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ABSTRACT

A Monte Carlo simulation technique was used to investigate the 

power efficiency of three nonparametric two-sample tests. The power of 

the sign test, the Kolmogorov-Smirnov test, and the Mann-Whitney U test 

was compared with the power of their t-test equivalent— the paired t-test 

in the case of the sign test, and the t-test for independent samples for 

the Kolmogorov-Smirnov test and the Mann-Whitney test.

The simulation process permitted the investigation of a wide 

range of parameters. Each test was investigated for one-tailed signifi

cance levels of .05 and .01; equal samples of size m = n = 6(2)20, 30,

AO, 50; and location-shift alternatives 0 = 0.0(0.2)1.0, 2.0, 3.0, where

© m *̂2 - V*i. Restrictions on computer time prevented the analysis from O
encompassing a wider range of parameters.

The analysis was performed on an IBM 360/65 computer with a 

simulation process based on a Monte Carlo procedure of generating random 

normal deviates. Random samples of equal size were generated from normal 

distributions with equal variances of one; the first sample being drawn 

from a distribution with y = 0 and the second sample from a distribution 

with y - 0. Two thousand separate samples were tested for each set of 

parameters for samples 6 to 20 and 1,000 repetitions for samples 30 to 50. 

Power was obtained by establishing a decision rule and determining the 

number of rejections in the total number of test samples.

The findings were divided into two categories— probability of a 

Type I error (0 ■ 0.0) and power efficiency.



The results obtained from simulating the probability of a Type I 

error Indicate that, In general, each nonparametrlc and parametric test 

was operating under similar test conditions, and, therefore, valid find

ings were produced in the study. However, for the Kolmogorov-Smirnov 

te s t, which is based upon the establishment of cumulative frequency dis

tributions, it was necessary to increase the number of class intervals 

in  the cumulative distributions to 2(n + m) before valid results were 

obtained.

The power efficiency of the sign test decreased from approximately 

80 percent for the smaller parameter values of n and G to approximately 

60 percent as the parameters increased. Over the same range of parameter 

values, the relative efficiency of the K-S test increased from approxi

mately 50 to 70-75 percent, and all of the power efficiency values for 

the U-test fluctuated, primarily, between 90 and 100 percent. A slight 

increase in power efficiency was noted for both the sign test and the 

Kolmogorov-Smirnov test as the significance level decreased. Sampling 

error prevented any patterns from emerging as parameters changed for the 

U-test.

It was anticipated that the K-S test would outperform the sign 

test for all parameter values. This proved not to be true for the smaller 

parameters. The power of the K-S test relies upon the assumption of 

continuous distributions and if this assumption is violated by creating 

too few classes then performance suffers. Therefore, the researcher is 

advised to use at least 2(n + m) class intervals in the test procedure.

The power of the U-test was found to be very close to that of the 

t-test. The U-test is recommended over the t-test in all cases for test

ing the hypothesis of equal means, except those in which the underlying



distributions can be safely assumed to be normal. The Kolmogorov-Smirnov 

test is preferred to the sign test when large samples or large location- 

shift alternatives are encountered. However, when small samples or 

alternatives are involved the evidence of this study favors the sign 

test, especially when the ease of computation is considered.



CHAPTER I

INTRODUCTION

Numerous occasions occur within the business complex in which a 

two-sample statistical test is appropriate for analyzing data. Consider 

the research and development division of a firm which must determine 

which of two types of sun tan oil is most effective, or consider a pro

duction problem in which two different machine settings are compared to 

determine if they result in a significant difference in tolerances. The 

traditional method for analyzing such data has been with the use of the 

t-test— a test based on underlying normal distributions.

Within the past thirty years a number of two-sample statistical 

tests have been developed that do not depend upon any stringent assump

tions concerning the underlying distributions. These nonparametric, or 

distribution-free tests as they are sometimes called, seldom assume more 

than continuously distributed data and independent sampling. Although 

the terms nonparametric and distribution-free are often used inter

changeably, they are not synonymous. As Bradley (1968:15) pointed out, 

nonparametric tests have no hypothesis about the value of any parameter, 

whereas distribution-free tests make no assumptions concerning the type 

of population being sampled. Since it is common to assume an underlying 

continuous distribution, the term distribution-free is not completely 

accurate.

1
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When a nonparametric test Is being considered for analyzing data, 

the question arises as to how the nonparametric test compares with the 

parametric test, assuming that the assumptions of both tests are met.

This comparison is usually made on the basis of the relative efficiency 

of the nonparametric test. Relative efficiency is defined as the ratio 

of sample sizes that is necessary to equate the powers of the two sta

tistical tests. Since the comparison relies upon respective powers, the 

more descriptive term, power efficiency, is often used.

THE PROBLEM

There exists a need to provide the researcher with an priori 

power efficiency value for the particular test that is being used, given 

the parameters that apply. The problem can be approached through any of 

three methods: an asymptotic approach, a deterministic study of finite

samples, or an empirical investigation.* The last method is used in 

this study because it was felt that this procedure provided the greatest 

flexibility.

Statement of the Problem

It is the purpose of this study to empirically determine the 

power efficiency of three selected nonparametric statistical tests for 

various parameter values, using a simulation technique. The three tests, 

Which are discussed below, were selected because of their popularity and 

wide applicability in business and economic analysis. Since power is a

*The terms simulation and empirical are used synonymously in 
this paper which follows common usage in the literature. Although these 
terms have different meanings in a strict sense, simulation is empirical 
but uses artificial rather than actual data.
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function of three parameters, these three parameters were assigned various

values to establish a spectrum of power efficiencies. The following

parameter values were investigated: (1) significance levels of .05 and

.01 for one-sided tests; (2) a range of various equal sample sizes from

6 to 50; and (3) a range of mean differences in normal populations of 
_ u, _ Ui0 “ 0.0(0.2)1.0, 2.0, 3.0,* where 0 ■ ■— - for one-sided tests.

It should be pointed out that the samples were generated from 

normal distributions with equal variances of one. The reason for choos

ing an underlying normal distribution, rather than some other distribu

tion, is that power efficiency values are customarily given on the basis 

of normality. When any parametric test is used the normal distribution 

is assumed. Thus, a comparison of equivalent tests is more meaningful 

when the assumptions of both tests are valid.

Nonparametric Tests Considered in the Study

The nonparametric tests that were examined are the sign test, 

the Kolmogorov-Smirnov two-sample test, and the Mann-Whitney U test.

These three tests are among the most popular of the nonparametric tests 

used in the social sciences, and one fact in support of this popularity 

is the voluminous literature that exists on these tests.

The sign test is one of the simplest and easiest two-sample tests 

to apply. When two parent populations are symmetrical and continuous, 

the sign test can be used to test for a zero difference between population

* 0 -  0.0(0.2)1.0, 2.0, 3.0 is read as follows: 0 ranges from 
0.0 to 1.0 in increments of 0.2 and then takes values of 2.0 and 3.0.



medians, or population means, since the mean and the median are identical 

in a symmetrical distribution. If one of the samples receives a parti

cular treatment, then the sign test is appropriate for determining whether 

the two conditions are significantly different.

In cases in which each pair of samples is related in some manner 

and is independent of any other pair of sample observations, the sign 

test is especially appropriate. The example mentioned earlier concern

ing the testing of two sun tan oils fits this situation. In this exam

ple, each subject supposedly coats one arm with one oil and the other 

arm with the second oil. After a certain amount of exposure to the sun, 

the oils on each person are rated for tanning effectiveness. Each sam

ple pair is related in that both oils are applied to every person.

The sign test is often used a quick preliminary check to deter

mine if the application of a more sophisticated test is justified.

Although the Kolmogorov-Smirnov two-sample test is more difficult 

to compute than the sign test, it remains very popular, partly because 

it is so well tabled. Developed by two Russian mathematicians, this 

test is sensitive to any kind of difference in the distributions from 

which the samples are drawn. Significant differences in location (cen

tral tendency), dispersion, skewness, etc., influence the Kolmogorov- 

Smirnov test statistic. The Kolmogorov-Smirnov test is one of a large 

class of maximum-deviation tests which is based on differences in cumu

lative distribution functions.

Consider a situation in which a business firm wishes to know if 

male and female responses to television advertising differ in a particu

lar fashion. More specifically, do men and women differ in the time that 

they wait to buy a certain product after their initial exposure to the



advertisement? The most appropriate test for this experiment is the 

Kolmogorov-Smirnov one-tailed test.

Another test that is germane to this type of problem is the 

final test investigated in this study— the Mann-Whitney U test. The 

Mann-Whitney U test has the distinction of being one of the more power

ful of the nonparametric tests. The U-test is sensitive to differences 

In populations, but it is different from the Kolmogorov-Smirnov test in 

that it is especially sensitive to unequal locations. If the experimen

ter randomly draws two independent samples from the same population and 

subjects one set of samples to a particular treatment and the other set 

of samples to another treatment, the Mann-Whitney test could be used to 

determine if the two treatments are the same. It is common for one sample 

to receive a treatment and the other sample to serve as a control, i.e., 

to receive no treatment.

The Mann-Whitney test is also appropriate for testing the hypo

thesis that two populations differ. For example, assume that a cereal 

company has produced two dietary cereal products and wishes to know which 

cereal results in the greatest amount of weight loss in individuals. If 

the cereals are assigned to individuals in a random manner, then the U- 

test is almost as effective as the t-test for testing the null hypothesis.

The parametric test that is equivalent to these three nonpara

metric tests, and thus will provide the comparative base for the power 

efficiencies, is Student's t-test. The exact configuration of the t-test 

is discussed in Chapter III.

Relevance and Limitations of the Study

The concept of power efficiency is basic in nonparametric sta

tistics. This is the primary criterion upon which various tests are



compared. If a researcher can determine fairly accurately the power 

efficiency of his test, even before computing the test statistic, this 

is of interest from an applied as well as a theoretical standpoint.

Such information tells the researcher what sacrifices in power are being 

made when the sample size and significance level are set and, if these 

two parameters are flexible, how the relative efficiency can be affected 

by a change in these parameters.

The efficiencies that were computed in this research were based 

upon normal shift alternatives. There is certainly no technical reason 

for not investigating non-normal alternatives. In fact, as will be 

pointed out in the next chapter, a large number of studies have dealt 

with this situation, in which such underlying distributions as the uni

form, exponential, logistic, and Cauchy have been investigated. Such 

research is certainly not superfluous; but when one goes beyond normal

ity, comparisons become less meaningful because of the numerous possi

bilities that exist. Thus, the scope of this study was limited to normal 

alternatives.

Any study of this type must suffer certain limitations to keep 

the subject matter manageable. As will be pointed out in the next chap

ter, previous studies have limited their approach, usually by one of 

two methods. Many have taken an asymptotic approach, computing the 

asymptotic relative efficiency (a limiting efficiency function as n -*■«>) 

of various tests. The disadvantage of this method is that these effi

ciencies provide limited insight for the researcher who works with 

finite samples.

The other common approach has been to view the problem from 

a deterministic standpoint and compute the exact powers and power



efficiencies for a few selected finite sample sizes. The inherent 

difficulty with this is the complex and sometimes Intractable power 

functions that must be dealt with. As a result of having to deal with 

these intricate functions, the research has often covered only a limited 

number of alternatives (sample sizes, significance levels, or shifts in 

location).

This study overcame some of these limitations by including a 

large combination of alternatives— those that are likely to exist in 

field experiments. To broaden the spectrum of alternatives, a simula

tion technique, based upon a Monte Carlo normal deviate generation pro

cess, was used. Simulation proved to have an inherent flexibility that 

could not be approached by deterministic methods.

Perhaps a justified objection to simulation is that it is merely 

an approximation of the true case. But in order to cover a large number 

of alternatives, simulation was the most practical approach. The simu

lation, itself, is set in a stochastic framework, as are the tests being 

simulated. Therefore, it did not seem inappropriate to use an artificial 

method of data generation when the analysis itself is a synthetic 

situation.

ORGANIZATION OF REMAINDER OF THE THESIS

A review of the literature is presented in Chapter II. Because 

the two-sample statistical test is frequently encountered in all areas 

of applied research, the tests have come under considerable review and 

analysis. There exists a fairly extensive collection of research ma

terial that is devoted to the study of nonparametric power.



An attempt has been made to cover in depth the literature that 

discusses relative efficiency and to concentrate particularly on the 

empirical studies. The literature related to Student's t-test is re

viewed first, followed by writings pertaining to the sign test, the 

Kolmogorov-Smirnov test, and the Mann-Whitney U test. Finally, the 

purely empirical investigations are summarized.

In the third chapter the structure of the problem and the method

ology are discussed. The first part of the chapter is devoted to a 

brief review of power efficiency, followed by an explanation of the 

formulation of the three distribution-free tests and their parametric 

equivalents. Next, the rudiments of the simulation procedure are 

analyzed. Included in this section is primarily an outline of the method 

used to generate the necessary data, and secondarily, a discussion of 

how certain problems were handled.

The results of the study are presented in Chapter IV. The power
/

efficiency data are presented in tabular form and the important outcomes 

are discussed.

The final chapter, Chapter V, is devoted to a summary of the 

developments of the previous material and the conclusions drawn from 

the results.



CHAPTER II

REVIEW OF THE LITERATURE

The considerable literature on two-sample statistical tests 

reflects the prominence of this test in research. The two-sample test 

is appropriate for determining the difference between two populations or 

two population means. The parametric test that is usually applied in 

this situation is reviewed first— the Student t-test. Following the 

t-test there is a brief review of asymptotic relative efficiency. An 

investigation of this important concept is necessary prior to reviewing 

the literature concerning the three nonparametric tests and their power 

efficiencies. Finally, the findings and limitations of previous simula

tion studies are covered.

STUDENT T-TEST

If certain assumptions can be met, the parametric t-test (Student, 

1908) is the most powerful test that can be applied in certain practical 

situations. These specific assumptions and the assumptions of all of the 

tests that are investigated in this manuscript are enumerated in the 

following chapter. Since the relative efficiency of a statistical test 

is based on a comparison of powers, it is the power of the respective 

tests that is of interest to researchers.

Owen (1965) is just one of many authors that have investigated 

the power of Student's t-test. As is the procedure in many articles dis

cussing power, Owen evaluated both normal and non-normal conditions.
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Although the present study is concerned with normal alternatives, a sig

nificant amount of literature deals with the problem of non-normality and 

other parametric assumption violations. If a test has the ability to 

withstand violations to its underlying assumptions, it is referred to as 

being robust. Robustness oftentimes enters the picture of power analysis 

because research in power efficiency has often been conducted in terms of 

normal alternatives vis-a-vis non-normal alternatives. A number of studies 

have shown that the t-test is quite robust to various violations (for 

example, see Boneau, 1960).

When the assumptions of normality hold, the power of the t-test 

may be calculated exactly. Two publications have appeared recently which 

contain extensive power tables of the t-test (see Cohen, 1969, and Milton, 

1970). However, as is shown later, the power of most nonparametric tests 

is not so easily calculated.

A measure of relative efficiency is usually determined with the 

power values of a nonparametric test and its parametric equivalent. The 

traditional approach to defining relative efficiency has been in an asymp

totic context.

ASYMPTOTIC RELATIVE EFFICIENCY

Asymptotic relative efficiency (A.R.E.) provides an analytical 

solution to the problem of power efficiency. An asymptotic approach is 

the only feasible approach that will give a single summary measure of the 

efficiency of a test. The A.R.E. is the limit of the reciprocal of the 

ratio of sample sizes required to achieve the same power. As the sample 

sizes tend co infinity, the alternative hypothesis approaches the null 

hypothesis to keep the powers of the tests bound away from one. Asymptotic
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relative efficiency is credited primarily to Pitman (1948) and was

extended by Noether (1955), Hoeffding and Rosenblatt (1955), and Witting

(1960).

Pitman’s theorem of asymptotic efficiency was succinctly pre

sented in an article by Noether (1958). Let Tn = T(xx, ..., xn ) be a 

consistent test statistic for testing the hypothesis G = 0fl against the

alternative 0 = 0j. If E(Tn) = H^(0) and var (Tn) = cr̂ (0) then the

quantity
R£ (0„) - - ,

<£(0q>
is called the "efficacy" of Tn . When the alternative hypothesis is 

stated 0 = 0X = 0O + — when k is an arbitrary, but fixed, positive
in

constant, it is clear that 0j ■+• 0„ as the sample size n increases. Sup-
2 /spose there are two tests of the same hypothesis with efficacies Rj n(“o) 

and R2 n (0o). The ratio of these two efficacies in a limiting form gives 

Pitman's theorem,

R* (0 ) - ^(0o)]2
^  K0°} a2(ft.1 (2.1)n

p  _ lim R2n(0p) *
R2n ( 0 ( i )  ( 2 . 2 )n2

This is the asymptotic efficiency of the second test relative to the 

first test. Stuart (1954a) has shown that Pitman's theorem is equiva

lent to measuring test efficiency by the estimating efficiency of the 

test statistic. This was supported by Sundrum (1954) and, thus. Pitman's 

efficiency can be reduced to
0  = lim » (2.3)

n  -» • 0 0  a 2 in
which is the ratio of the variances of the two test statistics. There

fore, the A.R.E. of two consistent tests is equal to the ratio of the 

asymptotic variances of two consistent estimators of & on which these 

tests are based.
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Since only very large samples are considered, the A.R.E. repre

sents a theoretical lower limit to the power efficiency function. The 

limiting conditions under which the A.R.E. is computed do not change 

from test to test, so the A.R.E. can be considered standardized, and 

thus, provides a useful index for comparing various tests. The assump

tions of the A.R.E. concept make it manageable from a mathematical 

standpoint.

Pitman was actually preceded by Cochran (1937) when Cochran 

computed the asymptotic efficiency of the binomial series, or sign test. 

Cochran's asymptotic value of 2/tt for the sign test was verified by 

Pitman. Cochran restricted his analysis to the sign test and did not 

develop limiting functions as Pitman did eleven years later. Following 

these initial developments, a number of variations to computing asymp

totic efficiency have been set forth.

Bahadur (1960a), (1960b), and (1967) presented variations to 

Pitman's basic concept. In one approach, instead of allowing 0i -► 0O 

as Pitman did, Bahadur held the alternative hypothesis constant and 

permitted power, 6, to converge stochastically to zero while the signi

ficance level, a, remained a stochastic uniform variable. Another 

variation by Bahadur allowed a to converge to zero while 3 was fixed at 

1-p and the alternative hypothesis was fixed. According to Gleser (1964), 

the Bahadur efficiencies are only approximate measures of asymptotic 

relative efficiency. Bahadur's measures of asymptotic relative effi

ciency were summarized and contrasted with Pitman efficiency by Savage 

(1969).

