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Abstract

The impact of response styles such as extreme response style (ERS) on trait estima-
tion has long been a matter of concern to researchers and practitioners. This simula-
tion study investigated three methods that have been proposed for the correction of
trait estimates for ERS effects: (a) mixed Rasch models, (b) multidimensional item
response models, and (c) regression residuals. The methods were compared with
respect to their ability of recovering the true latent trait levels. Data were generated
according to a unidimensional model with only one trait, a mixed Rasch model with
two populations of ERS and non-ERS, and a two-dimensional model incorporating a
trait and an ERS dimension. The data were analyzed using the same models as well as
linear regression where the trait estimate is regressed on an ERS score and the
resulting residual is considered the corrected trait estimate. Over all conditions, the
two-dimensional model achieved the best trait recovery, though the difference to
the unidimensional model was rather small. Mixed Rasch models were in general
inferior to the other correction methods. When the trait and ERS showed no to
weak correlations, ERS appeared to have a minor impact on trait estimation.
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One concern in psychological assessment based on self-report questionnaires is the

potential influence of response styles on item responses. Response styles refer to sys-

tematic individual differences in response scale use that are characterized by a sys-

tematic preference or avoidance of certain response categories. If response styles

exert an influence on item responses over and above the respondent’s true latent trait

level, trait estimates may be biased and in consequence inferences based on these

trait estimates may be wrong (e.g., Austin, Deary, & Egan, 2006). This concern was

already voiced rather dramatically by Cronbach (1950; p. 21) who said, ‘‘The writer

concludes that as a general principle, the tester should consider response sets an

enemy to validity.’’ Polytomous rating scales that are ubiquitous in the assessment of

personality traits, attitudes, and many other constructs appear to be especially suscep-

tible to response styles. Common response styles in self-report questionnaires apply-

ing polytomous rating scales include extreme response style (ERS), a preference for

extreme response categories, and acquiescence response style, a preference for cate-

gories stating agreement (e.g., Austin et al., 2006; Baumgartner & Steenkamp, 2001;

Bolt & Johnson, 2009). To quantify the influence of response styles on item

responses, Wetzel and Carstensen (2015) computed differences in pseudo-R2 values

(Nagelkerke, 1991) between models ignoring response styles and two-dimensional

item response models taking response styles into account. For ERS, they found an

average incremental variance explanation of 25% across the 30 facets of the German

Revised NEO Personality Inventory (NEO-PI-R; Ostendorf & Angleitner, 2004). For

acquiescence response style, the incremental variance explanation was lower with an

average of 4%. Furthermore, respondents appear to be largely consistent in their use

of response styles across the scales in one instrument (Weijters, Geuens, &

Schillewaert, 2010a; Wetzel, Carstensen, & Böhnke, 2013) as well as over time

(Weijters, Geuens, & Schillewaert, 2010b; Wetzel, Lüdtke, Zettler, & Böhnke,

2015). The existence and persistence of response styles raises the question of how to

account for response styles in the analysis of questionnaire data or, in other words,

how to correct trait estimates for response style effects.

Several methods of correcting for response style effects have been suggested in

the literature. The aim of this article is to evaluate three methods for the correction

of ERS (mixed Rasch models, multidimensional item response models, and regres-

sion residuals) with respect to their ability of recovering the true latent trait levels

using a simulation study. The article is structured as follows: First, the three methods

will be explained in detail. Second, we present the design of the simulation study,

including the choice of independent and dependent variables, the data generation

procedures, and the statistical analyses. Third, the trait recovery achieved by the

three methods will be reported. Last, the implications of these results for the correc-

tion of trait estimates for response style effects will be discussed. This study will
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focus on one response style, namely ERS, because two of the three methods we eval-

uate have been suggested specifically for this response style (Bolt & Johnson, 2009;

Bolt & Newton, 2011; Rost, Carstensen, & von Davier, 1997) and it also appears to

be the most important response style in terms of its variance explanation incremental

to the trait (Wetzel & Carstensen, 2015).

Methods of Correcting for Extreme Response Style Effects

In this simulation study, three methods that have been suggested to correct individual

trait estimates for ERS will be evaluated: (a) mixed Rasch models, (b) multidimen-

sional item response models, and (c) using regression residuals as trait estimates. In

the following, the underlying rationale of these three methods and their application

to response styles will be explained.

Mixed Rasch Models. Mixed Rasch models (Rost, 1990, 1991) are extensions of uni-

dimensional Rasch models (e.g., Rasch, 1960) to multiple latent classes. In mixed

Rasch models, item and person parameters are estimated separately for each latent

class. This allows the investigation of qualitative differences between the latent

classes as well as the investigation of quantitative differences within each latent

class. In the case of rating scale data as we simulated in this study, the mixed partial

credit model (Rost, 1991; von Davier & Rost, 1995) can be applied which adds

class-specific parameters to the partial credit model (PCM) developed by Masters

(1982).

