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Abstract 

Background: The social motivation hypothesis of autism suggests that autism spectrum disorder 

(ASD) is characterized by impaired motivation to seek out social experience early in life that 

interferes with the development of social functioning. This framework posits that impaired 

mesolimbic dopamine (DA) function underlies compromised responses to social rewards in 

ASD. Although this hypothesis is supported by functional magnetic resonance imaging (fMRI) 

studies, no molecular imaging study has evaluated striatal dopamine functioning in response to 

rewards in ASD.  

Methods: This study evaluated striatal dopaminergic functioning during incentive processing in 

ASD using simultaneous positron emission tomography (PET) and fMRI using the D2/D3 

dopamine receptor antagonist [11C]raclopride. Using a bolus + infusion protocol, voxel-wise 

binding potential (BPND) was compared between groups (Controls=12, ASD=10) in the striatum.  

Results: Relative to controls, the ASD group demonstrated relatively decreased phasic DA 

release to incentives in the right and left putamen and left caudate. Striatal clusters showing 

significant between-group BPND differences were used as seeds in whole-brain fMRI general 

functional connectivity analyses. This revealed increased connectivity between the PET-derived 

right putamen seed and clusters in the precuneus and right insula in the ASD group. Within the 

ASD group, decreased phasic DA release in the left putamen was related to poorer theory-of-

mind skills.  

Conclusions: ASD was characterized by impaired striatal phasic DA release and abnormally 

increased functional connectivity, providing support for the social motivation hypothesis of 

autism. PET measures of dopamine receptor target occupancy may be suitable to evaluate novel 

ASD therapeutics targeting the striatal dopamine system. 
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Introduction 

The social motivation hypothesis of autism proposes that functional disruptions in brain 

circuits supporting social motivation constitute a primary deficit that contributes to social 

communication impairments [1]. In particular, this framework posits that social communication 

symptoms in autism spectrum disorder (ASD) reflect decreased motivation to engage in 

reciprocal social behaviors throughout development that results in fewer experiences with social 

rewards [2]. When children with ASD lack the motivation to participate in activities where social 

skills are typically forged, the resulting impoverished social environment compounds social 

impairments and negatively impacts the development of social communication [3]. 

Social motivation is supported by the same substrates that govern other motivated behaviors, 

namely ascending dopamine (DA) projections from the ventral tegmental area to the striatum and 

prefrontal cortex, forming a DA pathway sensitive to reward magnitude and probability [4-6]. 

This DA system mediates responses to social and nonsocial incentives [7, 8], and striatal DA 

transmission influences social behaviors [9]. Numerous functional magnetic resonance imaging 

(fMRI) studies have reported that ASD is characterized by decreased striatal responses to 

rewards [10-14, e.g., 15], highlighting striatal involvement in impaired social motivation in ASD. 

Additional findings indicate that striatal DA dysfunction is implicated in the etiology of ASD 

[16, 17]. First, there is evidence of impaired striatal functioning in ASD in the form of altered 

effort-based decision-making for rewards [18]. Second, polymorphisms of the DA D4 receptor 

gene and the DA transporter gene are related to challenging behaviors [19] and repetitive 

behaviors [20] in ASD, and there are links between polymorphisms of the DA-3-receptor gene 

and striatal volumes and repetitive behaviors in ASD [21]. Furthermore, oxytocin abnormalities 

in ASD [22, 23], reports of the therapeutic effects of intranasal oxytocin administration for 
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treating core ASD symptoms [24, 25], and the effects of oxytocin on striatal responses to 

rewards in ASD [26] support an etiologically-relevant role for mesolimbic DA functioning in 

ASD. Of note, there are dense oxytocin projections within the mesolimbic DA system, including 

oxytocin neurons that project to the ventral tegmental area and nucleus accumbens [27], and 

oxytocin receptor activation plays an important role in the activation of reward pathways during 

prosocial behaviors [28-30]. Finally, a widely used ASD preclinical model, the valproic acid 

model, [31, 32] causes a cascade of neurobiological changes including excitatory/inhibitory 

neural imbalances linked to increased basal DA in the frontal cortex [33], hyperactive 

mesocortical DA in response to stress [34], and changes in locomotor behavior akin to that 

observed in striatal DA-depleted animals [35]. 

Despite converging evidence supporting the involvement of striatal DA impairments in the 

pathophysiology of ASD, no molecular imaging study has investigated striatal DA functioning in 

ASD. The goal of this study was to use simultaneous fMRI and positron emission tomography 

(PET) with the D2/D3 dopamine receptor antagonist [11C]raclopride to investigate striatal 

functioning during incentive processing in ASD. Neutral and rewarding incentives were 

presented during a behavioral fMRI task, and a bolus+infusion [11C]raclopride PET paradigm 

allowed measurement of both dopaminergic tone and phasic dopaminergic release in response to 

incentives. We hypothesized that the ASD group would be characterized by decreased striatal 

phasic DA release in response to incentives relative to a control group, indexed by the non-

displaceable binding potential (BPND) of [11C]raclopride. We also hypothesized that, compared to 

controls, the ASD group would exhibit abnormal functional connectivity, assessed by fMRI, 

between striatal seed regions that showed reduced phasic DA release and their functional targets. 
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Finally, exploratory analyses examined relations between striatal BPND and symptom severity in 

the ASD group. 