Another variation to computing A.R.E. was introduced by Blom- 

quist (1950). Blomquist computed what he referred to as an asymptotic
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local efficiency by Caking Che racio of Che respective sample sizes under 

the assumption that the power functions of Che two tests have equal 

slopes at 0 = ©o • However, for the larger samples this is essentially 

equivalent to A.R.E.

Blyth (1958) also defined A.R.E. in an unusual manner by aban

doning the usual method of establishing a ratio of sample sizes. Blyth's 

method consisted of incorporating three loss functions into the computa

tional scheme.

Another author, Witting (1960), extended Pitman's efficiency con

cept to encompass finite sample sizes. The zero-order approximation to 

Witting's formulation was equal to Pitman's efficiency.

The attempt to generalize from the asymptotic level to the finite 

level illustrates the shortcomings of A.R.E. The conditions which are 

responsible for the tractability of A.R.E. (infinite sample sizes and 

converging alternative hypothesis) also limit its praticality. As 

Bradley (1968:58-59) put it, ". . . while relative efficiency is 

realistic but not sufficiently general, A.R.E. is general (at least in 

the sense of being 'standardized') but not sufficiently realistic."

In an attempt to fill this gap, Hodges and Lehmann (1956) pro

posed a definition of efficiency for small sample theory that may be 

used in rough comparison with A.R.E. Let N& and represent the sample 

size for test a and test b, respectively. For alternative hypothesis,

0, and Type I error, a, the Hodges-Lehmann efficiency is expressed as

e a b(0»a> = —  ’,b Na (2.4)
where Nj,* is the randomized sample size for .test b needed to match the 

power of test a. Rarely will N* be an integer, so linear interpolation 

between consecutive integer samples is required to equate powers. Hodges
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and Lehmann prefer to hold a and 0 fixed and permit N -*■ “ , which re

sults in an approximate A.R.E. figure. If the location-shift is allowed 

to approach zero, the Hodges-Lehmann efficiency approaches Pitman effi

ciency. It is important to note that the asymptotic relative efficiencies 

proposed by Pitman (1948), Bahadur (1960b), and Hodges and Lehmann (1956) 

do not always agree, even locally for 0 -*■ 0. Both Hodges and Lehmann 

and Bahadur efficiencies approach Pitman efficiency as 0 + 0 (see Tsuta- 

kawa, 1968).

In addition to those references mentioned previously, A.R.E. is 

summarized in Basu (1956), Stuart (1954b; 1957), and Mood (1954). As a 

measure of power efficiency, A.R.E. has its shortcomings, but it does 

provide boundary values that demonstrate the range of the power effi

ciency of most nonparametric tests. As each nonparametric test is dis

cussed in the next section, the asymptotic values that have been calcu

lated are mentioned.

NONPARAMETRIC STATISTICAL TESTS

Since the initial development of nonparametric tests in the 

1930's, there has been a proliferation of literature in which these 

statistical methods are discussed and developed. There are very few 

textbooks on statistics that do not give at least a cursory mention of 

nonparametric methods. Typical of some of the texts that give an above 

average treatment to nonparametric techniques are Dixon and Massey (1969), 

Harshbarger (1971), Hoel (1962), Noether (1971), Roscoe (1969), and 

Walker and Lev (1953). Two of the most popular textbooks that cover 

nonparametric tests exclusively are Bradley (1968) and Siegel (1956). 

Recent publications of this type include Conover (1971) and Gibbons
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(1971). More mathematical approaches to the subject of nonparametrics 

are taken in Hajek (1969), Fraser (1957), and Noether (1967). Two ex

tensive bibliographies have been published by Savage (1953; 1962) on 

subject matter pertaining to nonparametric statistics. The latter 

reference contains approximately 2,500 entries, which gives some indi

cation of the mass of literature in existence.

Numerous survey articles and monographs discuss general topics 

and techniques in nonparametric statistics. A few of the better-known 

articles that discuss the general concept of the nonparametric tests 

included in this study are Blum and Fattu (1954), Bradley (1967), Gaito

(1959), Moses (1952), Siegel (1957), and Smith (1953).

Because this study concentrates on three specific distribution- 

free tests, the literature dealing with the power efficiency of these 

tests is reviewed in detail. As each test is discussed, the historical 

development of that test is covered first. This is followed by the 

findings of asymptotic relative efficiency. The remaining literature 

on power efficiency is then presented in, basically, a chronological 

format.

Sign Test

The sign test, which is based on the binomial distribution, was 

developed by Cochran (1937). Cochran computed the relative efficiency 

of the sign test for ^  = 0 at which the function had a value of 2/ir = .637. 

The asymptotic relative efficiency of 2/tt for the sign test for normal 

alternatives has been confirmed by many statisticians since Cochran (for 

example, see Dixon and Mood, 1946; Pitman, 1948; Mood, 1954; and Hodges 

and Lehmann, 1956).
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Pitman (1948) found the asymptotic efficiency of the two-sample 

sign test relative to the t-test to be

e  - 8a2[/f2(x)dx]2 , (2.5)

where C2 is the variance of f(x). For the normal distribution, this 

function is equal to 2/tt . Pitman felt that efficiency would be greater 

for small samples. Hodges and Lehmann (1956) pointed out that in the 

case where f(x) = 0, e = 0, thus the function has no positive lower 

bound. On the other hand, the function has no upper bound either, since 

the sign test is applicable to distributions having an infinite variance. 

Hodges and Lehmann found that if f (x) is unimodal, e >_ 0.333, this mini

mum value being attained for the rectangular distribution. When n -* 

the asymptotic efficiency function appeared to be independent of a but 

dependent upon 0. As was found previously, as 0 0 or as p2 ^Uii 

e -► 2/tt. Hodges and Lehmann also pointed out that as y2 departs from 

Vij, or 0 -*■ 00, e decreases steadily from .637 to .500 for one-tailed 

tests.

An A.R.E. of 2/tt was also calculated by Mood (1954) for the 

median test for location; a test whose efficiency values are equivalent 

to the sign test. Mood calculated asymptotic efficiencies for five two- 

sample tests for normal alternatives. Other authors have investigated 

the asymptotic efficiency of the sign test using power functions to make 

the computations (see Bahadur, 1960c; Blyth, 1958; and David and Perez, 

1960). A generalized Pitman efficiency was established for the sign 

test by Witting (1960).

One of the first studies that provided greater insight into the 

power of the sign test for finite samples was undertaken by Mac Stewart 

(1941). Mac Stewart constructed a table for determining the size of the
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sample that Is required for the sign test to attain a certain power for 

a given alternative hypothesis for a <_ .05.

Five years later, Dixon and Mood (1946) wrote an excellent survey 

article on the sign test. The authors derived the asymptotic power of 

the sign test and presented power efficiencies for three selected sample 

sizes. At a significance level of .10, it was found the power of the 

sign test for a sample of 18 equaled the power of the t-test with a 

sample of 12, resulting in a power efficiency of .667. For a sample 

size of 30, power efficiency ranged from .667 to .700, and for samples 

of 44, efficiency ranged from .636 to .659.

Walsh wrote two articles concerning the sign test, one in 1946 

and the other in 1949. Although both articles reviewed general concepts 

of the median test (sign test), in the first article Walsh (1946) inves

tigated the power of the sign test relative to the t-test for slippage 

for the ce.se of normal populations. For one-tailed tests with samples 

of 4, 5, and 6, relative efficiency was found to be approximately 95 

percent. As the sample size was increased, the relative efficiency 

dropped, but only to approximately 75 percent for samples of size 13. 

Thus, for small samples, the sign test exhibited fairly high efficiency.

Walsh defined power efficiency in an unique manner. For a given 

sample size for the sign test, the degrees of freedom for the t-test 

were varied as was necessary to make the algebraic sum of the areas be

tween the two power functions equal to zero. Subsequent research (see 

Jeeves and Richards, 1950; and Dixon, 1953) revealed that Walsh's calcu

lating procedure would cause the power efficiency to have an upward 

bias.
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To avoid Che upward bias experienced by Walsh, Jeeves and 

Richards (1950) computed a randomized relative efficiency value for 

a ■ .05 and .01. Three techniques were utilized to measure.efficiency: 

(1) Walsh's procedure of balancing the area between power curves, (2) 

minimizing the maximum difference, and (3) equalizing the power func

tions at certain fixed points. The initial findings disclosed that the 

three methods did not result in significantly different power efficien

cies. For a ■ .05, power efficiency was about .70 for sample sizes of 

6 to 20, and slightly higher for a * .01. The relative efficiency 

slowly approached the asymptotic value of .6366 as n was increased.

Dixon (1953) confirmed the biasedness of Walsh's values and 

determined that the efficiency of .70 for a sample of 6(a = .05), which 

was stipulated by Jeeves and Richards (1950), was too low. Dixon be

lieved that it was necessary to determine the power efficiency for every 

parameter and alternative to get a truly accurate picture of relative 

power. With this goal in mind, Dixon explored the power efficiency of 

the sign test on a larger scale than heretofore taken. The power func

tion for the sign test was tabulated for various sample sizes (5, 10, 

and 20), for normal alternatives, at levels of significance chosen on 

the basis of the discreteness of the binomial distribution. A linear 

interpolation method was used to determine fractional degrees of freedom 

for the t-test— a method which proved satisfactory except for shift 

alternatives near zero. In general, the results indicated a decreasing 

power efficiency for an increasing sample size, an increasing signifi

cance level, and an increasing shift alternative.

One year later, Dixon (1954) compared the power of the rank sum 

test, the maximum absolute deviation test, the median test, and the



to ta l number o£ runs test with each other and the t-test. This compre

hensive research Is one of the most Incisive Investigations of power 

efficiency that has been performed. For a randomized significance level 

of .025 and samples equal to five, the power efficiency of the median 

tes t ranged from .70 to .73 as 0 increased from 0.5 to 4.5. This in

crease in power efficiency as the alternative, 0, increased is interest

ing In that it did not support one of the conclusions drawn in Dixon's 

previous article. Since three of the tests that Dixon studied are 

covered in this research, it is interesting to note that the rank sum 

te s t, the maximum absolute deviation test, and the median test ranked in 

that order in efficiency, relative to the t-test.

Milton (1970:39) published extensive tables of power and power 

comparisons for four nonparametric tests. The tests included the Wilcoxon 

test (Mann-Whitney U test), the normal scores test, the median test (sign 

test), and the Kolmogorov-Smirnov test. Power efficiencies were com

puted in the Hodges-Lehmann form that was outlined previously. The 

Hodges-Lehmann efficiency of the median test was tabulated for one-sided 

tests with n = m = 5, 6 , and 7 for significance levels of .05 and .01 and 

shift alternatives, 0 = 0.2(0.2)1.0, 1.5, 2.0, 3.0. For a sample of six, 

a * .01, power efficiency of the median test decreased steadily from 

.6905 to .6322 as G increased from 0.2 to 2.0. The power efficiencies 

for the corresponding alternatives with a = .05 were slightly higher; 

power efficiencies of the other two samples were lower for a = .01 than 

for a = .05. In some instances efficiency increased (n = m = 5, a = .01; 

n ■ m = 6 , a = .05) as the shift increased. There were not enough samples 

to determine any trend in the power efficiency for a given alternative 

as the sample size increased (for samples 5, 6, and 7, the power efficiency
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The power efficiency values obtained by Milton were limited to too few 

sample sizes to draw any definite conclusions. In addition to obtaining 

a few isolated values, an important point to be attained from the study 

was the need to broaden the scope of parameter values.

Research with non-normal alternatives has not been ignored. In 

a doctoral dissertation, one of the authors of the Mann-Whitney U test 

(Whitney, 1948) investigated the sign test for normal, rectangular, 

double rectangular, triple rectangular, and Cauchy alternatives. It 

was found that for many non-normal alternatives the sign test performed 

well, especially for alternatives for which the variables were concentrated 

at the mean or median. Gibbons (1964) investigated the performance of 

the sign test under several combinations of skewness and kurtosis in 

the underlying distribution.

The evidence in the literature supports the contention that the 

power of the sign test does not compare very favorably with the t-test.

One piece of evidence already presented suggested that the Kolmogorov- 

Smirnov two-sample test was more powerful than the sign test.

Kolmogorov-Smirnov Test

The historical development of the Kolmogorov-Smirnov test is 

presented in a thorough and lucid manner by Darling (1957). It appears 

that the initial development of the Kolmogorov-Smirnov test took place 

when Kolmogorov (1933) developed a test based on the maximum deviation 

of two empirical distributions. In 1939, Smirnov made a distribution- 

free test of Kolmogorov's test, determined the limiting ditribution for 

the test, and presented a table of critical values. Kolmogorov (1941)
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authored a brief article two years later which summarized the work that 

had been done on his original test up to that time. A similar survey 

article was authored by Smirnov (1944). Smirnov (1948) republished, in 

English, the tables that he had originally presented in Russian in 1939. 

The test that resulted from the combined efforts of Kolmogorov and Smirnov 

has proven to be a very useful test in the social sciences.

The particular configuration of critical values for the Kolmogorov-

Smirnov test (or simply K-S test) can be tabled a number of ways, and it 

is merely a matter of personal requirements as to which table is most 

suitable (see Massey, 1950a; Massey, 1951a; Massey, 1951b; Birnbaum, 

1952; Massey, 1952a; Goodman, 1954; Miller, 1956; Birnbaum and Hall, 

1960; Owen, 1962; and Lilliefors, 1967).

excellent summary of the K-S test include Massey (1951b), Birnbaum 

(1953), and Goodman (1954). The article by Massey (1951b) is limited 

to the Kolmogorov-Smirnov goodness-of-fit test which is the one-sample 

version of the two-sample test that is covered in this manuscript. How

ever, his calculation of a lower bound for the K-S test can be applied 

to the two-sample case.

the lower bound for the K-S test and demonstrated that the test was con

sistent against all alternatives F(x) ^ G(y), assuming the smaller of 

the two sample sizes approaches infinity while the ratio of sample sizes 

remains away from zero and infinity. It was also shown that the K-S 

test is biased for finite sample sizes. Massey presented the lower bound 

for the K-S test as

Other articles of an expository nature in addition to Darling's

In two other articles, as well, Massey (1950b; 1952b) computed

(2.6)
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The rationale for computing a lower bound for the K-S test instead of

the A.R.E. is that the K-S statistic does not have the characteristics

necessary for computing a conventional A.R.E.

In an excellent article, Capon (1965) pointed out that, in

general, the power of the K-S test cannot be computed because the limit

ing distribution under the alternative hypothesis is not known; and, 

because the usual assumptions concerning asymptotic normality are not 

satisfied, asymptotic relative efficiency cannot be computed. However, 

a lower bound for the power of the test can be calculated and, following 

Massey (1950b), Capon derived a lower bound for the asymptotic effi

ciency of the K-S test relative to the optimum likelihood ratio test.

Capon made essentially the same assumptions as Massey— as m = n approaches 

infinity, the ratio ^  is bound away from zero and infinity. Applications 

were made for the Cauchy, exponential, and normal distributions. When 

sampling took place from two normal populations that differed only in

location, the lower bound of the K-S test relative to the optimum like-
2lihood ratio test was —  - .637, and the upper bound was 1.0. Bradley
tr

(1968) felt that the true A.R.E. was somewhere between these two values. 

The lower and upper bound were also computed for the K-S test relative 

to Student’s t-test. It was found that when two unspecified populations 

of the same type differ only in location, the lower bound was greater 

than or equal to i- and the upper bound was capable of being large for 

certain populations.

Further study of the asymptotic efficiency of the K-S test was 

carried out by Klotz (1967) . Asymptotic efficiency was derived and 

evaluated for normal location and normal scale alternatives. Using equal 

sample sizes, the limiting efficiency was obtained by letting a -*■ 0 and
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fixing 0, 0 < 0 < 1. The limit of the relative efficiency was —  forTT
normal location shift alternatives that approached the null hypothesis.

Studies of the power of the K-S test have been somewhat limited 

as compared to the other nonparametric tests covered in this paper.

Darling (1957) found that information concerning the power efficiency of 

the K-S test was quite fragmentary. This is probably due mainly to the 

difficulties encountered with A.R.E. and the complexity of the power 

function. The first significant power comparisons were made by van der 

Waerden.

Van der Waerden (1953b) investigated the power of the K-S test 

and the Mann-Whitney U test for a number of sample sizes under the assump

tion of normality and equal variances— situations in which the t-test is 

the most powerful test. For all the cases investigated, the K-S test 

proved less powerful than the Mann-Whitney U test. The relative effi

ciency of the K-S two-sample test with one sample being large and the 

other equal to five was 65 percent for both one-tailed and two-tailed 

tests. When the smaller sample exceeded five, van der Waerden expected 

efficiency to fall. In a continuation of the same article, van der 

Waerden (1953b) investigated non-normal distributions and unequal vari

ances. In another article, van der Waerden (1953a) suggested that the 

K-S test demonstrated inferiority to the classical test in detecting 

mean differences because of the universal nature of the K-S test as com

pared to the single purpose of the classical test to detect a difference 

in means.

Dixon (1954) investigated the power of the maximum absolute 

deviation test (K-S test) in the same study that was mentioned in the 

sign test review. Power comparisons were made by numerically integrating



24

power functions in a deterministic framework. The power efficiency of 

equal samples of size 3, 4, and 5 drawn from normal distributions with
|y -  y Iequal variances for various 0 = J— I----- 2-L_ were studied. Unfortunately,

a
computational complexity restricted the number of different samples and 

levels of significance that were included in the study. In order to 

equate powers, fractional sample sizes of the t-test were found by poly

nomial interpolation. Hodges and Lehmann (1956) attacked this procedure 

as lacking "functional meaning."

The level of significance was randomized to a value of .025 for 

equal samples of five to make comparisons among the nonparametric tests. 

For alternatives from 0.5 to 4.5, the power efficiency of the K-S test 

relative to the t-test decreased from .81 to .74; each value was lower 

than the Mann-Whitney U test, but higher than the sign test. However, 

the advantage over the sign test was very small for large alternatives 

(0 > 3.0). In general, the power efficiency decreased slightly as the 

shift alternative increased, and as the level of significance increased.