In the mixed PCM the probability of a response in category x on item i with m + 1

response categories (x = 0, . . ., m) depends on two latent variables: (a) the continuous

latent trait u and (b) the discrete latent class C, with c = 1, . . ., q. The test takers’ indi-

vidual trait levels uv and their latent class membership are the person parameters in

the mixed PCM. The effect of the latent class membership is taken into account by

class-specific threshold parameters ticj. Hence, there are k class-specific model equa-

tions for the response category probabilities PC = c Xi = xjuð Þ of each item, which can

be written as

PC = c Xi = xjuð Þ=
exp

Px
j = 0

u� ticj

� �
Pm
k = 0

exp
Pk
j = 0

u� tickð Þ
: ð1Þ

As the response categories are exhaustive and disjunctive within each latent class c it

follows that
Pm
k = 0

PC = c Xi = xjuð Þ= 1, for all c = 1, . . ., q and i = 1, . . ., n. For identifi-

cation purposes, it is defined that (u� tic0)[0: The individual posterior probabilities

P(C = c | Xv = x) can be used to estimate respondents’ class membership. The uncon-

ditional latent class probabilities P(C = c) = pc are also estimable parameters in the
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mixed PCM describing the distribution of C. Since the latent classes are exhaustive

and disjunctive it follows that
PC
c = 1

pc = 1:

Mixed PCMs have been used in several studies to differentiate latent classes of

participants that differed systematically in their response scale use. These latent

classes are interpreted as response style groups using the distribution of threshold

parameters in each latent class. For example, Rost et al. (1997) showed that two

response style groups (ERS and non–extreme response style [NERS]) existed in the

Big Five as assessed by the German NEO Five-Factor Inventory (NEO-FFI;

Borkenau & Ostendorf, 1993). In the ERS class, threshold parameters were close

together, indicating that extreme categories had the highest probability of being cho-

sen already at moderate trait levels. In contrast, in the NERS class, threshold para-

meters were widely spaced, indicating that extreme categories only had the highest

probability of being chosen at very high or very low trait levels. The same pattern

was found in the English NEO-FFI (Costa & McCrae, 1992) by Austin et al. (2006)

and in several instruments assessing other constructs, such as a leadership perfor-

mance scale (Eid & Rauber, 2000). According to Rost et al. (1997, p. 331), ‘‘The trait

parameter of the mixed Rasch model is automatically corrected for the effects of a

response set on the sum scores’’ since person parameters are estimated separately for

each latent class and class-specific item parameters (signaling the response style) are

therefore taken into account. Rost et al. (1997) argued that the resulting person para-

meters should then be on the same scale and consequently comparable between latent

classes. Wetzel et al. (2013) illustrated this by contrasting trait estimates on the NEO-

PI-R facets between a (one-class) PCM and a two-class mixed PCM where the latent

classes were identified as ERS and NERS. Compared with the one-class PCM, trait

estimates were contracted (i.e., less extreme) in the ERS class and extended (i.e.,

more extreme) in the NERS class for respondents with equal sum scores and thus

equal trait estimates in the one-class PCM. This indicates a correction of trait esti-

mates for response style effects, though it has not been investigated how accurately

the trait estimates from mixed PCMs reflect the true latent trait levels.

Multidimensional Item Response Models. Multidimensional item response models are

extensions of unidimensional item response models to two or more latent traits. The

original multidimensional Rasch model for dichotomous items was presented by

Rasch (1961). The unidimensional PCM (Masters, 1982) was extended to multidi-

mensional data by Kelderman (1996). The multidimensional PCM defines the condi-

tional response category probabilities P(Xi = x | u) of a response in category x (x = 0,

. . ., m) of item i as a function of q = 1, . . ., s latent trait dimensions u = u1, . . ., us.

That is
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P Xi = xjuð Þ=
exp

Px
j = 1

Ps
q = 1

vqijuq � tij

 !" #

Pm
k = 0

exp
Pk
j = 0

Ps
q = 1

vqijuq � tij

 !" # , ð2Þ

where
P0
j = 1

�ð Þ[0: As in the mixed PCM, tij indicates the threshold parameter

between two adjacent response categories x = j2 1 and x = j. In Equation (2), vqij

denotes an indicator variable which takes the value 1 if the response to category j of

item i indicates dimension q and the value 0 if it does not. This assignment of items

to dimensions has to be prespecified by the researcher. In the case of s = 1 and vqij =

1 for all items and response categories in Equation (2), the unidimensional PCM

results.

