/90  L'.0T 2590 €901 0¥9'0  8'S0T 1290 €501 ¥850  €T0T ) 00T €
IS (w)ad EN (%)ay ER (%)ay 3s (%)ayd 3sw (%)ay ESA (w)ay 3sn (%)ay  wired N 1
WIO INW WIO INW WIO INW
%05 %0€ %0T %0

(uonnqLisip PamMa)S > sPoyIdaW IO Pue ININ U0 paseq 339D-IN dY 10} s)nsal uolenwis (0T d|qeL

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

29

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

12GU6 6T00  69TT ST00 87101 ST00  CTIT €100 2001 €700 87201 1700 0001 xig
1100 8SL 8000  9'€L 9000  S¥6 9000 872L 5000  L'96 5000 S8 9000 916 g
1800  ¢'TOT 1600  LYTT 6900  T'€0T 0800  OTIT ¥90'0 220t 8900  0'S0T 9500  §'66 XJ 00§
€00 096 0€00  29TT /200 OTOT 5200  6°0TT €200  6'T0T 2200 60T 6T00  S00T xid
8100 029 ¥T00  §'69 2100  Sv6 17100 0€L 6000  S'TOT 6000 098 6000 066 ¥
0€T0  T'T0T 6vT0  0GTT 9IT'0 6201 8210  TTIT ¥0T'0  6720T 60T0  6'S0T 600 00T X4 00e
20T0 698 9800  ¢'STT 2L00 200t 8900  0TIT 1900 8001 S900  L'¥0T 1500  ¥°00T x¥d
8500  80S o000 9L €00 8001 €00 618 6200  §'SOT 6200 616 8200  S00T g
070 T'96 €EV'0  BETT GZE0  L'20T IS€0  8TTT €T€0  ¥'€0T ¥2€0  9'90T 6,20 L'66 X4 00T
IS (%)ay ESI (%)ay ESI (v)gy ESI (%)ay ESI (%)ay ESIL (v)gy ESIA (%)gy  wied N
WIO INW WIO INW WIO INW
%05 %0€ %0T %0
(uonnguisip PamaXS >§ spoyisw IO pue |NIA Uo paseq 339-|N 8} 10} SYNSaI uoleNWIS €T d(qeL
6TE B8 ¥100 6901 GT00  ¥'00T €100 080T €100  Z'€0T 2100 0G0t ¥100  €7T0T Xy
1100 22t 000  ¥'06 8000  0'80T 1000 29 9000  8'S0T 9000 028 9000  €7T0T g
6900 296 6,00  SOTT 1900  L'00T S.00 980T 1900  6'T0T 900  9'%0T 5900  €7T0T X 00§
0E00 806 ¥20'0  6'80T €200 666 1200  T'80T 1200 L'20T 0200  L'¥0T 2z00 20T xg
LT00  ¥2TT 2100  2v8 2100 ¥'80T 100  §9L 1100 0201 1100 €¢€8 0T00  ST0T g
0TT0 026 62T0  LTIT 20T'0  L'00T ¥IT0  T'60T 20T0 220t L0T0  6'70T ¥0T'0  L'TOT XJ  00€
¥800  9'¥6 6900  OTIT 2800  0TOT €00  6'60T T.00  ¥'€0T 6900 €901 ¥900 9001 xg
8v00  OvZT €00  8'S6 6£00  T'80T €600  S6L €€00 VL6 Ze00 S8 8200  €00T g
¥2€0 666 L1980 TYIT 1S€0 67201 €80  LTTT 8E€0  6°€0T 25€0  TLOT T0E0  ST0T X4 00T
IS (w)ad EN (%)ay ER (%)ay 3s (%)ayd 3sw (%)ay ESA (w)ay 3sn (%)ay  wired N
WIO INW WIO INW WIO INW

%05

%0€

%0T

%0

(uonNQUISIP PAMEXS S SPOUIBW INIO PUB [NIA UO paseq JJ9-[IN aU) 4o} S)Nsal uolenwiS 2T d|geL

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

ACCEPTED MANUSCRIPT

30



ACCEPTED MANUSCRIPT

¥1@Q@TT 1100  §92T 1100  ¥'SOT 1100 V€T 6000  T'TOT 6000  0'€0T 1100  ¥00T Xy
6000 80T 1000 T'08 000 L'¥0T 1000 V€L 5000  Z°00T 5000 828 5000  2'20T g
8600  Z'90T 1800  TLTIT 0500  Z'€0T 6500  TOTT 9¥0'0  6°00T 8v00  T'€0T 6500  T'00T X 005 €
1200 TETT 1200 €21 0200  T'20T 0Z00  €VIT LT00  9'T0T 9100  S'€0T 8100  0°00T xg
1T00  9'80T €100 G'T8 1100  2'90T 1100 L'vL 6000  §'/6 0T00 €08 6000  §20T g
€0T°0  2'90T 62T0  8LTT 6800  L'€0T 2010 TOTT 1800  ZTOT G800  ¥'€0T 8600 266 X 00 €
0800  T'80T 900 61T ¥900  §00T 2900  TOTT 0500 1.6 0500 €001 9500  8T0T xg
2500  6'LL w00  T¥9 €600 768 TE00  T'€9 1200 816 1200  T'SL 8200  L°00T g
€2€0  §'€0T ¥8€'0  Z'STT €0€0  8T0T Zre0  L'60T 1120 866 0620  ¥'20T 1620 0T0T ) 00T €
IS (%)ad EN (%)ay ER (%)ay 3s (%)ayd 3sw (%)ay ESA (%)gy 3sn (%)ay  wired N 1
WIO INW WIO INW WIO INW
%05 %0€ %0T %0

(uonnquIsIp PaMaXS i) SPOLIBW IO PUE [NIA UO paseq I3D-IN dU 40} SNSal UoeNWIS ¥ T d|qeL

¥TOZ Sequeldes gz 85:90 e [Areiqi Asieniun usane 1 NX] Aq pepeojumoq

31

ACCEPTED MANUSCRIPT



Downloaded by [KU Leuven University Library] at 06:58 22 September 2014

ACCEPTED MANUSCRIPT

8.2 Selection of population parameters to generate missing data

The population parameters in (Eq. 9) were chosen using the following pragmatic way. First,

rewrite the dropout probability model as follows,

eﬁoﬂ”xxi +Yprewi,(j-1)
1 + erotxXi+predi-1)

PrDi = jIX. Yi(-1) =

Let us assume that the ordinal outcolhkasK categories and that their probabilities of occurring,
py(y), are known. Let us also assume tiatas two categories and that we know their probabilities
of occurrencepi(X). In line with our simulation plan, assume that these two occurrences are
independent, so thai(x,y) = px(X)p,(y). Then, we chose parameter values fqrand y prey,
leaving onlyy, unspecified. Let the proportion of missingness aimed for feg. 10%, 30%, or
50% ), we then found the values fgg (by trial and error) that satisfied

GPO'H//XXJ' +prevyi,(j-1)
= Z Z p(x.y) 1 + glot¥xXi+iprewi(j-1)
L
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Figure 1: Distribution of the theoretical probabilities under well-balanced and skewed settiagl-R = 3
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Figure 2: Relative bias (%) of the model parameters (top to botgns;, Bix) according taK the number of categories
of the ordinal outcome (MN# shaded boxplot - OIMempty boxplot)
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Figure 3: Relative bias (%) of the model parameters (top to botgyB:, Bix) according to the rate of missingness
(MNI = shaded boxplot - OlMempty boxplot)
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