The evidence that Dixon presented does not support the conten

tion of Siegel (1956:136) that ". . . whereas for very small samples 

the Kolmogorov-Smirnov test is slightly more efficient than the Mann- 

Whitney U test, for large samples the converse holds." Dixon's study 

supports the conclusion that the Mann-Whitney U test is more powerful 

than the K-S test for every parameter.

Lee (1966) compared the exact power of the K-S test with a 

standard parametric test— the normal test. The evaluation included 

samples of size five considered drawn from normal distributions differ

ing in means. For a = .05 and .01, the relative efficiency increased 

from .84 to .98 and from .76 to .92, respectively, as the shift
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alternative increased from 0.5 to 2.0. It should be noted that the 

efficiency increased as the location-shift increased which is atypical 

in light of a majority of the findings.

Recently, Knott (1970) and Milton (1970) have investigated the 

power and relative efficiency of the K-S test. Knott computed efficien

cies of the K-S test relative to the optimum normal test and found that 

performance did not deteriorate substantially as the sample size in

creased. General efficiencies of 75 percent for a = .05 and 72 percent 

for a = .01 were found. In addition, Knott obtained the lower bound for 

the K-S test, 2/tt.

Milton (1970) presented tables of the exact power of four non

parametric tests for both one-sided and two-sided tests for all sample 

sizes 2 _< n m <_ 7. Various levels of significance were investigated 

for 0 ■ 0.2(0.2)1.0, 1.5, 2.0, 3.0. As mentioned in the review of the 

sign test, Hodges-Lehmann efficiencies were computed for the one-sided 

K-S test relative to the t-test. One result taken from Milton (1970:40) 

had power efficiency falling steadily from .8632 to .8583 for increasing 

location-shifts with n = m = 6 and a = .01. The corresponding power 

efficiencies were generally lower for a = .05 although noted exceptions 

existed for the larger location-shifts. Power efficienty decreased 

fairly consistently as the location-shift alternative increased. As 

with the sign test, not enough sample sizes were included in the report 

to determine any definite trend in power efficiency as sample size 

increased.

Although the evidence is not complete, it appears that the K-S 

test is more efficient than the sign test. The literature shows that 

the Mann-Whitney U test is the most powerful of the three tests.



Mann-Whitney U Test

The Mann-Whitney U test is a linear transformation of the 

Wilcoxon rank-sum two-sample test. Therefore, all of the information 

that is pertinent to the power of the Wilcoxon test also applies to the 

Mann-Whitney U test.

Wilcoxon (1945) developed a test that is based on the sum of the 

rankings of the observations. The Wilcoxon test was generalized and 

extended by Mann and Whitney (1947), who considered both unequal and 

equal samples. A table of critical values was established for samples 

up to m = n = 8; for larger samples, Mann and Whitney felt that the normal 

approximation was appropriate.

The first individual to investigate the asymptotic relative 

efficiency of the Wilcoxon or the Mann-Whitney U test was Pitman (1948). 

Pitman's efficiency of the U-test is given as

e  *= 12 a2[ / f2(x)dx]2. ^

3For normal populations this is equal to —  - .955. Several writers have 

verified this result (for example, see van der Vaart, 1950; van der 

Waerden, 1952 and 1953b; and Mood, 1954). Hodges and Lehmann (1956) 

found that the A.R.E. of the Mann-Whitney U test never falls below .864 

for any underlying continuous distribution. They also discovered that 

for certain non-normal distributions the relative efficiency of the U- 

test could be arbitrarily large. Thus, Hodges and Lehmann correctly 

concluded that using the U-test instead of the t-test could never entail 

a serious loss of efficiency.

Witting (1960) developed a generalized Pitman efficiency for the
qMann-Whitney U test which was equal to Pitman's efficiency of ~  for the
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zero-order approximation in the case of normal alternatives and equal 

to 1.0 for the uniform distribution. A comparison of Bahadur efficiency 

and Pitman efficiency for the Mann-Whitney test was made by Hollander 

(1967).

Tables of critical values for the Mann-Whitney U test have 

appeared in Auble (1953), Jacobson (1963), Milton (1964), Me Cornack 

(1965), and Claypool (1970); Jacobson (1963) also includes a thorough 

bibliography.

One of the first analytical investigations of the power of the

Mann-Whitney U test was undertaken by Whitney (1948). The U-test was

compared with the normal test and the t-test under three separate condi-
2

tions: o2 = a2, a2 = 2v, and a2 = 4a2. It was found that under certainx y x 4 x j

non-anormal conditions, the Mann-Whitney test was superior to both para

metric tests and very close in power under normal conditions.

Perhaps the first person to study the small sample power of the 

U-test against normal alternatives was van der Vaart (1950). Compari

sons of power against the t-test were made by evaluating the ratio of 

the derivatives of the power function at the null hypothesis for one

tailed tests with m + n <_ 5 and for two-tailed tests with m + n <_ 6 .

The power of the U-test compared very favorably with the power of the 

t-test for small samples at selected significance levels. Indications 

were that, even for large samples, the difference in power was not too 

great. The ratio of the second derivatives of the power functions
Oyielded the asymptotic efficiency of ^ * In a later article, van der 

Vaart (1953) investigated the power function of the Wilcoxon two-sample 

test when the underlying distributions were not normal.
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A slightly different approach was used by van der Waerden (1952) 

Who computed the actual power of the Wilcoxon and the t-test for parti

cular alternatives. For m “ n * 2, a mean difference of two, and a 

standard deviation of one, the power of the Wilcoxon test was approxi

mately 62 percent while the power of the t-test was a little higher,

65 percent. In another article by van der Waerden (1953b) the asymptotic 

efficiency of the Wilcoxon test was verified, the power of the U-test 

was compared to the K-S test, and non-normality was investigated.

All of the studies that have been mentioned up to this point 

suffer a common malady— comparisons of power have been made on the basis 

of an extremely limited number of alternatives. Dixon (1954) emphasized 

that a comprehensive efficiency comparison must be based on an evalua

tion of all possible values of n, a, and 0. Obviously, this is not 

possible, but Dixon did extend his analysis to cover more parameter 

values than previous studies. As mentioned in reviewing the two previous 

tests, Dixon used a numerical procedure to evaluate the power of the 

nonparametric tests. Power efficiency was computed for equal samples of 

five for a = .025 for the rank-sum test (Mann-Whitney test, Wilcoxon 

test) as with the median and the maximum absolute deviation tests. The 

power of the rank-sum test proved to be superior to all of the other 

nonparametric tests evaluated. Power efficiency fell steadily from .964 

to .88 as the mean difference increased from 0 to 4.5. It was found 

that, as the level of significance increased, the power efficiency of 

the U-test increased slightly which is just the opposite to what happened 

with the sign test and the K-S test. The local power efficiencies for

the U-test were very high; for all cases, they were greater than the
3asymptotic efficiency of — .
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Hodges and Lehmann (1956) compared some of their efficiency 

values with those obtained by Dixon and found that, while Dixon's power 

efficiency values decreased steadily as the alternative increased, their 

values increased as 0 increased beyond 3.0. Hodges and Lehmann attri

buted this to the different methods used in interpolating the parametric 

sample size. Another result obtained by Dixon that has not been sub

stantiated by other research had to do with an increasing power efficiency 

associated with an increasing significance level. In this situation, 

Bradley (1968) among others, felt that efficiency should decrease, not 

increase.

As with the median test and the Kolmogorov-Smirnov test, Milton 

(1970:37) investigated the small sample power of the Wilcoxon two-sample 

rank-sum test for the same alternatives. Extensive power tables were 

computed for all possible combinations of m,n from 2,1 to 7,7 for various 

shift alternatives. Power efficiency values for the one-tailed test were 

given for a range of location-shifts for samples m = n = 5, 6 , and 7, 

and for a = .01 and .05. For samples m = n = 6 and ot = .01, the power 

efficiency of the Wilcoxon test decreased steadily from .9667 to .9443 

as the alternative ranged from 0.2 to 3.0. The power efficiency values 

were generally lower for corresponding alternatives at o. = .05 (excep

tions were noted for the higher location-shifts, smaller samples). All 

of the power efficiencies tended to decrease steadily as 0 increased (a 

few exceptions were noted for the larger values of 0). Unequal sample 

sizes of m = 7 and n = 6 were also tabulated and the results of the para

meters were not significantly different from those for equal samples. 

Again, as with the other two tests, it should be recognized that the 

samples that were presented were too limited to draw any definite 

conclusions.



30

Another study that used a numerical approach was by Tsao (1957) 

who computed power values for the Mann-Whitney U test for m = n = 2 and 

3 and 0 = .25(.25)1.5. These small samples were evaluated by means of 

polynomial interpolation and asymptotic efficiency was investigated by 

letting 0 -*■ 0. The Wilcoxon test was compared with the normal scores 

test for normal alternatives in Hodges and Lehmann (1961); and Witting

(1960) investigated the efficiency of the Wilcoxon test for finite sample 

sizes in the case of normal and rectangular alternatives. For m » n ■ 5, 

efficiency equaled .9563. Other numerical investigations were undertaken 

by Lehmann (1953), Barton (1957), and Gibbons (1963).

One of the many studies that have examined non-normal alternatives 

for the Wilcoxon test was undertaken by Wetherill (1960), who considered 

the situation in which the two underlying distributions differed slightly 

in shape so the assumptions of neither test were met. The study concen

trated on normal populations that had unequal variances. Wetherill con

cluded that Wilcoxon's test was a little more robust to differences in 

population variance than the t-test, but the Wilcoxon test was much more 

sensitive to skewness and kurtosis. In cases in which the underlying 

populations were identical, but non-normal, the Wilcoxon test was pre

ferred over the t-test.

This evidence supports the theory that the Mann-Whitney U test 

is not just a test of location. It is sensitive to the rapidity of 

build-up from a specified direction. Thus, an extremely skewed popula

tion may result in a significant U even though the two populations may 

have equal locations.

The literature stresses two points. For normal alternatives, 

the power of the Mann-Whitney U test is very close to the power of the
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t-test. For most non-normal alternatives, the power of the U-test ex

ceeds the power of the t-test. Considering all alternatives, the Mann- 

Whitney U test is one of the more powerful nonparametric tests.

All of the literature discussed thus far has approached the prob

lem of power efficiency from a deterministic standpoint. An alternative 

approach (the approach taken in this paper) utilizes the simulation 

technique.

SIMULATION STUDIES

One of the first simulation or empirical studies of nonparametric 

power was conducted by Dixon and Teichroew (1954). Only small samples 

were involved but the sampling was extensive enough to be able to rank 

the nonparametric tests according to power in the following order, start

ing with the most powerful test: (1) rank-sum test (U-test), (2) maximum

deviation test (K-S test), (3) median test (sign test), and (4) run test. 

Although the complete results were not available, samples of size m = n = 5, 

10, 20; m = 5, n = 10; m = 10, n = 20 for significance levels .01, .05, 

and .10 were examined for normal shift alternatives. Power estimates of 

the rank-sum test which were based on either 100 or 150 pairs of samples, 

were very close to the t-test. This study closely paralleled Dixon's 

other paper (Dixon, 1954).

Teichroew (1955) used a similar technique a year later to obtain 

power values for another particular ranking test. Even though the empiri

cal process was based on 1,000 to 7,000 random samples, the sample sizes 

never exceeded four.
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Another comparison of nonparametric tests against normal shift 

alternatives was conducted for the purpose of applying the information to

life testing (see Epstein, 1955). Two of the nonparametric tests that

are of interest were the rank-sum test (U-test) and the maximum deviation 

test (K-S test) . Equal samples of ten were drawn from normal populations 

which had a common variance of one and differed in location. With 

a ■ .05, 200 pairs of samples were generated to apply the tests. The

results indicated that the Kolmogorov-Smirnov test was not as powerful

as the Mann-Whitney U test.

Hemelrijk (1961) compared the power of Wilcoxon*s two-sample test 

with Student's t-test for normal alternatives. The power of one-tailed 

tests was estimated with m = n = 10 and a = .025. Because of discreteness, 

the true level of significance for the Wilcoxon test was .022, but the 

results indicated that the difference in significance levels had essen

tially no effect. Hemelrijk generated 250 pairs of samples for various 

normal alternatives and found that the t-test was superior to the Wilcoxon 

test for all mean differences. Results from non-normal alternatives indi

cated the opposite superiority relationship.

A study similar to Hemelrijk*s was conducted in the following 

year by Boneau (1962). Normal, rectangular, and exponential alternatives 

were simulated for various values of a(.05 and .01), sample sizes (5 and 

15), and variances (1 and 4) to compare the Mann-Whitney U test with the 

t-test. One thousand U's and t's were generated for each condition. The 

findings, which were presented graphically, revealed that the U-test 

might be biased and that it was certainly not distribution-free. The 

U-test was affected by skewness and heterogeneous variances but appeared 

relatively robust to these non-normal conditions.
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Two other statisticians (van der Laan and Oosterhoff, 1955) used 

a Monte Carlo technique to determine the power functions of the Wilcoxon, 

van der Waerden, and Terry tests and to compare these tests with each 

other and the t-test. Although sample sizes m = n = 6, 8, 10; m = 8 , 

n ■ 12; and m * 5, n = 15 were studied for various significance levels, 

only the results for m = n = 6 were given. The power of all three tests 

increased as the significance level increased, and as expected, the power 

of the Wilcoxon test was very close to the power of the t-test.

Neave and Granger (1968) conducted a simulation study involving 

eight tests for differences in mean. Three of the tests included the 

t-test, the Mann-Whitney U test, and the Kolmogorov-Smirnov text. Various 

combinations of sample size (20 and 40), significance level, variance, 

and parent distribution were simulated, each involving 500 pairs of sam

ples. As expected, the t-test was inimitable for normal alternatives, 

followed by the U-test and then the K-S test. Neave and Granger noted 

that the K-S test was designed to detect more general differences between 

distributions than the t-test or the U-test and therefore did not perform 

as well as these tests for detecting shifts in location. The U-test was 

superior for non-normal distributions.

An empirical comparison of the permutation t-test, the Student 

t-test, and the Mann-Whitney U test was the subject of a doctoral thesis 

(see Toothaker, 1969). Location-shift alternatives were studied for 

normal, uniform, and skewed distributions. The shift or effect size (0) 

was chosen so that the power of the t-test would be .30, .60, and .90 for 

normal alternatives. One thousand samples were generated from the three 

types of populations for all sample combinations from 2,3 to 5,5. The 

experiment was limited to these small samples to avoid using an inordinate
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amount of computer time. The t-test demonstrated consistent superiority 

for the location-shift alternatives, and only for the skewed distribution 

did the U-test exhibit superior power. Toothaker indicated that 1,000 

samples were not sufficient to eliminate the sampling error that occurred 

in his results.

It is significant to note that even the empirical studies have 

been somewhat limited in their coverage of power analysis. The size of 

the samples that were included in the studies were often very small, and 

even when the samples were larger, only one or two different sample sizes 

were usually investigated. Certainly, the investigations have not been 

extensive enough to draw any specific conclusions in the realm of power 

efficiency. Seemingly, the potential of simulation to expand the analysis 

to a larger number of parameter values has not been fully explored. The 

rudiments of this simulation study are disclosed in the following chapter.

In general, the evidence concerning nonparametric tests suggests 

relatively high power efficiencies associated with small samples, which 

fall ultimately to the asymptotic relative efficiency value as n increases. 

There also appears to be some support for the general contention that 

power efficiency decreases as either the significance level, the mean 

difference, or the sample size increases. However, the numerous findings 

of conflicting evidence, even from the deterministic studies, certainly 

accentuates the need for further research to clear the issue.



CHAPTER III

METHODOLOGY AND STRUCTURE OF THE PROBLEM

Comparisons of two-sample statistical tests in applied research 

are usually made on the basis of power, in the guise of a power efficiency 

value. This chapter begins with a brief look at the basic concept of 

power efficiency. Next, the assumptions and the particular formulation 

of the statistical tests that were covered in this research are presented. 

The final portion of the chapter is devoted to an explanation of the 

specific simulation technique that was used to develop the power 

efficiencies.

POWER EFFICIENCY CONCEPT

The efficiency of a statistical test is determined by its power; 

i.e., its ability to avoid accepting a false hypothesis. In other words, 

the power of a test is the probability that the test will reject a false 

hypothesis. This ability to reject a false hypothesis is related to a 

Type II error, 3, (the probability of accepting a false hypothesis) in 

the following manner,

Power = 1 - 3 •
When the null hypothesis is, in fact, true, the probability of a Type II 

error is zero. In this case, the probability of rejecting a true hypothe

sis is given by the significance level, a. So the power concept has 

meaning only when the null hypothesis is false.

35
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A very useful method for comparing tests Is on the basis of power.

and one of the most useful measures for comparing power is relative effi

ciency. Suppose a researcher has a particular experiment that has assump

tions that are met by two different statistical tests. One test, a non

parametric test, requires a sample size of n 2 to have the same power as 

the other test, its parametric equivalent, which has a sample size of iij, 

Then

It is customary to put the sample size of the parametric test in the 

numerator. This sample is usually the smaller sample because the para

metric test usually has greater power. If powers are equated when n2 = 20 

and nt ■ 15, the power efficiency of the nonparametric test is 75 percent. 

The nonparametric test requires a sample 33.3 percent larger than the 

sample of the parametric test for the two tests to have equal power. For 

normal shift alternatives the power efficiency of a nonparametric test 

should lie between 0.0 and 1.0 where a value of 1.0 signifies equal effi

ciency or power for a given set of parameters.

FORMULATION OF TESTS

Student's t-test is used to test the hypothesis of equality be

tween two population means when the populations are normal and have equal 

variances. The t-statistic is calculated for two independent samples as

power efficiency ■

t ■ X - Y (3.1)
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where X is Che mean of Che values, X^, from a sample of size m, drawn 

from Che X populaCion and Y is Che mean of values, Y^, from a sample of 

size n, drawn from Che Y populaCion. A C-value computed by (3.1) thaC 

Is  greacer chan or equal Co Che Cabled criCical value with m + n - 2

degrees of freedom is significant at the stated significance level. A

significant result means Chat the null hypothesis can be rejected with

the probability of a that an error has been made.