The application of multidimensional models to take into account response style

effects was suggested by Bolt and Johnson (2009) who proposed modeling both the

trait of interest and ERS in a multidimensional extension of Bock’s (1972) nominal

response model. Since both dimensions are modeled simultaneously, respondents’

standing on the dimensions is estimated using information from both dimensions.

Thus, Bolt and Johnson (2009) argued, the trait estimate derived from this model is

corrected for response style effects. In the context of the multidimensional PCM

described above, the substantive trait and ERS can be specified as follows. Let u1 be

the latent trait and u2 the latent ERS. Then the indicator variables are v1ij = 1 for all

j = 0, . . ., m. Only the responses of the two extreme response categories Xi = 0 and

Xi = m of each item i are indicative for u2. Therefore, v2i0 = v2i(m) = 1 and v2ij = 0 if

0 \ j \ (m).

Bolt and Newton (2011) extended this approach by adding a second trait dimen-

sion to the model and by modeling the ERS dimension on the combined items from

both trait dimensions. According to Bolt and Newton, this method allows a better dif-

ferentiation between the traits and ERS, which should lead to more accurate trait esti-

mates. In a simulation, they analyzed the correlation between the generated trait level

and the trait estimates from two-dimensional and three-dimensional models, which

included either one trait and ERS, two traits, or two traits and ERS. Correlations

between true trait levels and trait estimates for the first trait were high (at or above

.90) for all models and did not differ notably between models that included one trait

and ERS (average correlation .92) or two traits and ERS (average correlation .93).

However, the simulation study by Bolt and Newton (2011) did not investigate the

possible influence of test length and sample size on the accuracy of trait recovery. In

the present study, these factors will be taken into account. Thus, the trait estimates

from two-dimensional PCMs, in which the trait and ERS dimensions are modeled

using the same items, will be compared with the generated latent trait values for dif-

ferent test length and sample size conditions.
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Regression Residuals. A third method that has been suggested for the correction of

trait estimates for response style effects is based on linear regression (Baumgartner

& Steenkamp, 2001; Webster, 1958; Weijters, Schillewaert, & Geuens, 2008). In this

method, the procedure is to first compute a regression of the trait score on ERS,

which in the simplest case could be a count of the extreme responses endorsed. Next,

the regression residual is computed by subtracting the expected trait score from the

observed trait score. This residual is then used as the new ‘‘corrected’’ trait estimate

from which response style effects have been partialled out. For example, Webster

(1958) illustrated how reliabilities decrease when scale scores have been adjusted

with this method. Baumgartner and Steenkamp (2001) demonstrated that correlations

between scales can both increase or decrease when residualized scores are used com-

pared with observed scores, depending on the relationship between the scales and

between different response styles.

This method based on regression residuals is the most convenient of the methods

investigated here since it does not necessitate the estimation of item response models.

However, several problems may exist with this approach, one of them being that only

a linear relationship between the trait and ERS can be accounted for (see discussion).

In our study, regression residuals will be compared with the true trait levels to inves-

tigate the trait recovery they achieve.

Aim of This Study and Hypotheses

The aim of this study is to compare the methods of correcting for ERS described

above regarding their ability to recover the true latent trait levels. It is important to

note that the three models differ substantially. In the mixed Rasch model, it is

assumed that persons with a tendency toward extreme responses are a qualitatively

distinct subpopulation from persons who do not have this tendency. In the multidi-

mensional PCM, each person’s ERS is formalized as a continuous latent variable.

Hence, each test taker has a value on this latent trait representing his or her tendency

to endorse the highest or lowest response category. The use of the regression residual

assumes that regressing test scores on response style indicators will remove trait-

unrelated variability caused by response styles from the test scores. Taking the resi-

dual as the adjusted test score assumes that the underlying trait of interest and the

responses style are uncorrelated. If this assumption does not hold, then reliable var-

iance of the latent trait estimate will also be partialled out. This is an important dif-

ference compared with the other two models since the mixed Rasch model as well as

the multidimensional Rasch model allow for stochastic dependencies between the

latent trait variable and ERS.

As the approaches differ in their assumptions they are expected to vary in their sui-

tableness in real applications depending on the true data generating mechanism.

Unfortunately, the latter is unknown in most cases. To study the performance of the

different methods more generally, we simulated data using different population mod-

els and applied the three methods to all of them. For purposes of comparison, the
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same items will be used for modeling the trait and ERS, though modeling ERS based

on other items than the trait items is of course also possible (see, e.g., Weijters et al.,

2010b). We hypothesize that both methods based on trait estimates from item

response models will achieve a better trait recovery than regression residuals. Since

there are no previous studies evaluating the trait recovery in mixed PCMs and the

simulation study on multidimensional models (Bolt & Newton, 2011) only considered

a limited number of conditions, the comparison of these two methods is exploratory.

Method

The basic structure of the simulation was to first generate true trait levels u and item

responses for these u under different true models. The second step was to analyze the

data with the three correction methods in order to obtain estimated trait levels û for dif-

ferent conditions of test length and sample size. This structure is illustrated in Figure 1

and will be explained in detail in the following. Then, we will describe the analyses con-

ducted to investigate the degree of trait recovery by each of the correction methods.

Simulation Design

The design of the simulation study included three data generation methods and four

data analysis methods. Three of the data analysis methods corresponded to the correc-

tion methods described above, namely, mixed PCM, multidimensional PCM, and

regression residuals. In addition, the data were analyzed using a unidimensional (one-

class) PCM to investigate the degree of trait recovery when the presence of ERS in

θ
N(0,1)

1-dim

1-dim

2-dim
r = 0.20

1-dim

2-dim

mixed

residuals

2-dim
r = 0

1-dim

2-dim

mixed

residuals

mixed

1-dim

2-dim

mixed

residuals

data analysis

data generation

Figure 1. Simulation design with data generation and data analysis factors. The factors test
length and sample size are not shown here.
Note. 1-dim = 1-dimensional; 2-dim = 2-dimensional; mixed = mixed partial credit model.
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the data is ignored. The other two factors in the simulation design were test length

and sample size. The factor levels were chosen to cover many realistic applications of

psychometric tests. The test length was indicated by the number of items in the test

(5, 10, 25, and 50 items). Three different sample sizes were considered (200, 500,

and 2,000).

Data Generation Methods. The data were generated to reflect responses on a polyto-

mous rating scale with four response categories (e.g., strongly disagree, disagree,

agree, strongly agree) since this response format is widely used in psychological

assessment with self-report questionnaires. Data were simulated for three true mod-

els: (a) a unidimensional PCM without ERS (in the following 1-dimensional), (b) a

mixed PCM (in the following denoted by mixed) in which data were simulated from

two populations (persons with ERS and persons without ERS, i.e., NERS), and (c) a

multidimensional model in which both the trait and ERS influenced item responses

(in the following 2-dimensional). The mixed PCM and the 2-dimensional model cor-

respond to the two correction methods that are based on analyses using these models.

Data were additionally generated based on a 1-dimensional model as a baseline

model to obtain benchmark values for the trait recovery measures (see Figure 1).

For each of the sample size conditions the corresponding number of u were drawn

from a standard normal distribution. Then, item responses were generated under the

different true models. Data generation under the 1-dimensional and 2-dimensional

models was conducted for the whole sample. Previous research indicates that some

traits may be weakly to moderately associated with ERS (e.g., r = .22 with extraver-

sion and conscientiousness; Austin et al., 2006). Thus, for the 2-dimensional data,

two variations were simulated: one with a correlation of 0 between the trait and ERS

and one with a correlation of .20 between the trait and ERS.

For data generation under the mixed PCM, the sample was halved and item

responses were then generated separately for the two halves. We therefore assumed that

the population consisted of 50% ERS and 50% NERS. One set of item location para-

meters was drawn from a standard normal distribution for the whole sample. Threshold

parameters for the two populations were computed as the sum of the respective item

location parameter and a deviation factor sampled randomly from distributions with dif-

fering means (20.5, 0, 0.5 for ERS and 22.75, 0, 2.75 for NERS). This ensured that

the resulting response data were characteristic for ERS and NERS classes.

Data were generated in R (R Core Team, 2013). In all conditions the number of

response categories was four. Thus, ERS would be characterized by a high propor-

tion of responses in the categories 0 (e.g., strongly disagree) and/or 3 (e.g., strongly

agree). A total of 100 replications were conducted per sample size 3 test length con-

dition. For each replication, new u and new item (threshold) parameters were drawn,

though response data were generated according to the three true models based on the

same set of uwithin each condition.
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Data Analysis Methods. Response data simulated under the 2-dimensional model and

mixed PCM were analyzed using all three correction methods. In addition, the data

were analyzed with the 1-dimensional PCM to investigate the bias that occurs when

data containing ERS are analyzed without taking ERS into account. Response data

generated under the 1-dimensional model were only analyzed with the 1-dimensional

PCM to obtain a baseline for the correlation between u and û as well as for the bias

measures (see Figure 1).

Parameter estimation for the 1-dimensional and 2-dimensional PCMs was con-

ducted in ConQuest (Wu, Adams, Wilson, & Haldane, 2007). Mixed PCMs were

estimated in the software for multidimensional discrete latent trait models (mdltm;

von Davier, 2005, 2008). Linear regressions for obtaining the regression residuals

were computed in R (R Core Team, 2013). For all methods, expected a posteriori

(EAP) estimates (Bock & Aitkin, 1981) were used as trait (and if applicable ERS)

estimates. For the correction method mixed PCM, the EAPs estimated for the latent

class with the highest probability of class membership were used. For the correction

method regression residuals, the observed trait estimates used in the regression were

based on the EAPs derived from a 1-dimensional analysis of 2-dimensional or mixed

data. The predictor in the regression was a centered ERS index based on the fre-

quency of extreme responses. The resulting residuals were standardized to make

them comparable with u and the EAPs resulting from the other correction methods.