For independent samples, the formula,
t » _______________ X - Y_______________________________ (3 .2 )

in n /in \ i i \
z xf + e yJ - z x. Y  - I n ,  2 

1=1 1=1 \1=1 J \1=1 / f
m n ( m + n

m + n - 2 V mn
proved to be more efficient, computationally, than formula (3.1) for com

puting the two-sample t-test equivalent of the Kolmogorov-Smirnov test 

and the Mann-Whitney U test.

A different computational formula was used to compute the para

metric equivalent of the sign test. The sign test is used primarily in 

situations in which each sample pair is related in some manner. When 

there is some sort of relationship between sample pairs, the paired t-test 

is most appropriate. The paired t-test with n - 1 degrees of freedom is 

calculated as

t “A J4.---- > (3.3)
nld2 - (Zd);

n - 1
where d is equal to the difference between each sample pair (Y^ - X^) and 

n is the number of sample pairs.

When the assumptions of normality and equal variances hold, the 

t-test is the most powerful test. The assumptions for the t-test are:



(1) the observations are independent, (2) the samples are drawn from 

normal populations, (3) the variances of the populations are equal, and 

(4) the data are measurable on at least an interval scale.* Only the 

f i r s t  assumption is shared by nonparametric tests.

is  based on the binomial distribution. The null hypothesis can be stated 

as

or equivalently, that the median difference between two populations is 

zero, or that the number of pluses and minuses resulting from population 

differences are the same. The binomial distribution which is stated as

requires values for two parameters, n and p, to determine the probability 

of x successes in n trials. For the sign test, p = 1/2, n is the total 

number of pairs of samples showing a directional difference, and x is the 

smaller number of plus or minus signs taken from each difference - X^. 

Given these values, the sign test can be calculated with

This equation is the cumulative binomial distribution and the probability 

for the one-tailed test can be read directly from the cumulative binomial 

table for p - 1/2. For one-tailed tests the direction of the alternative 

hypothesis is declared in advance, which means that the alternative

*There is a difference of opinion among statisticians as to the 
validity of the last assumption. The present concensus seems to be that 
an interval scale measurement is not required to satisfy the applicability
of a parametric test (see Anderson, 1961; Gaito, 1959 and 1960; Savage, 
1957; and Stevens, 1946 and 1968).

One of the simplest nonparametric tests to apply, the sign test

P(X± > Y±) » P(X± < Yt) = 1/2

(3.4)

(3.5)
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hypothesis indicates whether the number of fewer signs will be pluses or 

minuses. If the probability in the cumulative binomial table is less 

than or equal to the chosen significance level, the null hypothesis may 

be rejected.

For large samples (n > 25), the normal approximation,

Z - g  +  •» - f  (3.6)

iff
may be used. The probability of a value as small or smaller than Z is 

found in the normal probability table.

The sign test assumes that each pair of observations is indepen

dent and that the variable under consideration has a continuous distribution.

The Kolmogorov-Smirnov test is sensitive to differences in loca

tion, dispersion, skewness, and kurtosis. The one-sided K-S test is given 

by

D « maximum [Sx(X) - S2(Y)], (3.7)

where Sx(X) and S2(Y) are observed cumulative step functions. Only equal 

samples were considered in this study, therefore m = n. Let S:(X) = k ^ m  

where kx = number of scores less than or equal to X and S2(Y) = k2/n where 

k2 “ number of scores less than or equal to Y. To compute these values, 

it is first necessary to rank into two separate groups the values sampled 

from each distribution. Then class intervals must be constructed to make 

a cumulative frequency distribution for each sample of observations, using 

the same intervals for both distributions. The best use of information 

is made if there is a large number of intervals, so 2(n + m) intervals 

were established for every case in the study. After each value is placed 

into its proper class interval, the differences in the frequency counts 

for each class are noted. The maximum difference is designated D.
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Probabilities for D can be found in most of the tables mentioned in the 

previous chapter. However, for the purposes of this study a table of 

critical values was adapted from Birnbaum and Hall (1960) and Massey 

(1951a). It turned out that all of the values were not used because the 

number of samples was reduced to conserve computer time. However, this 

table is presented in Appendix A because it appears to be the only source 

of D values for the two-sample test that includes every sample size from 

5 to 40. For samples larger than 40, the approximate values suggested 

in Conover (1971:399) were used.

The K-S test has the same basic assumptions as most nonparametric 

tests, i.e., independent observations and continuous distributions. When

the assumption of continuity is violated, the K-S test loses much of its

power. The result is a test that is much more conservative than it would 

be, otherwise. The occurrence of numerous ties in the data is an indica

tion of lack of continuity.

The Mann-Whitney U test is a ranking test that is used to test 

the hypothesis that two populations are identical, particularly in terms 

of respective locations. Specifically, the one-tailed hypothesis can be 

stated:

Ho: P(X > Y) = P(X < Y) = 1/2

Hj: P(X > Y) < 1/2 or P(X > Y) > 1/2.

The Mann-Whitney test is calculated with the test statistic, U, which for 

given samples m and n, is based upon the number of times a Y value ex

ceeds an X. Thus
m n

U - Z £ d., (3.9)
1=1 j=l J

where d ^  ■ 1 if Xi < Yj

■ 0 otherwise.
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Calculating U using the procedure required by (3.9) can be very tedious 

when the samples are large, so Mann and Whitney (1947) developed a formula 

for calculating U that avoids this cumbersome counting.

U . m   ±  .1) - ^  (3.10)2
or equivalently,

U 1 « nm + n fr-2+ V  ~ ZRn (3.11)

where U and U 1 are related in the manner

U - mn - U'. (3.12)

The values ER^ and ERr are the sums of the ranks of m observations and 

n observations in the X and Y sample, respectively. These rank-suras, 

which represent Wilcoxon’s statistic, are obtained after the scores from 

both groups are ranked together in ascending order. The smaller of U 

or U' is the value of interest because this is the value that is tabled. 

The null hypothesis is rejected if the U (or U') computed from (3.10) or 

(3.11) is less than or equal to the tabled value.

For the one-sided test in which the direction of the alternative 

hypothesis (Hj: y x < y2)' I s predicted, Harshbarger (1971) presented a

formula for computing the U-statistic. In this case, the computation of 

U ’ to determine whether U or U 1 is smaller is superfluous because U must 

be smaller to reject the null hypothesis. This formula,

U » ER ~ P?(B .~t-l). > (3.13)m £
was used in this investigation to compute the U-statistic. In this equa

tion ERjjj and m are values related to the X population for which y = 0.

It ties occurred in the Monte Carlo simulation process (an unlikely occur

rence as is explained later) each tied value was assigned the value of 

the average rank.
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Mann and Whitney felt that for samples larger than m » n ■ 8 the

normal approximation could be used with safety. This statement probably

reflects the laborious task of constructing critical values for samples 

larger than eight rather than theoretical accuracy. In any case, the 

normal approximation was used for sample sizes m ■ n ■ 14 and larger 

because of the unavailability of the necessary critical values. Gibbons 

(1971:145) reported that the normal approximation has been found reason

ably accurate for equal samples of size six. Mann and Whitney determined 

that
E (U) = (3.14)

and VAR (U) = mn (m + n + 1) (3.15)
12

Using these equations, the normal approximation for the one-tailed U-test 

is given as
_  u - —Z - ___________ 2________  (3.16)A (m) (n) (m + n + 1) 

12

Substituting U ■ IR^ - m (m^+ in (3.16) and simplifying gives

7  - 2SRm ~ m(N + 1) , (3.17)

A mn(N + 1)
3

where N ■ m + n. Equation (3.17) proved to be more efficient than (3.16) 

The validity of the Mann-Whitney U test relies upon the same 

assumptions as the Kolmogorov-Smirnov test— independence of observations 

and an underlying continuous distribution.

The formulas that were stated as being used in this research 

were programmed in FORTRAN IV language to carry out their particular 

statistical analysis on each set of data.
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SIMULATION PROCEDURE

As indicated in the previous chapter, much o£ the analysis of 

power efficiency has been severely limited to a very few parameter values, 

due mainly to the complexities involved with manipulating power functions. 

The technique of simulation has yet to be fully utilized as an effective 

tool in revealing the comparative powers of statistical tests for a broad 

range of parameters. Therefore, the simulation method was adopted for 

this study and an outline of the exact procedure follows.

The writer has written three separate computer programs to simu

late the performance of each nonparametric test and its corresponding 

t-test. It was impractical to include all three tests in one program 

because of the length of each program and the compiling time involved.

A Monte Carlo process was used to generate the normal variables. 

Equal samples of size m - n were generated from two unit normal distribu

tions with a mean of y = 0 for one sampling distribution and y = 0 for 

the second sampling distribution with equal variances of one. These 

underlying distributions satisfy the assumptions of the t-test, making 

the t-test the uniformly most powerful test. An underlying normal dis

tribution also satisfies the assumption of continuity which is required 

by the nonparametric tests'.

The computer programs were run on an IBM System 360/65 and IBM 

library subroutines were used to generate the normal deviates. Subrou

tine GAUSS (see IBM Scientific Subroutine Package) was used to compute a 

normally distributed random variable with a given mean and a standard 

deviation of one. The subroutine uses a sequence of uniform random num

bers to approximate a normally distributed deviate, Y, using



where X^ is a uniform random number, 0 < < 1. K is the number of

values of to be used. As K approaches infinity, Y approaches a normal 

distribution. For simplicity, K was given a value of 12, thus reducing 

(3.18) to
12

Y - L X. - 6.0 . (3.19)
i-1

Finally, Y was adjusted for the desired mean and standard deviation with

Y' = Ya + y ,

where Y r is the normal deviate with mean, y, and standard deviation, a.

Another subroutine in the IBM Scientific Subroutine Package was 

used to generate the uniform random numbers required in GAUSS. The ran

dom number generator, RANDU, generates a maximum of 229 or 536,870,912 

random'numbers, each in the interval, zero to one, before repeating, 

which was deemed adequate for this study.

If ties occurred in the data, this was an indication that the 

assumption of continuous distributions was being violated, which dimin

ished the validity of all of the tests that were under investigation. 

However, because the random number generator produced a normal variable 

that had a substantial number of significant digits, the chance of a tied 

observation was extremely remote. Remedial procedures have been developed 

for most nonparametric tests to offset the effect of tied scores. If a 

tie happens to occur in the data generated for the sign test, the sample 

size is simply reduced accordingly and that observed pair is ignored.

As indicated before, tied observations that occurred in the data of the 

Mann-Whitney U test were assigned the value of the average rank. However,
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if there is a significant number of ties in the data of the U-test, then 

a correction factor should be applied. As far as the Kolmogorov-Smimov 

test is concerned, ties simply reduce the power of the test. Since the 

probability of a tied observation was so small, the possibility of this 

happening in the simulation was ignored and no corrective procedures were 

installed. Certainly, tied observations would be so infrequent, if they 

occurred at all, that the effect on the power estimates would be negligible.

Power is defined as the probability of rejecting a hypothesis 

which is known to be false. Therefore, for each positive mean difference,

0 > 0, power was determined by the percentage of rejections over the

total number of tests performed. Statistical theory demonstrates that 

the power of the tests under study increases as the location-shift in

creases, as the sample size increases, or as the significance level in

creases. Thus, for each given significance level and location-shift 

alternative, the sample size of a test can be changed in order to increase 

or decrease the power of the test.

The process of increasing or decreasing the sample size to mani

pulate statistical power was used in this empirical study. For a given 

significance level and shift alternative for the one-tailed test, an 

estimate of the power of the nonparametric test was obtained for a given 

sample by calculating the proportion of rejections for the stipulated 

number of samples. As each sample was drawn and tested by the nonparame

tric test, the same data were also tested by the parametric test equiva

lent— the t-test. Thus, after the initial sampling was completed an 

estimate of the power of both tests was available. At this point, power 

was compared to determine if the sample size for the t-test had to be 

increased or decreased to make the power of the t-test equal the power of



the nonparametric test. If the powers were equal on the initial sampling, 

then a power efficiency of 100 percent would be recorded since the sample 

sizes were the same. The case most often encountered was that the power 

of the t-test exceeded the power of the nonparametric test and the sample 

size of the t-test had to be decreased for its power to equal or envelop 

the power of the nonparametric test. This follows necessarily from the 

fa c t that the parametric assumptions were satisfied, giving the t-test 

superior power. The only feasible explanation for getting a power effi

ciency that exceeded 100 percent, in which case the samples for the t- 

te s t were increased, was the existence of sampling error in the random 

sampling process.

After the power of the nonparametric test had been enclosed, a 

lin e a r interpolation method, similar to Hodges and Lehmann (1956), was 

used to equate powers. Linear interpolation was applied to the enclosing 

consecutive sample sizes of the t-test to determine a fractional sample 

size that equated power with the integer sample size of the nonparametric 

te s t .  If, as the sample size for the t-test was being reduced, the power 

for a given sample equated exactly with that of the nonparametric test, 

then interpolation was not necessary and power efficiency was calculated 

by the ratio of integer values.

When the location-shift is zero, an empirical estimate of the 

probability of a Type I error (a) is given. When 0 = 0  the null hypothe

s is  is  true, therefore the probability of a Type II error has no meaning. 

Only a Type I error can be made in this case, so for all mean differences 

of zero the proportion of rejections of the null hypothesis is an empiri

cal estimate of the significance level. The accuracy of this empirical
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a is an indication of the randomness of the simulation process and the 

validity of the tests.

Tables of critical values were read into the computer for use in 

testing the significance of the null hypothesis. Various sources pro

vided these critical values. The extensive tables of Owen (1962) pro

vided the critical t-values. As mentioned previously, the critical values 

for the Kolmogorov-Smirnov two-sample test for m » n <_ 40 were adapted 

from the tables in Massey (1951a) and Bimbaum and Hall (1960), and 

Conover (1971) provided the critical values for m = n = 50. The tables 

contained in Noether (1971) and in the appendix of Dixon and Massey (1969) 

were helpful in furnishing the critical values for the Mann-Whitney U test. 

Finally, as previously indicated, the probabilities for the sign test are 

given in any cumulative binomial table (for example, Walker and Lev, 1953). 

After each test was calculated, the value obtained was compared with the 

table value to determine significance.

The parameters that were ultimately evaluated comprised part of 

a much more comprehensive array of parameters that were originally in

tended for investigation, but available computer time restricted the num

ber of alternatives that were evaluated. The study was originally begun 

by testing 1,000 pairs of samples. After running a substantial number 

of various parameter combinations, it was found that the results fluc

tuated too much to be of much value. Thus, despite the increased com

puter time involved, it was decided to decrease some of the parameters 

evaluated in order to increase the simulation to 2,000 test repetitions.

The choice between evaluating one-sided or two-sided tests was 

made in favor of one-sided alternatives because a directional alterna

tives hypothesis is the more powerful and the more meaningful test. The
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analysis of one-tailed tests at a can be considered equivalent to the 

two-tailed versions at 2a. So even though only one-tailed tests were 

Investigated for a = .05 and .01, this could be considered the same as 

two-tailed tests with a ■ .10 and .02. For the Kolmogorov-Smirnov two- 

saaple test this symmetrical relationship is not exact but is close enough 

for most practical applications (see Bradley, 1968:292).

It was decided to investigate the power efficiency for samples 

m ■ n ■ 6(2)20* for the three tests. Each pair of samples of this size 

were evaluated for 2,000 repetitions. The results that were run Initially 

for 1,000 samplings were retained and presented for samples m = n = 30,

40, and 50. It was felt that for these larger samples, samplings greater 

than 1,000 would be prohibitive in terms of computer time. For certain 

larger sample sizes the normal approximation was used instead of the exact 

nonparametric test.

This last point concerning the normal approximation discloses a 

basic problem in nonparametric statistical analysis. As mentioned pre

viously, the results that were run with 1,000 repetitions displayed some 

significant fluctuations. One of the reasons for this is the discrete

ness of the underlying distributions of the nonparametric tests. Because 

these tests are based on discrete, and not continuous distributions, the 

significance levels are merely approximations, not exact. For example, 

if one was to apply the one-tailed sign test with a sample of 10 and 

a • .05, the test must have one or fewer signs of the same kind to reject 

the null hypothesis. But the exact probability of obtaining one or 

fewer signs of the same kind in a sample of 10 is .011, not .05. The

*m = n = 6(2)20 is read as follows: Samples m and n range in size 
from 6 to 20, simultaneously, in increments of 2.
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next higher critical value, two or fewer signs, has a probability of .055 

of occurring. As another example, suppose the Kolmogorov-Smirnov two- 

sample one-tailed test was being applied to a sample of m a n * 6 with 

(X ■ .01. The tabled critical value given for these parameters represents 

an exact probability of rejecting a true hypothesis of .0011, not .01.

The succeeding critical value has a probability of .0130 of occurring.

Thus, one can see that the discreteness of the distributions can distort 

the power values that are obtained.

To rectify this, the power of the nonparametric test for the smaller 

samples was adjusted by interpolating the level of significance. As each 

set of data was tested, significance was checked for critical value bor

dering above and below the chosen significance level. Taking the two 

resultant empirical power values, a linear interpoliation was made to 

adjust the theoretical significance level to .05 or .01, whichever para

meter was being considered. This was done by determining beforehand the 

factor that was necessary to correct a, reading this value into the com

puter, and simply calling for this value and multiplying as necessary to 

make the interpolation. Dixon (1954) and others have used a similar ran

domization technique to help eliminate the effect of discreteness.

A randomization procedure might be criticized on the grounds that 

the practitioner does not randomize the level of significance in field 

experiments and empirically it is not a true representation. However, 

from a theoretical standpoint, randomization is necessary because power 

efficiency, by definition, is based upon the assumption that all parameters, 

except sample size, are equal. The results varied a great deal between 

those that were randomized and those that were not. The interpoliation
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procedure tended to "smooth" the power efficiency values and remove some 

of the variation manifested in the nonrandomized results.

Another criticism might stem from the fact that linear interpola

tion was applied to a nonlinear relationship. However, it was felt that 

the effect of this approximation would not distort any of the results to 

an appreciable degree.

Interpolation was performed on the significance level for the 

sign test and the Kolmogorov-Smirnov test for all samples from 6 to 20.

The significance level of the Mann-Whitney U test was randomized for sam

ples up to 12 only because the table values for exact probabilities did 

not exist for samples 1A and above. For samples m = n >_ 1A, the normal 

approximation for the U-test was used, which was considered a relatively 

safe approximation (Mann and Whitney recommended the normal approximation 

for samples larger than eight). As the sample size approaches infinity, 

the discrete distribution of the nonparametric test approaches a con

tinuous normal distribution by the central limit theorem. Thus, interpo

lation of the significance level is not as important for the larger sam

ples as with smaller samples. Randomization was not performed on the 

larger samples (30, AO, and 50) for this reason.

The normal approximation was used for the sign test on samples 

greater than 20 and as mentioned above, the normal approximation was used 

for the Mann-Whitney U test on sample sizes 1A and above. When the normal 

approximation was applied to these larger samples, a continuous test was 

being used to estimate a discrete nonparametric test. This reduces the 

necessity of randomization; especially in view of the fact that increas

ing sample sizes approach continuity.
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In summary, results are given for sample sizes m “ n - 6(2)20,

30, 40, 50. Randomization was performed on some of the smaller samples 

and the normal approximation was used to calculate the sign test and the 

U-test for some of the larger sized samples. Statistical tests were per

formed 2,000 times each on samples m * n * 6(2)20 and 1,000 times on 

samples m = n = 30, 40, and 50. The one-tailed test for a ■ .05 and .01 

was investigated for normal location-shift alternatives G *  0.0(0.2)1.0, 

2.0, 3.0. The decision to restrict the analysis to equal samples and the 

selection of all parameters, in general, was guided primarily by computer 

time considerations. The choice of significance levels and sample sizes 

was also made in consideration of the common usage of these parameters 

in applied research.

A brief summary of each computer program should clarify the pro

cedure used to calculate the power efficiency of each of the three non

parametric tests. All of the programs followed the same basic format.

The sign test program began by generating two samples of size n. First, 

an observation was generated from a normal distribution with y = 0 and 

then from a normal distribution with y = 0. This was repeated n times to 

generate n pairs of samples. As each pair of scores were generated, the 

necessary values for computing the t-test were also compiled.

The sign test statistic was computed differently depending upon 

whether the sample size was larger than 20 or not. For n _< 20, the cri

tical value for the sign test was determined by counting the smaller num

ber of signs. Each critical value, thus obtained, was compared with the 

two table values that enclosed the true significance level to determine 

if the computed value could be significant in either case. Then the t-test



(3.3) was performed on Che same data. This process was repeated 2,000 

times. Power values were then obtained by dividing the number of rejec

tions in each case by the total number of trials, 2,000. At this point 

the power of the sign test was interpolated for the exact significance 

level. Depending upon whether the sample size for the t-test had to be 

increased or decreased to enclose the power of the sign test, the sample 

pairs were increased or decreased by one, new data generated, and the 

t-statistic computed for the new sample. The t-statistic calculated from 

each set of data was compared with the tabled value for n - 1 degrees of 

freedom to test the null hypothesis for significance. This was also re

peated 2,000 times. After the power of the sign test was enclosed by the 

power resulting from two parametric samples, linear interpolation was used 

to determine a fractional sample size of the t-test that equated powers. 

Finally, the ratio of the two samples that resulted in equal power was 

printed as the power efficiency for that set of parameters.

The main difference that existed when the sample size exceeded 20 

was that the sign test was calculated using the normal approximation (3.6). 

The resulting statistic was checked for significance with the IBM sub

routine, NDTR (see IBM reference manual). This subroutine computes 

Pr(X <_ x) where X is a random variable distributed normally with y = 0 and

a2 « 1. Randomization of the significance level was only performed for

the smaller sample sizes and not for samples of 30, 40, and 50. Moreover, 

only 1,000 tests were performed for each given sample of these larger 

sizes.

The steps in simulating the Kolmogorov-Smirnov test followed 

essentially the same order as the sign test. The entire sample of size

m was generated from a normal distribution with y = 0 and then sample n
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vas generated from the same distribution with y ■ 0. The scores generated 

from each distribution were sorted into two separate groups in ascending 

order. After the classes were established and the frequency counts 

determined, the value D (3.7) was located. Then the test statistic D was 

compared with each of the two table values of the K-S statistic that en

closed the chosen significance level to determine if the test was signi

ficant at either level of significance. The t-statistic was also com

puted (3.2) and compared with the tabled t-value with m + n - 2 degrees 

of freedom to check for significance. The remainder of the procedure for 

the K-S test was the same as for the sign test.

Samples for the U-test were generated in the same manner as with 

the K-S test. The samples that were generated from separate distributions 

were ranked together in ascending order and then the ranks of the scores 

that were taken from the X distribution (y = 0) were summed. This value, 

was necessary to calculate the value of U for all samples. For 

samples smaller than 14, the one-tailed test statistic for the Mann-Whitney 

U test was computed with (3.13). For samples sizes m = n _> 14, the normal 

approximation (3.17) and the NDTR subroutine were utilized. Other facets 

of the program were similar to the Kolmogorov-Smirnov program.

The power efficiency values, which constituted the primary objec

tive of this study, were computed in a similar fashion for all of the 

tests.



CHAPTER IV

RESULTS AND DISCUSSION

The results of the study are presented In two segments In the 

form of tables and discussion. The first segment contains the empirical 

probabilities of a Type I error. These simulated probabilities are given 

for the sign test, the Kolmogorov-Smirnov test, the Mann-Whitney U test, 

and their parametric equivalent— the t-test. The second segment contains 

the power efficiencies which are given for the same nonparametric tests 

for normal shift alternatives for significance levels of .05 and .01.

The investigation included tests of the one-tailed variety. Accompanying 

each table is an analytical discussion concerning the important findings. 

In instances in which previous research provided data that was comparable 

with the results of this study, comparisons and general comments are made 

as to how and why these results support or dispute the previous findings.

EMPIRICAL PROBABILITY OF A TYPE I ERROR

When the means of the two sampling distributions are identical, 

the location-shift alternative is zero (0 = 0.0), in which case the only 

error that a statistical test can make is of the first type. The propor

tion of rejections of the null hypothesis gives an empirical estimate of 

the significance level. If the sampling is random, the empirical pro

bability of a Type I error should approach the chosen significance level. 

However, this approximation is affected by, not only sampling error, but

54
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the discreteness of the underlying distributions of the nonparametric 

tests as outlined in the previous chapter.

In most sampling processes, an element of error is expected.

Error estimates can be made for the empirical probabilities of a Type I 

error with the standard error of proportions,

Op -<|*g -*) (4.D

since the significance level is a proportion. A confidence interval, 

using the standard error of proportions, was established for each empiri

cal value depending upon the significance level and the number of samples. 

A 95 percent confidence interval based on normal populations is given by

Tt ± 1.96 tt(1 ~ , (4.2)

where it is equal to the chosen significance level, .05 or .01. Although 

the confidence interval is nonsymmetrical for ir ^ .5, equation (4.2) was 

used which implies a symmetrical interval. This approximation was made 

because mr and n(l - tt) are both greater than five which indicates that 

the normal approximation to the binomial is appropriate. Even for 

n ■ 1,000 and IT = .01, nTT = 10.0. The following confidence intervals 

were established depending upon the level of significance and the number 

of samples.

a ■ .05, n ■ 2,000; .0404 to .0596

a ■ .05, n = 1,000; .0365 to .0635

a » .01, n = 2,000; .0056 to .0144

a ■ .01, n = 1,000; .0038 to .0162

Values that lie outside their respective intervals were considered to 

have been influenced by an unusual amount of sampling error.
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Table 1 contains the empirical probabilities of a Type I error 

for the one-tailed sign test and the one-tailed paired t-test under simu

lated test conditions. The note at the bottom of the table (and at the 

bottom of every table) explains the various conditions under which the 

results were generated, as was detailed in the previous chapter. The 

results in all of the tables for sample sizes 6 to 20 were based on 2,000 

samples, whereas samples 30 to 50 were predicated on 1,000 samples. In 

addition, the significance level for certain small samples of the nonpara- 

metric tests were interpolated to correct for the discreteness of the 

test, and approximations to the sign test and the U-test were applied for 

certain large samples. Type I error results are given for the same sam

ple sizes (n = 6(2)20, 30, 40, 50) and levels of significance (ct = .05 

and .01) for which power efficiency results are given later in the 

chapter.

It should be noted in Table 1 that no values are presented for 

a ■ .01, n = 6. The reason for this is that a sample size of six is too 

small to have a one-tailed significant difference in means at the .01 

level of significance. The hypothesis can be rejected at the .0156 level 

of significance, but not at .01. Only two values in the table fall out

side the 95 percent confidence interval. The sign test values for 

a * .05 or .0250, associated with n = 30; and .0290, associated with 

n * 50, lie outside the confidence interval. Such values are, of course, 

to be expected as a result of sampling error. Undoubtedly, a non

interpolated significance level, a smaller number of samples taken, and 

the utilization of the normal approximation contributed to a significant 

portion of the error.
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Table 1

Empirical Probability of a Type I Error
for the Sign Test and the t-test for

Various Sample Sizes

Sample
c* - .05 o< - .01

Size
n Sign test t-test Sign test t-test

6 .0478 .0480 - -

8 .0460 .0475 .0115 .0130

10 .0494 .0550 .0095 .0115

12 .0531 .0505 .0082 .0075

14 .0491 .0490 .0099 .0110

16 .0528 .0485 .0092 .0110

18 .0478 .0485 .0092 .0065

20 .0468 .0475 .0111 .0110

30 .0250 .0509 .0070 .0120

40 .0460 .0529 .0090 .0060

50 .0290 .0609 .0050 .0100

Mean .0448 .0508 .0090 .0088

Note: Probabilities for samples 6 through 20 were based on 2,000
test samples.

Probabilities for samples 30 through 50 were based on 1,000 
test samples.

The significance level of the nonparametric test was randomized 
for samples 6 through 20.

The normal approximation for the sign test was used for samples 
30» 40, and 50.
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For Che samples subjected Co 2,000 repetitions, neither the sign 

test nor the t-test demonstrated any superiority in accepting the true 

hypothesis. In other words, the probability of making a Type I error 

was not consistently higher for either the sign test or the t-test for 

a given sample size. Apparently, only sampling variation caused the 

empirical probabilities to deviate around the given significance levels 

of .05 and .01.

Evidently, the situation was different for the larger samples 

that were subjected to only 1,000 test repetitions. For both a ■ .05 

end .01, the empirical probability of rejecting a true hypothesis for the 

t-test exceeds the corresponding values for the sign test five out of six 

times. And as pointed out previously, the confidence interval fails to 

enclose two of the values for the nonparametric test in this range. It 

appears that the lack of randomization and the fewer samples decreased 

the probabilities for the sign test. Five out of the six values, for the 

sign test, for samples 30, 40, and 50 are lower than any of the other 

sign test values for samples 6 through 20. At the same time, the empiri

cal probabilities for the t-test reflect no significant differences be

tween the larger samples and smaller samples. It should be emphasized 

that the data on which the nonparametric tests were performed were, in 

each particular test situation, the exact data used in the t-test for 

testing the null hypothesis of mean differences.

In general, the findings for the sign test indicate that for 

n <_ 20 both tests were performing in a random manner, but for n > 20, 

the sign test was influenced by sampling error more than the t-test. The 

arithmetic mean of each column is presented for an overall comparison. 

These means reflect a similar performance on the part of both tests.
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The simulated probabilities of a Type I error for the Kolmogorov- 

Smirnov two-sample test and the t-test for independent samples are pre

sented in Table 2. The results shown in Table 2 represent the fruit of 

two modifications made to the Kolmogorov-Smirnov test. The first modifi

cation, which was made on all of the tests, was to interpolate the sig

nificance level to correct for discreteness. This interpolation process 

helped to increase the previous empirical probabilities to more realistic 

values, as compared to the t-test figures. This indicated that the two 

tests were working in a more similar fashion than before.

After this first modification however, the empirical probabilities 

of a Type I error for the K-S test were still lower than one would expect 

solely on the basis of variation caused by sampling error. It was apparent 

that there was an additional element contributing to the distortion of 

the values.

This distorting factor resulted from the characteristics of the 

test procedure that was used. The Kolmogorov-Smirnov two-sample test as 

described in Siegel (1956:127-136) and Roscoe (1969:214-218) is calculated 

by determining the maximum difference between two cumulative frequency 

distributions. These distributions are established by setting up a given 

number of classes and determining the frequency count associated with 

each class. The K-S test statistic, D, is then given by the maximum fre

quency difference between respective classes. The question arises as to 

how many classes to establish. The general requirement, "as many as 

feasible," is rather nebulous in many practical situations. The decision 

to use n class intervals was a rather unfortunate one, because the results 

demonstrated fluctuations that simply could not be explained by sampling 

error alone. For example, every one of the empirical probabilities of a
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Table 2

Empirical Probability of a Type 1 Error for the
Kolmogorov-Smirnov Test and the t-test

for Various Sample Sizes

Sample
Size

o< . .05 CX - .01

m ■ n K-S test t-test K-S test t-test

6 .0445 .0615 .0103 .0130

8 .0409 .0565 .0090 .0085

10 .0407 .0455 .0105 .0115

12 .0427 .0550 .0069 .0090

14 .0360 .0445 .0070 .0110

16 .0477 .0540 .0072 .0075

18 .0428 .0550 .0068 .0090

20 .0476 .0515 .0093 .0100

30 .0280 .0400 .0020 .0060

40 .0539 .0490 .0050 .0090

50 .0330 .0519 .0050 .0070

Mean .0416 .0513 .0072 .0092

Note: Probabilities for samples 6 through 20 were based on 2,000 test
samples.

Probabilities for samples 30 through 50 were based on 1,000 
test samples.

The significance level of the nonparametric test was randomized 
for samples 6 through 20.

t
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Type I error fell below the chosen significance level and less than 20 

percent of the values were enclosed by a 95 percent confidence interval. 

These results are presented in Appendix B so that a comparison can be 

made with the final results.

The first revision consisted of increasing the number of classes 

to n + b . The results were improved, but were still not completely satis

factory. The final results, which are presented in this chapter, were 

based upon 2(n + m) classes. Comparing the findings in Table 2 with 

those in Appendix B reveals a significant improvement in the performance 

of the K-S test. Although the results were not as good as expected, it

was felt that the K-S test and the t-test performed closely enough to

substantiate the validity of the power efficiencies. Further improvements 

could have been realized by increasing the number of classes even more, 

but such computational detail was unrealistic from an applied standpoint. 

Perhaps a better solution would have been to treat the individual obser

vations as discrete variables and thus, avoid the establishment of classes. 

This procedure was recently suggested by Conover (1971:309-314), but the 

traditional approach used in this study follows Siegel's technique (1956). 

Siegel's method was used because of the popularity and wide use of his 

book on nonparametric statistics. It was felt that since a majority of 

the analysts would probably follow Siegel's "bible" that the study would 

be most meaningful using his technique.

For a = .05, only one of the 11 empirical probabilities exceeds 

.05, which reflects a downward bias as a result of too few classes. Three

of the probability figures for the K-S test failed to be enclosed by the

95 percent confidence interval. These were for samples 14, 30, and 50.

In contrast, only one of the probabilities for the t-test (a = .05, n = 6)
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failed to lie within the confidence limits. When all of the samples are 

considered, the mean probability for the K-S test is .0416 as compared 

to .0513 for the t-test.

The results for a = .01 reflect a slight improvement over those 

for a ■ .05. Only one value failed to be enclosed by the confidence 

Interval. This was the probability for the K-S test associated with 

m ■ n * 30. It appears that the fewer samples and lack of interpolation 

was detrimental to the results obtained for the larger samples because 

three of five values for m = n 3 30, 40, and 50 were outside the confi

dence limits. The average probability for the K-S test is .0072 and 

.0092 for the t-test, considering all samples when a = .01. If the 

larger samples are ignored, these averages are ,0084 and .0099 for the 

K-S test and t-test, respectively; not far apart.

In summary, the performance of the K-S test relies a great deal

upon the method that is used to construct the cumulative frequency dis

tributions. If an insufficient number of classes are established, power 

will suffer. The empirical probabilities reveal that the K-S test and 

the t-test performed in a fairly similar manner, although more of the 

K-S test values fell outside of the confidence limits than did the t-test 

values. The results for the samples for which the significance level 

was randomized and subjected to 2,000 test samples showed an improvement 

over the results for those samples that were not.

Table 3 contains the probabilities of a Type I error for the

Mann-Whitney U test and the t-test for two independent samples. The

only value that lies outside the confidence limits is the t-test value 

of .0615 for n = 6, a = .05, which again can only be explained by sampling 

error. All of the U-test values were enclosed by the 95 percent confidence
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Table 3

Empirical Probability of a Type I Error for the
Mann-Whitney U Test and the t-test

for Various Sample Sizes

Sample
Size

C* - .05 CX - .01

m ■ n U-test t-test U-test t-test

6 .0566 .0615 .0122 .0130

8 .0502 .0490 .0122 .0105

10 .0507 .0505 .0075 .0075

12 .0499 .0520 .0117 .0100

14 .0515 .0540 .0095 .0115

16 .0510 .0465 .0110 .0135

18 .0510 .0470 .0110 .0105

20 .0485 .0485 .0125 .0100

30 .0450 .0480 .0090 .0070

40 .0509 .0490 .0040 .0060

50 .0500 .0500 .0070 .0080

Mean .0505 .0505 .0098 .0098

Note: Probabilities for samples 6 through 20 were based on 2,000 test
samples.

Probabilities for samples 30 through 50 were based on 1,000 
test samples.

The significance level of the nonparametric test was randomized 
for samples 6 through 12.

The normal approximation for the U-test was used for samples 14 
through 50.
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Interval. Of the three nonparametric tests, the U-test performed closest 

to the t-test when 0 = 0.0.

No trends In the probabilities are evident as the sample size 

increases, and the probability values for the U-test show no apparent 

advantage over the t-test or vice versa. About one half of the values 

that are different are greater for the t-test than for the U-test, so no 

advantage for either test is evident. The probability values for the 

U-test, which were interpolated (m = n * 6 to 12), do not demonstrate any 

discernible advantage over those sample values that were not interpolated 

(m ■ n ■ 14-50). Also, the normal approximation that was used to deter

mine the critical values of the U-test for samples of sizes 14 to 50 had 

no apparent effect on the results.

It should be noted that the probability values for the U-test 

and the t-test for a = .01 and m = n ■ 30 to 50 are all less than .01. 

Although these values are not significantly different from .01, the minor 

difference is probably attributable to the fewer samples that were taken 

(1,000) for these larger sized samples.

The Mann-Whitney U test was the only nonparametric test that had 

all of the probability values within the 95 percent confidence interval. 