Comparison of Methods Regarding Trait Recovery

Three measures were computed to investigate the degree of trait recovery by each of

the three correction methods: (a) the correlation between the true trait level u and the

estimated trait level û, (b) the mean absolute bias, and (c) the mean squared error.1

The mean absolute bias was defined as MAB û
� �

= E u� û
�� ��� �

and the mean squared

error was defined as MSE û
� �

= E u� û
� �2
h i

to quantify the efficiency of the person

parameter estimation method.

The correlation r(u, û) from the 1-dimensional data analyzed with the 1-dimen-

sional model provides a benchmark of the expected correlation when there is no

response style in the data. The correlations found for the three correction methods

can then be compared against this benchmark as well as against each other. The same

is true for the bias measures.

Results

All the estimated models converged. In the following, the results on the recovery of

the true trait levels will first be reported regarding the correlation r(u, û) and second

regarding the bias measures.
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Recovery of True Trait Levels: r(u, û)

Correlations between the original true trait levels used for generating data and the

estimated trait levels from the analysis of the data indicate how well the ordering of

respondents regarding their true trait levels could be recovered in each of the simula-

tion design conditions. Table 1 shows average values across the 100 replications for

Figure 2. Correlation r(u, û).
Note. 1-dim = 1-dimensional; 2-dim = 2-dimensional; mixed = mixed partial credit model.
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the mean, standard deviation, minimum and maximum of the correlation r(u, û) sepa-

rately for each of the four data generation methods. For interpretational convenience

the mean correlations are also depicted in Figure 2.

Benchmark. The 1-dimensional analysis of the data that was generated according to

the 1-dimensional model provides a benchmark of the correlation when there is no

ERS in the data (Part (a) in Table 1). For shorter test lengths (5, 10 items) the mean

correlation was .80 for five items and .88 for 10 items across all sample size condi-

tions. For moderate test lengths (25 items) it was .95 and for long test lengths (50

items) it was .97, again with no notable variation across sample size conditions. The

variation of the correlations across the 100 replications was small (SD \ .03 for all

conditions). The range of r(u, û) across all sample size and test length conditions was

.74 to .98. Thus, with 10 or more items, the degree of trait recovery for the 1-dimen-

sional model was very high and close to perfect for the condition with 50 items.

Two-Dimensional Data With r(u, ERS) = .20. For data that was generated to contain

ERS that correlated at .20 with the true trait levels, recovery of the true trait levels

was best when the data were analyzed with a 2-dimensional PCM (see Table 1, Part

(b), and Figure 2). The total range of r(u, û) across all sample size and test length con-

ditions was .64 to .95 with mean values of .75, .85, .91, and .94 for the test lengths 5,

10, 25, and 50 items, respectively. The correlations were only slightly lower for the

1-dimensional analysis and regression residuals. For example, for a test length of 10

items the mean correlation was .83 for a 1-dimensional analysis, .85 for a 2-dimen-

sional analysis, and .82 for a regression residuals analysis of the data for all sample

size conditions. In contrast, the mixed PCM yielded a far worse trait recovery with

mean values of .58, .75, .81, and .83 for r(u, û) for 5, 10, 25, and 50 items and a sam-

ple size of 500 in all cases. Furthermore, the results also fluctuated more strongly

across the 100 replications with the average SD = .05 for mixed PCM and .01 for 2-

dimensional.

While sample size did not appear to have a notable effect on trait recovery, test

length clearly did (see the increase in correlations with increasing test lengths in

Figure 2). The difference in r(u, û) between test length = 5 and test length = 50 was

.20 for the 1-dimensional analysis, .19 for both the 2-dimensional and regression resi-

duals analysis, and .26 for the mixed PCM analysis. In comparison with the bench-

mark, the mean correlations were between .03 (10 and 50 items) and .05 (5 items)

lower for the 2-dimensional analysis and accordingly differences were slightly larger

for the 1-dimensional and regression residuals analysis. The mixed PCM showed the

largest differences to the benchmark: between .12 (50 items, sample size 200) and

.24 (5 items, sample size 200).

In sum, taking into account ERS by applying a 2-dimensional model or regression

residuals led to trait recovery that was only slightly worse than the trait recovery

found for data that did not contain ERS. However, ignoring the presence of ERS in

the data and instead analyzing it using a 1-dimensional model yielded a similar and
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only slightly worse trait recovery. The correction method mixed PCM was not able

to adequately recover the true trait levels.

Two-Dimensional Data With r(u, ERS) = 0. The pattern of results for the 2-dimensional

data that was generated with a correlation of 0 between the trait and ERS was practi-

cally identical to the one described for the 2-dimensional data with r(u, ERS) = .20.

Here the 2-dimensional analysis also yielded the best recovery of the true trait levels,

followed by the 1-dimensional analysis and the regression residuals. The mixed PCM

again did not yield a satisfactory recovery of the true trait levels (see Table 1 and

Figure 2, Part (c)).

Mixed Data. The mixed data was generated based on two populations, one ERS and

one NERS population. The recovery of the two populations in the analysis of

response data with the mixed PCM was overall very good. The mean probability of

class membership to the most likely class across 100 replications ranged from .87 for

test length 5 to 1.0 for test length 50. Analyzing the mixed data with the mixed PCM

yielded a mean correlation of .63, .86, .92, and .93 between true trait level and esti-

mated trait level for the test lengths 5, 10, 25, and 50 items and a sample size of 500

(see Part (d) of Table 1).2 The mean correlation was similar for a 1-dimensional or

regression residuals analysis of the data, except for a test length of 5 items where

these two methods achieved better trait recovery than the mixed model (r = .80 for

1-dimensional and .78 for regression residuals). Interestingly, the 2-dimensional

analysis yielded the best trait recovery with mean correlations of .81, .89, .95, and

.97 for the different test lengths and across sample size conditions. These values are

practically identical with average benchmark correlations (see above), indicating that

a 2-dimensional analysis of data from two populations that differ regarding their use

of ERS was able to recover the true trait levels to the same degree as a 1-dimensional

analysis of data that did not contain ERS. Note also that the effect of test length on

trait recovery was not as strong as in the other data generation methods since the dif-

ference between the correlation at a test length of five items and at a test length of

50 items was between .14 (1-dimensional analysis) and .16 (2-dimensional analysis)

for a sample size of 500 with the exception of the mixed PCM analysis where the

difference was still very large at .30. In sum, the mixed PCM analysis of the mixed

PCM data achieved a better trait recovery than the one found for the mixed PCM

analysis of other data, but it was still inferior to the trait recovery achieved by the 2-

dimensional analysis which was close to benchmark values.

Recovery of True Trait Levels: Mean Absolute Bias

The results were extremely similar for both bias measures (mean absolute bias and

mean squared error). Thus, this section will only report the results for the mean abso-

lute difference between u and û.3 Plots of the mean absolute bias over the 100 repli-

cations in each of the simulation design conditions are depicted in Figure 3.
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Benchmark. For the benchmark analysis the mean absolute bias for a sample size of

500 was .60 for a test length of five items, .43 for 10 items, .27 for 25 items, and .20

for 50 items. The mean absolute bias differed only slightly across sample size condi-

tions (e.g., for 50 items it was .21 for N = 200, .20 for N = 500, and .19 for N =

2,000). The variation in absolute bias decreased with increasing test lengths and sam-

ple sizes (from .05 for 5 items and N = 200 to .01 for 50 items and N = 500).

Figure 3. Mean absolute bias.
Note. 1-dim = 1-dimensional; 2-dim = 2-dimensional; mixed = mixed partial credit model.
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Two-Dimensional Data With r(u, ERS) = .20. For the 2-dimensional data with a correla-

tion of .20 between true trait levels and ERS, the mean absolute bias showed the same

general pattern for all analysis methods, namely decreasing values with increasing test

lengths and sample sizes (see Figure 3). For test lengths of 25 and 50 items, the 1-

dimensional, 2-dimensional, and regression residuals analysis of the data yielded simi-

larly high trait recovery with a mean absolute bias of about .36 for 25 items and .30

for 50 items and a sample size of 500. These bias values are approximately .10 higher

than the ones found for the benchmark. For shorter test lengths, regression residuals

yielded the best trait recovery with a mean absolute bias of .59 for 5 items and a mean

absolute bias of .48 for 10 items (sample size = 500). The mixed PCM analysis of the

2-dimensional data resulted in the worst trait recovery of all analysis methods with a

mean absolute bias of .86, .72, .57, and .54 for 5, 10, 25, and 50 items and a sample size

of 500. Furthermore, mean absolute bias values varied more strongly across replications

with a mean standard deviation of .10 across all test length and sample size conditions.

In sum, the analysis methods 1-dimensional, 2-dimensional, and regression resi-

duals were able to recover the true trait levels to a great extent, though differences to

the benchmark still existed. The mixed PCM analysis did not recover the true latent

trait levels accurately. In contrast to the correlations described above, the 2-dimen-

sional analysis method was not superior to the 1-dimensional or regression residuals

analysis methods with respect to the mean absolute bias.