The results of these empirical significance levels indicate that the 

U-test was closest to the t-test in performance. This is reflected in 

the equal arithmetic means that are presented at the bottom of Table 3. 

The U-test was followed by the sign test and finally the Kolmogorov- 

Smirnov test. Despite an occasional outlier, the empirical probabilities 

of a Type I error for each nonparametric and parametric test demonstrate 

a fairly equal chance of rejecting a true hypothesis. Thus, the power
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efficiencies can be assumed to have been developed under comparable sig

nificance levels and test conditions.

POWER EFFICIENCY RESULTS

The primary goal of the present research is to provide power 

efficiencies for one-tailed versions of the two-sample sign test, 

Kolmogorov-Smirnov test, and Mann-Whitney U test for various sample 

sizes, significance levels, and normal location-shift alternatives.

Power efficiencies are presented in tables according to the type of 

nonparametric test and significance level (.05 and .01). Each table 

covers sample sizes m = n = 6(2)20, 30, 40, 50, and normal shift alterna

tives 0 =  0.2(0.2)1.0, 2.0, 3.0. As with the previous tables, footnotes 

to each table explain the various conditions under which the results 

were generated.

The tables are particularly useful to researchers for determining, 

prior to performing their tests, how much efficiency or power is being 

sacrificed by using these particular nonparametric tests in lieu of the 

t-test. Of course, this assumes that the particular nonparametric test, 

sample size, and chosen significance level are among those included in 

this study. Therefore, an attempt was made to cover as wide an array of 

parameter values as possible while avoiding the use of an excessive 

amount of computer time.

The power of a test, and thus power efficiency, is dependent 

upon three parameters— the significance level, the sample size, and the 

true difference between the result obtained by sampling and an estab

lished, or assumed, standard. For the purposes of this study, differences 

between population means are considered. This difference, which has been
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y2 - y .defined as 0 ■ —  is usually difficult to determine because the

a
population mean is unknown in most practical situations. However, if 

the researcher is able to make an informative estimate as to the degree 

of the mean difference, then a fairly accurate power efficiency can be 

determined. To assist in this decision, Cohen (1969:22-25) has suggested 

values of 0 “ 0.2, 0.5, and 0.8 to represent "small," "medium," and 

"large" mean differences. Although these values are basically arbitrary, 

Cohen justified his choice in a logical manner that makes them conducive 

to practical application. Therefore, if the researcher has no better 

basis for estimating the extent to which the phenomenon exists in his 

data, then he can merely choose one of three relative measures that he 

feels best fits the situation. Since the tables do not contain a 0 = .05 

column, it will be necessary to determine the value midway between 0.4 

and 0.6 whenever a "medium" difference in locations is predicted. The 

necessity for interpolating to obtain the power efficiency for 0 = .05 

will certainly not discredit the resultant value.

As will be evident later, all of the power efficiency values 

were subjected to a certain amount of sampling error. Therefore, it is 

not advisable to look at one value for a given set of parameters and say 

that that value is the exact power efficiency. A recommended procedure 

is to investigate the power efficiencies that immediately surround the 

value of interest. A cursory investigation of this sort should reveal 

if the particular value has been affected by a disproportionate amount 

of sampling error. If it appears that it has, then it would be appro

priate to use a mean computed from the surrounding values and the value 

of interest. For example, should the power efficiency lie within the 

body of the table, then the eight surrounding efficiencies plus the
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efficiency under Investigation would comprise the mean. If the particular 

value is positioned in a corner of the table, that value plus the three 

adjacent values should be averaged. This procedure should help to evenly 

distribute the sampling error that is reflected in some power efficiencies 

to a greater degree than in others. In most cases, however, this adjust

ment will not be necessary.

Certain trends that are evident in the results will be explored, 

as well as deviations from these trends. In situations in which the 

results of this study can be compared with the findings of previous 

studies, such comparisons will be made. It should be emphasized that 

comparisons of this type are legitimate only in cases in which the 

methodology and parameters investigated are identical. As Bradley 

(1968:57) points out, "It [power efficiency] is an index which is both 

highly peculiar to experimental test conditions and highly realistic to 

them. (It is also highly peculiar to the mathematical procedures used 

to obtain it; other perfectly realistic definitions of relative effi

ciency, based on slightly different procedures, may lead to quite con

trasting results.)" Therefore, a certain degree of tolerance should be 

allowed when comparing the results of this simulation study with those $ 

of a deterministic approach. Even though the parameters studied may be 

similar, differences in methodology are likely to cause disparate results.

Sig" Test
The power efficiencies for the sign test with a = .05 are pre

sented in Table 4. Certain trends in the results are clearly evident. 

First is the presence of a fairly smooth transition from a power effi

ciency of about 80 percent for the very small samples to around 55 percent



Table 4

Empirical Power Efficiency of Che Sign Teat for Various Normal
Shift Alternatives for Various Sample Sizes for a ■ .05

Sample
Size
n

0
Mean

0.2 0.4 0.6 0.8 1.0 2.0 3.0

6 0.842 0.872 0.784 0.745 0.713 0.689 0.671 0.759
8 0.717 0.716 0.763 0.766 0.768 0.709 0.720 0.737

10 0.837 0.713 0.747 0.753 0.712 0.698 0.592 0.722
12 0.785 0.638 0.691 0.713 0.638 0.659 0.613 0.677
14 0.602 0.659 0.664 0.677 0.640 0.654 1.000 0.649*
16 0.902 0.613 0.740 0.688 0.674 0.641 1.000 0.710*
18 0.954 0.676 0.690 0.694 0.723 0.650 1.000 0.731*
20 0.960 0.684 0.689 0.634 0.637 0.592 1.000 0.699*
30 0.100 0.321 0.374 0.489 0.514 1.000 1.000 0.360*
40 0.365 0.561 0.597 0.601 0.681 1.000 1.000 0.561*
50 0.403 0.520 0.563 0.540 0.580 1.000 1.000 0.521*

Mean 0.679 0.634 0.664 0.664 0.662 0.662* 0.649*

Note: Power efficiencies for samples 6 through 20 were based on 2,000 test samples.
Power efficiencies for samples 30 through 50 were based on 1,000 test samples.
The significance level of the nonparametric test was randomized for samples 6-20. 
The normal approximation for the sign test was used for samples 30, 40, and 50.

* Modified mean excluding unbounded power efficiencies of 1.0.
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fo r the larger samples. As might be expected, sampling error prevented 

a consistent transition from the higher to lower efficiencies.

A second noteworthy trend consists of a fairly steady decrease 

in power efficiency as the sample size and shift alternative increases. 

This is evidenced somewhat by the means that were calculated for every 

shift alternative and sample size in the table, but is more clearly evi

dent in the individual rows and columns. For small samples and small 

alternatives, power efficiency is approximately 80 percent, decreasing 

to approximately 70 percent as 6 increases to 3.0. As n increases, the 

power efficiency tends to fall from these values for each location-shift 

alternative.

The literature review indicated that a significant amount of 

research has been conducted in reference to the sign test. The main rea

son for this is that, in contrast to most nonparametric tests, the power 

function of the sign test is simple to determine and fairly easy to mani

pulate. Although there are obvious differences in methodology, there 

was an opportunity for comparing the results of this study with previous 

investigations.

The trends in Table 4 support, in part, the findings of Dixon.

By integrating the power function of the sign test, Dixon (1953) found 

that a decreasing power efficiency was generally associated with an in

creasing sample size and shift alternative. This is the same conclusion 

drawn from Table 4. However, it should be pointed out that Dixon (1954) 

later obtained results for the sign test (or median test) which conflicted 

with his previous conclusions. These results (with n = 5, a = .025) 

indicated an increasing power efficiency associated with an increase in 

mean differences. The findings of most of the other researchers (Walsh,
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Jeeves and Richards, and Milton) were not extensive enough to disclose 

any trends for similar situations.

Both of Dixon’s studies were based on a deterministic analysis 

of the power functions. In addition to the basic differences in metho

dology between Dixon's work and the present study (see p. 67)» compari

sons must be made in light of any other differences that exist—  

particularly differences in parameters such as significance level and 

sample size. These seemingly insignificant differences theoretically 

invalidate legitimate comparisons. However, because so few efficiencies 

have been computed that are directly comparable with the results of this 

study, the theoretical framework will be stretched to include certain 

artificial comparisons to demonstrate the validity of the results of 

this investigation. This will be done with the Kolmogorov-Smirnov test 

and the Mann-Whitney U test as well as with the sign test.

Various degrees of sampling error are in evidence in Table 4.

The efficiencies for 0 = 0.2 are particularly susceptible to fluctuation. 

This applies not only to Table 4, but to all of the power efficiency 

tables. The values in Table 4 of 0.902, 0.954, and 0.960 for samples 16, 

18, and 20, respectively, exemplify this variation. These three values 

appear to be higher than normal, as indicated by general trends. There 

are two main reasons for the excessive fluctuations associated with the 

small shift alternatives. In a previous study, Dixon (1953) found that 

applying linear interpolation to the sample sizes of the t-test to equate 

powers was inaccurate only for small location shifts. A similar linear 

Interpolation process was used in the present study. The second reason 

stems from the ratio that was used to compute power efficiency. For 

small alternatives, statistical power is usually small; and a given
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absolute change in sample size to equate powers will have a greater effect 

on the power efficiency ratio than when the same absolute adjustment Is 

made to powers closer to unity, which is usually the case for large shift 

alternatives. Simply stated, a given change to values in a ratio that 

are close to zero changes that ratio relatively more than a given change 

to values in a ratio that are close to unity. Thus, fluctuations for 

0 * 0.2 were to be expected.

The power efficiencies for samples of 30 are unusually low. This 

is the smallest sample size that consisted of only 1,000 repetitions and 

an uninterpolated significance level. This might explain, at least par

tially, the unexpectedly small values.

It should be noted that, for n * 14, 0 = 3.0 and certain other 

parameter combinations primarily in the lower right corner of the table, 

the power efficiencies are 1.000. In these cases the power of both tests 

have equaled 1.0 or have attained the same high power with equal sized 

samples. This situation points to one of the advantages of asymptotic 

relative efficiency. The A.R.E. theoretical construct avoids this possi

bility by assuming that 0 -»■ 0.0 as n -*-00 , which keeps the powers for

large samples bound from 1.0. Increasing the number of samples would 

have refined the simulation to a point that would have ultimately pre

vented the efficiencies from attaining values of one, but this was pre

cluded by computing time considerations. Certain combinations of large 

samples and large location-shift alternatives produced power efficiencies 

of 1.0 in every table.

The relative efficiency value for n = 50 and 0 = 0.2 (0.403) is 

smaller than the A.R.E. theory indicates that it should have been.
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However, the asymptotic value of .637 is approximated by two values in 

the n ■ 40 row.

In general, the power efficiency of the sign test for a - .05 

decreases from 80 percent to about 70 percent as n and G begin to increase, 

and finally to just below 60 percent for large n. This is in general 

agreement with the deterministic findings of Dixon (1953) who found an 

efficiency above 70 percent for n = 6 , and Jeeves and Richards (1950) 

who found a relative efficiency of approximately 70 percent for samples 

between 6 and 20. The results in Table 4 for a sample size of six are 

also fairly consistent with the analytical findings of Milton (1970:39). 

However, it should be noted that Milton's efficiencies, which were com

puted in the Hodges-Lehmann form, increased rather than decreased as the 

shift alternative increased.

A few inconsistencies among the findings of the analytical studies 

were discovered. Thus, it is clear that if power efficiency is obtained 

under different procedures, different values are likely to occur. How

ever, despite obvious differences in methodology and parameters, the 

results for the sign test for a = .05 appear to be valid and should be 

of benefit to researchers.

The power efficiencies for the sign test for a = .01 are presented 

in Table 5. The results in Table 5 appear to fluctuate a little less than 

the values in the previous table. The power efficiencies do not demon

strate any large deviations, especially for 0 = 0.2. The power effi

ciency values that are also noticeably more uniform are those for n = 30. 

The values for the larger samples are, as a whole, much more consistent 

with the established trends than the values in the previous table for the 

sign test. Power efficiency decreases fairly steadily as the sample size



Table 5

Empirical Power Efficiency of the Sign Test for Various Normal
Shift Alternatives for Various Sample Sizes for a ■ .01

Sample
Size

0
Mean

n 0.2 0.4 0.6 0.8 1.0 2.0 3.0

6
8 0.940 0.890 0.754 0.765 0.784 0.744 0.743 0.803

10 0.837 0.766 0.763 0.766 0.746 0.764 0.715 0.765
12 0.862 0.799 0.764 0.733 0.745 0.697 0.650 0.750
14 0.809 0.808 0.755 0.774 0.739 0.694 0.691 0.753
16 0.796 0.719 0.814 0.759 0.716 0.676 0.615 0.728
18 0.850 0.805 0.704 0.695 0.679 0.657 0.641 0.719
20 0.696 0.735 0.698 0.679 0.702 0.635 1.000 0.691*30 0.386 0.688 0.667 0.673 0.656 0.592 1.000 0.610*
40 0.533 0.628 0.657 0.596 0.629 1.000 1.000 0.609*
50 0.682 0.631 0.600 0.613 0.632 1.000 1.000 0.632*

Mean 0.739 0.747 0.718 0.705 0.703 0.682* 0.676*

Note: Power efficiencies for samples 6 through 20 were based on 2,000 test samples.
Power efficiencies for samples 30 through 50 were based on 1,000 test samples.
The significance level of the nonparametric test was randomized for samples 6-20. 
The normal approximation for the sign test was used for samples 30, 40, and 50.

* Modified mean excluding unbounded power efficiencies of 1.0.
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Increases and as the shift alternative increases, as was true for a ■ .05. 

This is evidenced from the individual values in the table, as well as the 

means in the table margins. It should be pointed out that these means 

do not include the power efficiency values of 1.0 that are in the lower 

right corner of all of the tables. It was felt that these atypical values 

distort the true power efficiency of the tests.

For small samples and small shifts the power efficiency was a 

little higher (about 90 percent) than in Table 4. For n ■ 8, power effi

ciency decreases from approximately .94 to .74 as 0 increases from 0.2 

to 3.0. For medium sized samples (14 to 20) and shift alternatives (0.4 

to 1.0), relative efficiency is roughly 75 percent. The power efficien

cies of 1.0 are, again, present for large n and large 0. As the sample 

size increases beyond 20, the efficiency of the sign test drops to less 

than 70 percent. For n = 50 and 0 =  0.2, the power efficiency is 0.682, 

which is very close to the asymptotic relative efficiency of 0.637. In 

fact, the first five values in the last row average 0.631.

A noteworthy point is that generally the power efficiency values 

for a ■ .01 are larger than the power efficiency values for a - .05.

Fifty of the total 63 power efficiencies that are different, are greater 

for a ■ .01 than for a = .05. Also, 15 of 17 means in Table 5 are larger 

than in Table 4. This evidence supports the hypothesis of Jeeves and 

Richards (1950) and Dixon (1953) that efficiency should increase as the 

significance level decreases. The results of Milton (1970:39) were too 

Inconsistent to draw any definite conclusions concerning the effect of 

the significance level on power efficiency.

The same general conclusions and comparisons that were made in 

reference to the sign test with a = .05 also apply when a ■ .01. The
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relative efficiencies in Table 5 support and broaden previous findings.

In addition to those previously mentioned, the postulates of Siegel and 

Walsh are also supported. Siegel (1956) felt that the power efficiency 

of the sign test would be about 95 percent for n = 6, and decline steadily 

to 63 percent as n increased. Walsh (1946) believed that the power effi

ciency for very small samples would be approximately 95 percent and de

crease as n increased, obtaining a value of around 75 percent for n = 13. 

The power efficiencies of Table 5 appear to be valid, even considering 

isolated fluctuations due to sampling error.

Kolmogorov-Smirnov Test

The power efficiencies of the one-tailed Kolmogorov-Smirnov test 

for a ■ .05 are presented in Table 6. The efficiencies in Tables 6 and 

7 are based upon an empirical cumulative frequency distribution that con

sisted of 2(n + m) class intervals. As mentioned previously, the initial 

simulation run of the K-S test consisted of n classes. However, these 

results proved unsatisfactory and the number of classes was increased to 

2 (n + m) before reasonable results were obtained.

The initial results (which are not presented) had power efficien

cies of zero for the smaller samples and mean differences. These have 

been eliminated in Table 6, but the efficiencies in this range are still 

lower than indicated by previous research. Undoubtedly, increasing the 

number of classes would have increased the power efficiencies beyond the 

present values because an increase in efficiency accompanied each incre

mental increase in the number of classes. This situation was evaluated 

in the discussion pertaining to Table 2.
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Table 6

Empirical Power Efficiency of the Kolmogorov-Smirnov Two-Sample Test for
Various Normal Shift Alternatives for Various Sample Sizes for a ■ .05

Sample
Size

m = n

0
Mean

0.2 0.4 0.6 0.8 1.0 2.0 3.0

6 0.399 0.675 0.655 0.648 0.681 0.667 0.658 0.626
8 0.425 0.534 0.636 0.661 0.716 0.728 0.731 0.633

10 0.713 0.499 0.590 0.668 0.654 0.695 1.000 0.636*
12 0.439 0.602 0.621 0.712 0.724 0.746 1.000 0.641*
14 0.534 0.606 0.702 0.670 0.675 0.663 1.000 0.642*
16 0.702 0.682 0.687 0.669 0.699 0.753 1.000 0.699*
18 0.536 0.624 0.630 0.648 0.727 0.706 1.000 0.645*
20 0.490 0.632 0.655 0.702 0.685 0.660 1.000 0.637*
30 0.405 0.634 0.615 0.617 0.680 1.000 1.000 0.590*
40 0.612 0.770 0.766 0.694 0.781 1.000 1.000 0.725*
50 0.392 0.582 0.606 0.640 0.740 1.000 1.000 0.592*

Mean 0.513 0.622 0.651 0.666 0.706 0.702* 0.694*

Note: Power efficiencies for samples 6 through 20 were based on 2,000 test samples.
Power efficiencies for samples 30 through 50 were based on 1,000 test samples.
The significance level of the nonparametric test was randomized for samples 6-20.

* Modified mean excluding unbounded power efficiencies of 1.0.

o\
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The power efficiencies in Table 6 are around 50 percent for small 

samples and shift alternatives and gradually increase as the shift alter

native increases. However, both the individual values in the table and 

the averages reveal that the transition from lower to higher power effi

ciencies is not smooth. For the larger mean differences and sample sizes, 

power efficiency is roughly 70 percent.