Two-Dimensional Data With r(u, ERS) = 0. As depicted above for the correlations, the

results for the mean absolute bias for analyses of the 2-dimensional data in which the

true trait levels and ERS did not correlate were practically identical to the results

found for 2-dimensional data with r(u, ERS) = .20 (see Figure 3).

Mixed Data. Analyzing the mixed data with a mixed PCM led to lower mean absolute

bias values for test lengths of 10 and above compared with when data generated under

a different true model was analyzed with a mixed PCM. For example, for a sample

size of 500, the mean absolute bias was .51 for 10 items, .39 for 25 items, and .36 for

50 items. For a test length of 5 items the mean absolute bias was very similar to the

one found when 2-dimensional data were analyzed: .85 for the mixed data, .86 for the

2-dimensional data with r(u, ERS) = .20, and .84 for the 2-dimensional data with r(u,

ERS) = 0. However, the mixed PCM analysis still showed a poorer trait recovery than

the other three analysis methods, in particular than the 2-dimensional analysis for

which the mean absolute bias for a sample size of 500 was .58, .42, .28, and .21 for 5,

10, 25, and 50 items, respectively. Note that these mean absolute bias values are simi-

lar to the ones found in the benchmark analysis. For the 1-dimensional and regression

residuals analysis, the mean absolute bias was very similar to the one found when

these methods were applied to analyze 2-dimensional data.

In sum, trait recovery for the mixed PCM analysis of the mixed data was improved

compared with the mixed PCM analysis of other data, though it was still worse than

for the other three analysis methods. As for the correlations, the 2-dimensional
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analysis of the mixed data yielded a degree of trait recovery that was similar to the

one in the benchmark analysis.

Discussion

Response styles in self-report questionnaires have been a source of concern for

researchers and practitioners for a long time, leading to the development of methods

to correct for their effects. However, research systematically investigating the ability

of these correction methods to recover the true latent trait levels and research on the

actual impact of response styles on trait estimates has been scarce. This simulation

study showed that when the trait and ERS are uncorrelated or only weakly correlated,

ignoring the presence of ERS in the data does not have the detrimental effect on trait

estimation that is often assumed. Across all conditions, the analysis of data with ERS

using a 2-dimensional model yielded the best trait recovery, though trait recovery for

a 1-dimensional model was not substantially worse. The correction method using

mixed Rasch models was consistently inferior to the 2-dimensional, regression resi-

duals, and 1-dimensional analysis of the data, even when data were specifically gen-

erated according to the mixed Rasch model. In the following, we will discuss the

results of our simulation study before noting some limitations of this study and pro-

viding some directions for future research.

Discussion of Simulation Results

The results of our simulation study imply that ignoring ERS on average hardly affects

trait estimates if ERS and the latent trait are uncorrelated or only weakly correlated as

typically found in empirical applications (Austin et al., 2006; Wetzel & Carstensen,

2015). Stronger relationships between ERS and the trait would presumably have a larger

impact on trait estimation. As multidimensional item response models with a latent ERS

variable did not yield biased or inaccurate trait estimates, they emerge as the preferred

method. In comparison with Bolt and Newton (2011), who found a correlation of .92

between the true trait level and the estimated trait level in a 2-dimensional model with

ERS based on a five-item scale, trait recovery was substantially worse in our study with

an average correlation of .75. A similar trait recovery as in Bolt and Newton (2011) was

achieved in the conditions with 25 items with an average correlation of .91.

The results concerning the application of mixed Rasch models revealed that

model-based approaches may even do more harm than good since—for shorter test

lengths—this method was even inferior to a 1-dimensional analysis when the data

was generated according to the mixed Rasch model. There are several factors that

may affect the trait recovery by mixed Rasch models. First, using the most likely trait

estimate from mixed Rasch models makes the assumption that all respondents are allo-

cated to the latent class that accurately reflects their response style. If persons are mani-

festly allocated to the wrong response style class, they receive a trait estimate that is

different (and adjusted in the opposite direction) from the one they would receive if
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they had been allocated to the right response style class. However, in our study classifi-

cation accuracy was very good. Furthermore, results were extremely similar between

the most likely trait estimate and the average trait estimate (see Note 2). Second, item

parameter recovery may affect trait recovery. In our study, item parameter recovery for

the mixed PCM was good for test length 5 and very good for test lengths 10 and above

(e.g., correlations of .95, .98, and .95 between true and estimated first, second, and third

thresholds for 10 items and a sample size of 500). Thus, classification accuracy and

item parameter recovery cannot explain the poor trait recovery by the mixed PCM

found in our study. One issue that might serve as an explanation is that the proposition

that person parameter estimates are automatically corrected for response style effects as

put forward by Rost et al. (1997) is really an assumption and not a property of the

model. Differences in item parameters between latent classes are assumed to adjust the

latent trait in the model for ERS. However, in real applications, it is impossible to dis-

tinguish between an appropriate model-based adjustment for ERS and potential mea-

surement noninvariance across unknown latent classes. Equivalent result patterns can

occur in both cases when the mixed Rasch model is used. However, if the latent hetero-

geneity reflects measurement noninvariance, the trait levels are on different metrics and

are therefore incomparable across latent classes. There is no quantity in the model that

could ensure the invariance of u scales across latent classes.

Interestingly, the correction method based on regression residuals showed satis-

factory trait recovery despite several disadvantages inherent to the method. One dis-

advantage is that the person parameters are obtained in a two-step procedure. Hence,

item response theory standard errors or marginal reliability estimates are not avail-

able. Nevertheless, using regression residuals as point estimates is quite easy and,

therefore, may be attractive to applied researchers. The major disadvantage of regres-

sion residuals is the implicit assumption that the latent trait and ERS are uncorre-

lated. The fairly good performance of the regression method in our simulation study

with a maximum r(u, ERS) = .20 indicates robustness of this approach for low corre-

lations. However, we cannot extrapolate the robustness of the regression approach to

increasing correlations between the latent trait and ERS. As the multidimensional

item response model does not require a zero correlation it is theoretically superior.

Furthermore, the assumptions of linear regression are violated. It is implausible to

expect a linear relationship between the trait and ERS since—when the same items

are used for the trait score and ERS—high ERS scores are more likely to occur at

very low or very high trait score levels. Or, in other words, respondents with very

low or very high trait scores automatically receive a high ERS score since they must

have endorsed a certain amount of extreme categories to obtain a very low or very

high trait score. This implies a nonlinear relationship between the latent trait and the

number of extreme responses, calling into question the suitability of correcting trait

levels by using residuals of standard linear regression models.

A major drawback of all methods is their inability to differentiate between persons

with extreme trait levels and persons with moderate to high levels of ERS. That is,

the more extreme an individual’s trait level is, the higher is also the probability of an
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extreme response pattern even if the person does not have a general tendency to pre-

fer extreme response categories.

Limitations and Future Directions

For purposes of comparison the same items were used to model the trait and ERS in

this study, though for multidimensional PCMs and regression residuals, it is also pos-

sible to use separate item sets. An interesting question would be how results on trait

recovery change when a heterogeneous item set that has no overlap with the trait

items were used to measure ERS as, for example, in Weijters et al. (2010b) and

Wetzel et al. (2015). This study only investigated ERS, but of course a number of

other response styles exist such as acquiescence or midpoint response style. Thus,

before making any general claims about the impact of response styles on trait estima-

tion in data from questionnaires with polytomous rating scales, it would be important

to investigate the trait recovery achieved by different correction methods and the 1-

dimensional model for other response styles. In addition, to address the practical

relevance of correcting for response styles in applied contexts, it would be important

to test whether the correction methods achieve an increase in criterion-related valid-

ity compared with a 1-dimensional model.

It is also conceivable that the true data generating process underlying rating scale

data is different from those considered here. However, we generally do not know the

underlying true model in reality. Our results indicate that for both mixed and multidi-

mensional data, which make widely differing assumptions regarding the nature of

response styles, trait recovery is best when a 2-dimensional model is applied. Other

methods that have been proposed for the modeling of response styles but that were

not considered in this study include Böckenholt (2012), who developed a model that

divides the response process into subprocesses related to the trait and subprocesses

related to response styles, and Rossi, Gilula, and Allenby (2001), who developed a

Bayesian hierarchical model for modeling response styles. Thus, future research

could investigate trait recovery in these models and multidimensional models based

on alternatives to the PCM such as the graded response model.

In sum, this study showed that when ERS and the trait are not or only weakly cor-

related, the impact of ERS on trait measurement is minor. Of the methods investi-

gated here the 2-dimensional item response model achieved the best trait recovery.
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Notes

1. The difference between u and û was not used as a bias measure because it was on average

0 due to model identification constraints.

2. As noted above, these results are based on the EAP for the latent class with the highest

class membership probability (most likely EAP). Alternatively, one could also use an aver-

age EAP based on the posterior probabilities of membership to the two latent classes. If

this average EAP is applied for the analyses, results are overall the same. Minor differ-

ences occur for the test lengths 5 and 10 items. For example, for 5 items, r(u, û) for the

most likely EAP was 0.05 lower compared to r(u, û) for the average EAP (0.01 lower for

10 items). As classification accuracy improves with increasing test lengths, the difference

between the most likely EAP and the average EAP decreases and therefore results on the

recovery of u become practically identical.

3. Results on the mean squared error can be obtained from the first author on request.
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