Research on the power of the K-S test has been somewhat restricted,

not only by the difficulties encountered with the power function of the

K-S test, but also by the fact that the K-S test does not have the neces

sary characteristics for computing A.R.E. But enough evidence is avail

able to make a number of comparisons, which again must be made in light 

of differences in methodology and parameters, making the comparisons 

approximate at best.

The relatively low efficiency of the K-S test for small samples 

and shift alternatives, as indicated primarily by the means, conflicts 

with the findings of most of the earlier studies. Dixon (1954) deter

mined a power efficiency of about 80 percent for 0 = 0.5, m = n = 5, and 

a ■ .025. Milton's (1970:40) power efficiencies for m = n = 6 and

a ■ .05 fell from 0.785 to 0.717 as G increased from 0.2 to 3.0. His

value for 0 = 3.0 (0.717) is not too far from that in Table 6 (0.658),

but this is not true for the results for 0 = 0.2 .

Another general conclusion of previous investigations indicated 

that the K-S test had a power that was superior to the sign test for 

equal parameters. Dixon (1954), in particular, concluded that the rela

tive efficiency of the K-S test would exceed that of the sign test for 

small alternatives, but that the advantage would fall as 0 increased. A

comparison of Table 6 with Table 4 reveals that, for the smaller
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parameters, the power efficiency of the sign test was superior, but the 

converse held for the larger parameter values.

A major portion of the explanation for the relatively poor per

formance of the K-S test for the smaller parameters derives from the 

test procedure, i.e., the power of the K-S test is directly dependent 

upon the number of empirical classes that are established in the computa

tion of the K-S test statistic. The reason for this is that the K-S 

test is based upon the assumption of continuous data. Therefore, if the 

data are grouped, or if the continuous data are divided into too few 

classes, the test loses power. As Roscoe (1969:214-218) warned, a viola

tion of the assumption of continuity of distribution could result in a 

great loss in power.

Perhaps another reason for the low power has to do with the test 

itself. As one of the early investigators of the Kolmogorov-Smirnov two- 

sample test pointed out (van der Waerden, 1953a), the K-S test is designed 

to detect differences of any type between populations. Thus, he suggested 

that the K-S test demonstrated inferiority to the classical tests in 

detecting, solely, mean differences because of the general nature of the 

K-S test. As with the classical tests, Gibbons (1971:173) noted that the 

median (sign) and the Mann-Whitney U tests were particularly sensitive to 

differences in location when the populations were identical otherwise. 

Therefore, a comparison of the sign test and the K-S test must be made 

under consideration of the types of differences that exist in the under

lying populations. Only differences in location are considered when nor

mal alternatives are under investigation, as in the present case. Roscoe 

(1969:217) summarizes it best; "Generally, a statistical test that may be 

rejected because of any one of several different kinds of departures from
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the sampling distribution will be less powerful than a statistical test 

that concentrates on a single alternative to the null hypothesis.” As 

the shift became more distant, the K-S test was able to utilize the in

formation in the data more efficiently than the sign test, which resulted

in generally higher power efficiencies.

The values in Table 6 are fairly close to the findings of Knott. 

Knott (1970) computed the efficiencies of the K-S test relative to a

parametric test and obtained a general efficiency of 75 percent for

Cl « .05. This is comparable to many of the table figures for the larger 

shifts and samples.

The fairly consistent increase in power efficiency that was 

associated with an increase in mean difference supports certain previous 

findings and disputes others. Dixon (1954) concluded that power effi

ciency would fall as the normal alternative increases. Milton (1970:40), 

who used a numerical integration technique similar to Dixon's, finalized 

a similar conclusion by obtaining only one of many values that was con

trary to Dixon's results. On the other hand, Lee (1966), who compared 

the exact power of the K-S test with that of the normal test for m = n = 5, 

and a = .05 and .01, found an increasing relative efficiency for increas

ing normal alternatives. The reason the conclusions of Lee, rather than 

Dixon and Milton, are manifested in Tables 6 and 7 stems primarily from 

the arguments previously put forth concerning the relative performance 

of the K-S test. Differences in methodology and computational schemes 

for power efficiency must also be considered.

As with the sign test, the power efficiency values fluctuate more 

in the first column (0 = 0.2) for increasing samples than for any other 

trend segment in the table. Also, as with the sign test, Tables 6 and 7
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show that the simulation process was not refined enough to eliminate 

power efficiencies of 1.0 for certain large parameter combinations.

The inconsistent means for the last three rows (m » n « 30, 40, 

and 50) indicate that only 1,000 samples and the lack of interpolating 

the significance level increased sampling error and prevented truly re

presentative results from being generated for these three sample sizes. 

Despite this distortion, the estimated A.R.E. of .637 is approximated by 

some of the values in the last two rows of Table 6.

The simulated power efficiencies for the Kolmogorov-Smirnov two- 

sample test for oi = .01 are presented in Table 7. Because of the numerous 

similarities between the two tables, most of the comments made in refer

ence to the previous table (Table 6) also apply here. Therefore, certain 

trends will be mentioned, but when they are similar to those in Table 6 

an explanation will not be repeated.

One of the more obvious differences between the two tables is 

that the power efficiencies for a = .01 are generally higher than those 

for a ■ .05. Only two of the mean values in Table 7 are less than the 

respective means in Table 6. Dixon (1953; 1954), among others, predicted 

a decrease in efficiency as the significance level increases. The find

ings of Milton (1970:40) were inconsistent with respect to the performance 

of the test relative to the significance level. Thus, the results for 

the K-S test substantiate Dixon's hypothesis.

The means located at the bottom of Table 7 indicate an increase 

in power efficiency for more distant alternatives, as in Table 6 . Another 

similarity between the values in the two tables is the power efficiencies 

of 1.0 for the larger parameter combinations. No trend in power effi

ciency is evident as the sample size increases.



Table 7

Empirical Power Efficiency of the Kolmogorov-Smirnov Two-Sample Test for
Various Normal Shift Alternatives for Various Sample Sizes for a ■ .01

Sample
Size

m = n

0
Mean

0.2 0.4 0.6 0.8 1.0 2.0 3.0

6 0.455 0.616 0.647 0.693 0.764 0.759 0.752 0.669
8 0.406 0.604 0.780 0.761 0.725 0.746 0.782 0.686

10 0.914 0.620 0.665 0.716 0.757 0.734 0.835 0.749
12 0.533 0.678 0.755 0.734 0.685 0.725 0.813 0.703
14 0.591 0.878 0.706 0.676 0.762 0.727 1.000 0.723*
16 0.703 0.647 0.725 0.775 0.710 0.727 1.000 0.714*
18 0.453 0.693 0.677 0.711 0.706 0.721 1.000 0.660*
20 0.799 0.660 0.618 0.648 0.738 0.743 1.000 0.701*
30 0.668 0.567 0.664 0.672 0.707 1.000 1.000 0.656*
40 0.711 0.447 0.646 0.702 0.725 1.000 1.000 0.646*
50 0.527 0.523 0.588 0.662 0.647 1.000 1.000 0.589*

Mean 0.614 0.630 0.679 0.704 0.720 0.735* 0.796*

Note: Power efficiencies for samples 6 through 20 were based on 2,000 test samples.
Power efficiencies for samples 30 through 50 were based on 1,000 test samples.
The significance level of the nonparametric test was randomized for samples 6-20.

* Modified mean excluding unbounded power efficiencies of 1.0.
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Although researchers would be Interested In individual values, 

the overall efficiency appears to be in the 70-75 percent range. This 

compares very favorably with the general ratio of 72 percent of the K-S 

test that was obtained by Knott (1970) for a = .01.

Siegel (1956:136) stated that, "The evidence seems to indicate 

that whereas for very small samples the Kolmogorov-Smirnov test is 

slightly more efficient than the Mann-Whitney test, for large samples 

the converse holds." Unfortunately, supporting data were not furnished. 

The conclusions gathered from this study and from that by Dixon (1954) 

agree that the Mann-Whitney U test is everywhere more powerful than the 

K-S test.

Mann-Whitney U Test

The power efficiency values for the Mann-Whitney U test for 

Ct ■ .05 are presented in Table 8. The most striking feature of the U- 

test is that its power is obviously very close to the power of the t-test. 

For example, the lowest value in the table is 0.816 for m = n = 6 and

0 =  0.2, which means that if the U-test is used instead of the t-test for

a given sample, there is a sacrifice in power of less than 20 percent.

A majority of the values in the table exceed 96 percent, which indicates 

a very high power for the U-test.

The power efficiency values fluctuate randomly throughout the 

table. The U-test does not exhibit any of the patterns that are evident 

in the tables for the sign test and the K-S test. The main reason no 

patterns are evident is that the power of the U-test is very close to the

power of the t-test and the sampling procedure that was used in the simu

lation was not sufficiently refined to amplify the minute differences in



Table 8

Empirical Power Efficiency of the Mann-Whitney U Test for Various
Normal Shift Alternatives for Various Sample Sizes for a « .05

Sample
Size
m = n

0
Mean

0.2 0.4 0.6 0.8 1.0 2.0 3.0

6 0.816 0.965 0.931 0.931 0.935 0.945 0.974 0.928
8 0.845 0.963 0.998 0.957 0.929 0.896 1.000 0.931*

10 0.974 0.982 0.866 0.931 0.899 0.946 1.000 0.933*
12 0.962 0.973 0.866 0.932 0.902 0.957 1.000 0.932*
14 1.033 0.915 1.006 0.905 0.972 1.000 1.000 0.966*
16 0.896 0.888 0.863 0.943 0.949 1.000 1.000 0.908*
18 0.994 0.972 0.963 0.983 0.938 1.000 1.000 0.970*
20 0.912 0.993 0.974 0.926 0.932 1.000 1.000 0.947*
30 0.888 0.983 0.973 0.932 0.993 1.000 1.000 0.954*
40 0.990 0.960 0.962 0.950 0.988 1.000 1.000 0.970*
50 1.035 0.943 0.942 0.886 1.000 1.000 1.000 0.952*

Mean 0.940 0.958 0.940 0.934 0.944* 0.936* 0.974*

Note: Power efficiencies for samples 6 through 20 were based on 2,000 test samples.
Power efficiencies for samples 30 through 50 were based on 1,000 test samples.
The significance level of the nonparametric test was randomized for samples 6-12. 
The normal approximation for the U-test was used for samples 14 through 50.

* Modified mean excluding unbounded power efficiencies of 1.0.
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power. There were simply not enough samples to eliminate the sampling 

error in the results— an error which confused the slight difference in 

power often enough to eliminate the possibility of any trends. This prob

lem could have been eliminated by increasing the number of samples to get 

a more precise experiment, but computer time restrictions prevented any 

Increase in the number of samples. This situation also applies to Table 9.

No trends were apparent for an increasing sample size or an in

creasing location-shift alternative. There are no noticeable differences 

between the results for which the exact U-test was used and the results 

for which the normal approximation was used. The exact U-test was applied 

to samples 6 to 12 and the normal approximation was used for samples 14 

to 50. This point also represents the division between the samples that 

had an interpolated significance level and those that were not interpo

lated. Also, no differences could be observed between the efficiencies 

resulting from 2,000 samples (m = n * 6-20) and those resulting from 1,000 

samples (m = n = 30-50).

Despite the fact that the power function of the Mann-Whitney test 

is extremely tedious to evaluate, much research has been conducted on 

its power. Probably the main reason for this is that the U-test is an 

extremely powerful and useful nonparametric test. The high values in 

Tables 8 and 9 are in general agreement with the deterministic efficien

cies of Dixon (1954) and Milton (1970:37), and with the results of asymp

totic studies. While Dixon (1954) obtained a power efficiency that de

creased steadily as the alternative increased, Milton (1970:37) and Hodges 

and Lehmann (1956) found efficiencies that decreased and then increased 

as the shift alternative increased beyond a certain point. Hodges and 

Lehmann attributed this difference to the different methods that were
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used to interpolate the sample size of the t-test. The literature sup

ports the theory that power efficiency will increase as the sample size 

increases. However, sampling error camouflages any possible trend of 

this nature for the U-test.

It is important to look at the values in an area instead of 

merely selecting one power efficiency value because of the- variation in 

the values throughout Table 8 . This applies to all of the power effi

ciency tables. Sampling error and the high power of the U-test tends to 

disguise the true relative efficiency. As is the case in most of the 

tables, the values in the first column (G = 0.2) of Table 8 fluctuate 

more than the values in any other column or row. In fact, this column 

contains both the lowest and the highest values in the table.

As with the previous tests, the power efficiencies for certain 

large parameter combinations are 1.0. But with the U-test, certain 

values exceed 1.0. These are 1.033, 1.006, and 1.035 for m = n = 14,

0 “ 0.2; m = n = 14, 0 = 0.6; and m = n = 50, 0 = 0 . 2 ,  respectively.

Since such values are theoretically impossible, the only feasible explana

tion for the values is sampling error in the simulation process.

The asymptotic relative efficiency of .955 for the U-test appears 

to be the value around which most of the values fluctuate. The power 

efficiency for m = n = 5 0 ,  0 =  0.2 is 1.035, which is not very close to 

.955. However, some of the values in the last two rows are quite close 

to this A.R.E. value. Certainly, the power efficiencies reflect the very 

high power of the U-test as compared to the t-test under conditions of 

normality. The results for a = .01 suggest the same conclusion.

Table 9 contains the power efficiencies of the Mann-Whitney U 

test for one-tailed normal alternatives with a .01 significance level.
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The efficiencies in Table 9 are very similar to those in Table 8 , and 

most of the conclusions drawn in reference to Table 8 are germane to 

Table 9.

A number of similarities between the two tables is readily appar

ent. Again, no patterns in relative efficiency are evident as either 

sample size or shift alternative increase. This is obvious from the 

fluctuating means of each row and column. For certain combinations of 

large shift alternatives and sample sizes the efficiencies are 1 .0 , as 

before. And, as in Table 8 , three values exceed 1.0. In addition, one 

value is equal to 1.0 which represents equal power between the U-test 

and the t-test for the same sized samples. The A.R.E. estimate is also 

similar in the two tables. For m = n = 50, 0 = 0 . 2 ,  the power efficiency 

is 1.006 which is, on a comparative basis, not very close to the A.R.E. 

However, two values in the last two rows are quite close to .955; the 

modified mean of the last row is .954. As with most of the other tables, 

the values in the G = 0.2 column in Table 9 fluctuate the most. This 

column contains both the maximum and minimum values in the table.

There is too much fluctuation in the figures to determine if 

power efficiency increases or decreases as the significance level changes 

from .05 to .01. In analyzing the rank-sum test (U-test), Dixon (1954) 

had a power efficiency that increased slightly as the significance level 

increased. Just the opposite occurred for the sign test and the K-S 

test in the same study. Bradley (1968:109) perhaps expressed the opinion 

of most statisticians— that efficiency is expected to fall as the level 

of significance is increased. Most of the results of Milton (1970:37) 

followed this pattern.



Table 9

Empirical Power Efficiency of the Mann-Whitney U Test for Various
Normal Shift Alternatives for Various Sample Sizes for a ■ .01

Sample
Size

m = n

0
Mean

0.2 0.4 0.6 0.8 1.0 2.0 3.0

6 0.961 1.024 0.978 0.963 0.938 0.932 0.940 0.962
8 0.778 1.000 0.989 0.970 0.935 0.961 0.934 0.938

10 1.033 0.993 0.979 0.975 0.956 0.947 0.867 0.964
12 0.874 0.949 0.854 0.866 0.868 0.841 1.000 0.875*
14 0.857 0.936 0.938 0.948 0.936 0.917 1.000 0.922*
16 0.898 0.946 0.967 0.953 0.936 0.906 1.000 0.934*
18 0.951 0.968 0.917 0.909 0.947 1.000 1.000 0.938*
20 0.979 0.904 0.904 0.912 0.908 1.000 1.000 0.921*
30 0.986 0.770 0.938 0.970 0.926 1.000 1.000 0.918*
40 0.725 0.977 0.957 0.980 0.970 1.000 1.000 0.922*
50 1.006 0.908 0.922 0.992 0.942 1.000 1.000 0.954*

Mean 0.913 0.943 0.940 0.949 0.933 0.917* 0.914*

Note: Power efficiencies for samples 6 through 20 were based on 2,000 test samples.
Power efficiencies for samples 30 through 50 were based on 1,000 test samples.
The significance level of the nonparametric test was randomized for samples 6-12. 
The normal approximation for the U-test was used for samples 14 through 50.

* Modified mean excluding unbounded power efficiencies of 1.0.
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Just less than one half of the efficiencies in Table 9 were 96 

percent or higher. In contrast, the power of the sign test was consider

ably lower. It should not be surprising that the power of the U-test 

demonstrated superiority over the sign test, even though both are tests 

of location. The U-test utilizes more information in the data by incor

porating the relative magnitude of the differences in addition to the 

direction of the differences. Because the U-test has such high power, 

the U-test may be preferred to the t-test in many situations— especially 

in those in which normal conditions are doubtful.



CHAPTER V

SUMMARY AND CONCLUSIONS

The final chapter is divided into two parts. A summary of the 

simulation technique and the results of the study is presented first.

This is followed by the conclusions drawn from the results of the 

simulation.

SUMMARY

Two-sample statistical tests are often used in business problems 

to examine the hypothesis of equality between populations or, more speci

fically, to examine the hypothesis of equality between population means. 

When the researcher is faced with such a problem, a decision must be 

made as to what type of test to apply. This decision should be based 

primarily upon what particular test is most appropriate. The appropriate

ness of a test is based upon what assumptions the researcher can justi

fiably make concerning the underlying populations. If normality can be 

assumed, then a parametric test is appropriate. However, if the re

searcher has reason to believe that normal conditions do not exist, then 

a nonparametric test is suitable. Thus, from both theoretical and prac

tical standpoints, a criterion is needed to evaluate these two types of 

tests.

The most common method for comparing statistical tests is on the 

basis of their relative powers. This comparison is usually made in the 

form of power efficiency, which is the ratio of the sample sizes of a

89
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parametric test and a nonparametric test that are required to equate the 

powers of the two tests. This ratio is usually computed under the assump

tion of normality. In this case, the underlying assumptions of both 

tests are satisfied.

The main purpose of this study was to determine the power effi

ciency of three nonparametric tests for a wide range of parameters.

Such information would provide analysts with an â priori estimate of com

parative powers for alternative tests, thus enabling them to make an en

lightened choice among tests. The nonparametric tests, which include the 

sign test, the Kolmogorov-Smirnov test, and the Mann-Whitney U test, were 

chosen on the basis of their wide applicability to business problems.

The test that is appropriate for the same type of problems when its para

metric assumptions are met is Student’s t-test— the paired t-test in the 

case of the sign test, and the t-test for independent samples for the 

Kolmogorov-Smirnov test and the Mann-Whitney U test. In this study, the 

power of each nonparametric test was compared with the power of its t-test 

equivalent.

Power is a function of the significance level, sample size, and 

the true difference between the hypothesized mean and the population mean. 

In order to do a thorough analysis of the power efficiency of each test 

it is necessary to evaluate a wide range of these parameter combinations. 

Each test was investigated for one-tailed significance levels of .05 and 

.01. Equal samples of size m = n = 6(2)20, 30, 40, 50 and location-shift 

alternatives G = 0.0(0.2)1.0, 2.0, 3.0 comprise the parameters that were 

studied. Restrictions on computer time limited the analysis to these 

parameters.
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A simulation technique was used since It permitted greater flex

ibility in analyzing a wider range of parameters than the more standard 

deterministic studies of the past. The investigation was made with a 

simulation process based on a Monte Carlo procedure of generating random 

normal deviates. Equal samples were considered drawn from normal distrib

utions with variances equal to one; the first sample being drawn from a 

distribution with y ■ 0 and the second sample from a distribution with 

y - 0. The possibility of tied values in the samples was ignored since 

the pseudo-random number generator was capable of generating up to 229 

numbers before repeating. Two thousand separate samples were tested for 

each set of parameters for samples 6 to 20 and 1,000 repetitions for 

samples 30 to 50. Power was obtained by establishing a decision rule 

and determining the number of rejections in the total number of test 

samples.

' The three nonparametric tests that were analyzed are based on 

discrete distributions. Therefore, it was necessary to interpolate the 

power of the nonparametric tests for an exact significance level of .05 

or .01. Linear interpolation was performed for certain small samples of 

each test. In addition, as is done in applied research, the normal 

approximation was applied to the sign test and the Mann-Whitney U test 

when the samples were large enough to justify the approximation.

Because of the nature of the problem, it was possible to divide 

the findings into two categories— probability of a Type I error and power 

efficiency. The initial results concerned the probability of a Type I 

error. These represent the outcomes of simulating test performance with 

distributions that had equal means (9 = 0.0).
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According to the empirical probabilities of a Type I error, the 

sign test and the t-test performed similarly for sample sizes 6 to 20. 

However, for samples 30 to 50, the empirical probabilities for the sign 

test were generally lower than the corresponding probabilities for the 

t-test. In fact, two of the sign test values for a = .05 were not en

closed by a 95 percent confidence interval which indicates the presence 

of sampling error and, perhaps, a slight bias. The decrease in the number 

of samples from 2,000 to 1,000 would increase sampling error and a non

interpolated significance level appears to have introduced a downward 

bias into the results. Also, the normal approximation was applied to 

samples of these sizes.

The empirical probabilities of a Type I error for the Kolmogorov- 

Smirnov test point to an interesting property of the test. The test pro

cedure, which follows Siegel (1956:127-136) and Roscoe (1969:214-218), 

was initially based upon two empirical cumulative frequency distributions 

that included n class intervals. However, the results reflected an 

extreme bias. In anticipation of obtaining more representative results, 

the test procedure was revised to include n + m classes where n and m 

represent the number of elements in the two samples. The results im

proved substantially, but were not completely satisfactory. The final 

results, which are presented in Chapter IV, were generated from tests 

including 2(n + m) classes. These results can be compared with Appendix 

B to determine how the performance of the K-S test improved.

For both a = .05 and a = .01, only four of 22 empirical proba

bilities for the K-S test failed to be enclosed by a 95 percent confi

dence interval. In contrast, only one of the probabilities for the t-test 

suffered a similar malady. For the K-S test, most of the problem occurred
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in the larger samples (m - n * 30-50). These samples were subjected to 

only 1,000 test repetitions and the significance level was not inter

polated. These characteristics, coupled with the problem in the estab

lishment of classes, gave most of the values a downward bias. However, 

the means for each column reflect a fairly close overall performance for 

the two tests.

The empirical probabilities of a Type I error in Table 3 reveals 

that the Mann-Whitney U test and the t-test performed in a very similar 

fashion. Not only were all of the probabilities for the U-test within 

95 percent confidence limits, but neither the U-test nor the t-test 

demonstrated any superiority or consistency over the other test.

The second, and the primary set of findings were the power effi

ciency results. Power efficiencies are presented in tables for each 

nonparametric test for a = .05 and .01. All of the values were subjected 

to a certain amount of sampling error and, as a result, tend to fluctuate.

Previous research has provided a limited number of values that 

could be used as guidelines for determining the accuracy of the results. 

Much of the previous work has, however, been done with asymptotic rela

tive efficiency which only provides a lower limit to the power efficiency 

function. The asymptotic relative efficiency of the sign test is .637 

and that for the Mann-Whitney U test is .955. Although the Kolmogorov- 

Smirnov test does not have the characteristics necessary for determining 

a true asymptotic relative efficiency, it is believed that the value 

lies somewhere between .637 and 1.0 as explained by Bradley (1968:291).

It was necessary to make comparisons with the asymptotic and 

deterministic findings in knowledge of certain stringent conditions. The 

first of these has to do with the methodology utilized to generate the



efficiencies. When different mathematical procedures are used to obtain 

relative efficiency, the outcomes may be quite contrasting values. 

Therefore, certain differences were to be expected when comparing the 

results of this simulation study with those of a deterministic study 

which is usually based on the integration of power functions. Another 

conditional factor involves the equality of parameters that prevail in 

the comparison. To legitimately compare power efficiencies, the para

meters of a, n, and 0 must be equal. However, because no values existed 

that fulfilled these criteria, the theoretical bounds were violated in 

order to make certain comparisons that normally are questionable. It is 

believed that, in many cases, despite slight differences in parameters, 

the value being compared would change very little for the parameters to 

agree.

The power efficiencies of the sign test for a = .05 reflect 

results that are quite consistent with the isolated values that have 

been found in previous studies. Power efficiency decreased fairly stead

ily, from values around .80, as the sample size and shift alternative 

increased, to values generally between .50 and .60.

The efficiencies in all of the tables exhibited fluctuations 4i 

which indicated the presence of sampling error. This was mostly the 

result of too few samples. A parameter for the sign test for which the 

power efficiencies exhibited an unusual trend was n = 30. The power 

efficiencies for n = 30 were substantially lower than they should have 

been, as indicated by the surrounding values. It should be pointed out 

that n = 30 was the smallest sample that was based on 1,000 tests, for 

which the significance level was not interpolated, and for which the 

normal approximation to the sign test was applied.



95

Two characteristics were revealed by all of the tests. First, 

the relative efficiencies in the first column (0 * 0 .2) were particularly 

plagued by variation. Secondly, the efficiencies for large samples com

bined with large shift alternatives tended to be 1.0 .

The trends in the power efficiencies of the sign test for a * .01 

appear to be smoother than the power efficiencies for a = .05. As with 

a ■ .05, power efficiency decreased as the sample size increased and as 

the location shift alternative increased. The values for the shift 

alternative 0.2 were substantially smoother than the respective values 

for a * .05.

By comparing the performance of the sign test for a = .05 with 

the sign test for a = .01, another point was obvious. The power effi

ciencies were generally higher for a = .01. Host authorities agree that 

power efficiency should increase as the significance level decreases. 

Power efficiency was around 90 percent for small samples and small shift 

alternatives, decreasing to about 75 percent for the medium-sized samples 

and shift alternatives, and finally, the values very close to an A.R.E. 

of .637 for the large samples.

In calculating the Kolmogorov-Smirnov test, the study followed 

the procedure outlined by Siegel (1956) because it is felt that his 

classical text furnishes the guidelines for a majority of the analyses 

using nonparametric tools. This procedure is based upon the establish

ment of empirical cumulative frequency distributions involving an arbi

trary number of classes. As outlined previously, the final results of 

the K-S test were based on 2(n + m) classes.

For a = .05, the power efficiency of the K-S test was in the 

neighborhood of 50 percent for the smaller samples and location-shift
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alternatives and increased to around 70 percent for large parameter 

values. Previous investigations of the K-S test gave conflicting evi

dence as to whether the efficiency should increase or decrease for more 

distant differences in means. The values for m = n = 30-50 indicate that 

only 1,000 samples and the failure to interpolate the significance level 

caused the power efficiency to fluctuate more than usual.

The increase in power efficiency as the probability of a Type I 

error changed from .05 to .01 was predicted, as with the sign test. A 

majority of the efficiencies for the K-S test for both significance levels 

were in the area of 70 to 75 percent which is in agreement with the find

ings of Dixon, Milton, and Knott, among others.

A majority of the values for the Mann-Whitney U test for a ■ .05 

exceeded 96 percent which indicates how close the power of the U-test is 

to the power of the t-test. There was no evidence of any trends in the 

power efficiencies of the U-test for increasing sample sizes or shift 

alternatives. The lowest value obtained was .816 which represents a 

relatively small sacrifice in power when the U-test is used instead of 

the t-test. Some of the power efficiencies exceeded 1.0 which can only 

be attributed to sampling error.

The power efficiencies of the Mann-Whitney U test for a = .01 

were very similar to the values obtained for a = .05. The relative effi

ciencies fluctuated primarily between 90 and 100 percent, which coincides 

with the results for a = .05, and also with the findings of asymptotic 

theory. The values that were obtained fluctuated irregularly and pre

vented any patterns from emerging.
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CONCLUSIONS
« 1

The results obtained £rom simulating the probability of a Type I 

error indicate that, in general, each nonparametric and parametric test 

was operating under similar test conditions, and, therefore, valid find

ings were produced in the study. It is evident that the Mann-Whitney 

U test performed closest to the t-test in rejecting a true hypothesis.

The U-test was followed closely by the sign test, and then the Kolmogorov- 

Smirnov test.

A slight bias is noticed in the empirical Type I error probabili

ties for the sign test and the Kolmogorov-Smirnov test for the larger 

samples (m =■ n = 30-50). This can be explained by the fact that only 

1,000 tests repetitions were performed on these sample sizes and the sig

nificance level was not interpolated.

• The performance of the Kolmogorov-Smirnov test showed marked 

improvement after the number of class intervals was increased from n to 

2(m + n). The reason for the improvement in the performance of the K-S 

test is fairly straightforward. The test validity is based upon the 

assumption of a continuous underlying distribution. Thus, when the data 

are not continuous or are assigned to too few classes (as in the initial 

case), the test loses much of its power. Therefore, the researcher is 

cautioned to establish at least 2(n + m) class intervals to maintain the 

validity of the K-S test. Increasing the number of intervals in the simu

lation beyond 2(n + m) would have undoubtedly improved the test perfor

mance, but it was deemed impractical from an applied standpoint.

The major contribution of the study consists of the power effi

ciency tables that cover a wide range of parameter values. As expected

I
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In any simulation process, a certain amount of sampling error was present 

which caused some random fluctuations in the results. It is advisable 

for the analyst to investigate the particular power efficiency that is 

of interest, to determine if it seems to contain a disproportionate share 

of error. If so, then it is recommended that a mean be computed from 

the value of interest and the surrounding values to obtain a more repre

sentative estimate of efficiency.

Fluctuating power efficiencies were particularly evident for the 

smallest location-shift alternative (0 = 0.2). The reason for this is 

twofold. First, as Dixon (1953) pointed out, applying linear interpola

tion to the integer sample sizes of the t-test to equate powers (which 

was the process used in this study) is inaccurate for shift alternatives 

approaching zero. Secondly, a given change in power when power is low, 

which is usually the case for shift alternatives near zero, affects the 

power efficiency ratio more than when the same change is made to power 

values that are close to one.

Another characteristic that is evident in all of the tables is 

the efficiencies of 1.0 for the large parameter combinations. The reason 

for this occurrence was that, as the mean difference grew larger, the 

power of both the nonparametric and the parametric tests approached 1.0 . 

This was especially true as the sample size increased, resulting in a 

ratio of identical sample sizes. The asymptotic relative efficiency con

cept prevents this from happening as n -*■ 00 by restricting the shift 

alternative such that 0 -»■ 0.0. Thus, the powers of both tests are bound 

from unity. But the simulation process followed practical operations by 

letting the powers approach unity.
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The relative efficiency of the sign test decreased from approxi

mately 80 percent for the smaller parameter combinations (n and 0) to 

around 50-60 percent as the parameters increased. The power efficiencies 

for O ■ .01 were generally higher than those for a = .05. These findings 

support and extend the few isolated results of previous deterministic 

and asymptotic studies.

For the smaller parameters, the power efficiencies of the 

Kolmogorov-Smirnov test were approximately 50 percent— somewhat less than 

this writer anticipated. The power efficiency increased to 70-75 percent 

as the mean difference and sample size increased. As expected, the effi

ciencies generally increased as the significance level decreased.

The evidence suggested that the K-S test would outperform the sign 

test for all parameter values. This proved not to be true for the smaller 

parameters. Most of the fault undoubtedly stemmed from the class inter

val problem that was previously mentioned. The power of the K-S test 

relies upon the assumption of continuity and if this assumption is vio

lated by creating too few classes then performance suffers. There is 

also the possibility that the characteristics of the K-S test were a fac

tor. The K-S test is designed to detect differences of any sort between 

populations, whereas the sign test and the Mann-Whitney U test are de

signed specifically to detect differences in location. Thus, when the 

K-S test is applied to local normal alternatives, it will usually perform 

less powerfully than a test designed to concentrate on a difference in 

location. Since the K-S test incorporates the magnitude as well as the 

direction of the difference in means, its power increases relatively 

greater than the sign test as 0 or n increases.
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The Mann-Whitney U test power efficiencies fluctuated primarily 

in the 90-100 percent bracket which reflects a relatively high power for 

a nonparametric test.

The values for the U-test fluctuated irregularly and prevented 

any patterns from emerging for changes in the sample size, shift alterna

tive, or significance level. Essentially, the problem is that the powers 

of the U-test and the t-test were so close that the sampling process was 

not refined enough to expose the minute differences in power. This prob

lem could possibly have been reduced by increasing the number of samples. 

However, that would have involved an inordinate amount of computer time.

Increasing the number of samples would have achieved several 

improvements. It would have eventually eliminated the power efficien

cies of 1.0 that were attained for large sample sizes and large location- 

shift alternatives. It also would have improved the consistency of the 

results for the large samples (30 to 50). Making a general comparison 

between the results for samples 6 to 20 and those for samples 30 to 50 

reveal that both increasing the number of samples and randomization of 

the significance level improved the consistency of the power efficiencies. 

In particular, the results for the sample size of 30 demonstrated that 

more than 1,000 test repetitions would have been beneficial.

The power efficiency results of this simulation study reveal a 

power hierarchy for the two-sample tests that were investigated. As ex

pected, the performance of the t-test was superior to all of the tests 

studied, because under conditions of normality the t-test is the most 

powerful test for detecting a difference in central tendency. The power 

of the U-test was obviously very close to that of the t-test. The U-test 

is recommended over the t-test in all cases for testing the hypothesis of
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equal means, except those In which the underlying distributions can be 

safely assumed to be normal. The K-S test is preferred to the sign test 

when large samples or large location-shift alternatives are encountered. 

However, when small samples or alternatives are involved the evidence of 

this study favors the sign test, especially when one considers how easy 

the sign test is to compute.

While conducting this study, a number of questions arose which 

are beyond the scope of the present study but are certainly worthy of 

attention. One of the more obvious avenues of further research is the 

investigation of power efficiency under non-normal conditions. Although 

some research has been done in this area, the choice of various types of 

underlying distributions, skewness, and kurtosis is quite extensive. 

Another area that is worthy of investigation is the effect on power effi

ciency of unequal variances in the underlying populations. Finally, 

there are many more nonparametric tests other than the three investigated 

in the present study. These also should be analyzed to determine their 

power efficiencies.
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Appendix A

Table of Critical Values of D in the Kolmogorov-Smirnov
Test for Two Samples of Equal Size*

. -  . 

N

ONE-TAIL TEST TWO-TAIL TEST

0<- .05 o< * .01 CX » .05 CX - .01

5 4 5 5 5
6 5 6 5 6
7 5 6 6 6
8 5 6 6 7
9 6 7 6 7

10 6 7 7 8
11 6 8 7 8
12 6 8 7 8
13 7 8 7 9
14 7 8 8 9
15 7 9 8 9
16 7 9 8 10
17 8 9 8 10
18 8 10 9 10
19 8 10 9 10
20 8 10 9 11
21 8 10 9 11
22 9 11 9 11
23 9 11 10 11
24 9 11 10 12
25 9 11 10 12
26 9 11 10 12
27 9 12 . 10 12
28 10 12 11 13
29 10 12 11 13
30 10 12 11 13
31 10 12 11 13
32 10 13 11 13
33 10 13 12 14
34 11 13 12 14
35 11 13 12 14
36 11 13 12 14
37 11 14 12 14
38 11 14 12 15
39 11 14 12 15
40 11 14 13 15

*Adapted from Massey (1951a) and Birnbaum and Hall (1960).
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Appendix B

Empirical Probability of a Type I Error for the 
Kolmogorov-Smirnov Test and the t-test 

for Various Sample Sizes Using 
n Class Intervals

Sample
Size

cx - .05 cx - .01

m ■ n
K-S test t-test K-S test t-test

6 .0313 .0585 .0071 .0130

8 .0313 .0500 ..0028 .0090

10 .0262 .0530 .0054 .0115

12 .0316 .0480 .0054 .0100

14 .0374 .0525 .0013 .0080

16 .0271 .0495 .0068 .0120

18 .0337 .0510 .0078 .0090

20 .0363 .0515 .0074 .0100

30 .0260 .0480 .0010 .0060

40 .0270 .0440 .0030 .0070

50 .0240 .0440 .0010 .0030

Note: Probabilities for samples 6 through 20 were based on 2,000 test
samples.

Probabilities for samples 30 through 50 were based on 1,000 
test samples.

The significance level of the nonparametric test was randomized 
for samples 6 through 20.

The chi-square approximation for the Kolmogorov-Smirnov test 
was used for sample size 50.
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