 

Methods and Materials 

Participants 

Procedures were in accordance with the ethical standards of the UNC-Chapel Hill (UNC) 

institutional research board and with the 1964 Helsinki declaration and its later amendments or 

comparable ethical standards. The PET protocol was approved by the UNC Radioactive Drug 

Research Committee. Participants with ASD and typically developing controls were recruited via 

the UNC Autism Research Registry and a university email listserv, respectively. Groups were 

matched on age, gender, and IQ. Participants with ASD were capable of providing informed 

consent and did not require surrogate consent. Exclusion criteria for both groups included lack of 

fluent phrase speech, IQ<70, known sensory deficits (blindness and deafness), or medical 

conditions, history of neurological injury, intellectual disability, and MRI or PET 

contraindications. The control group had no lifetime psychiatric diagnosis, assessed by the 

Structured Clinical Interview for DSM-5 (SCID-5-RV) [36]. The ASD group had no current 

diagnosis of substance abuse or mood disorders and no lifetime psychiatric diagnosis except for 

ASD, assessed by the SCID-5-RV [36]. 

Potential control participants completed the Social Communication Questionnaire (< 15 

cutoff) to rule out possible ASD symptoms [37] and a screener for intellectual functioning (the 

North American Adult Reading Test [NAART, 38]). To aid group matching, control participants 

with NAART estimated IQ scores greater than 120 were excluded. Eligible participants 

completed an in-person assessment that included the SCID-5, the Wechsler Abbreviated Scale of 
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Intelligence [WASI; 39], the self-report Social Responsiveness Scale, Second Edition (SRS-2), a 

dimensional measure of ASD symptoms (Constantino et al., 2003), and the “Reading the Mind in 

the Eyes” Test, Revised Version (RMITE) [40], a measure of theory-of-mind. The ASD group 

also completed module 4 of the Autism Diagnostic Observation Schedule-2 (ADOS-2) [41] 

administered by a reliable assessor (JLK & RKG) to confirm ASD diagnoses. Eligible 

participants were then scheduled for the PET-MR scan. Participants received $20/hour for the 

assessment and between $160 to $200 (amount based on behavioral task performance, described 

below) for the scan.  

Twenty-six individuals with ASD and 34 controls (ages 19-29 years) provided written 

informed consent. Of these 60 potential participants, 23 were ineligible after in-person evaluation 

(11 controls, 12 with ASD) and one declined further participation. Of the 36 participants who 

completed scanning, data from 22 were analyzable: 14 participants were not included in the final 

sample due to problems with PET injection or scanner (4), incomplete/missing due to technical 

difficulties (8), abnormally low and noisy PET counts (1), and excessive motion during the PET 

scan (1). The final sample with analyzable PET data included 10 participants with ASD (all 

male; all white; 1 Hispanic) and 12 controls (10 males; 8 white, 2 Black or African American, 1 

Asian, 1 race not reported; 2 Hispanic). Groups did not differ in gender, race, or ethnicity 

distributions, Fisher’s exact test p’s>0.34.  As depicted in Table 1, the ASD group differed from 

controls with respect to scores on the SRS-2 and RMITE, but not IQ, SES, or age. 

 

----------------Table 1---------------- 

 

Simultaneous PET-MR scanning 
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Participants completed a simultaneous PET-MR scan on a Siemens Biograph mMR scanner 

at the UNC Biomedical Research Imaging Center using a bolus+infusion protocol with a planned 

Kbol of 105min [42]. PET acquisition took place for 63min. Approximately 1min after the PET 

scan began, a bolus injection of [11C]raclopride was administered after which the infusion 

injection of [11C]raclopride was administered using a Medrad® Spectris Solaris® EP MR 

Injection System (radioactivity was limited to 15mCi in total over the bolus and infusion and 

mass dose did not exceed 10µg (with a specific radioactivity at the bolus time of injection > 0.4 

Ci/µmol)). A 6min structural T1-based MR sequence was obtained (FOV=256 mm, 1�1�1 mm 

resolution, TR=2530ms, TE=1.69ms, flip angle=7 degrees) for anatomical localization, spatial 

normalization of imaging data, and generation of attenuation correction maps [43], in addition to 

localizer and attenuation correction scans. Then, two resting-state scans were obtained (echo 

planar imaging, FOV=212 mm, 3.312�3.312�3.3 mm resolution, TR=3000, TE=30ms, flip 

angle=90 degrees). Next, three task blocks were presented during which fMRI data were 

collected simultaneously to the ongoing PET acquisition. See Figure 1 for timing of data 

collection, data modelling, and participant behavior.  

 

----------------Figure 1---------------- 

 

Behavioral Task During PET & fMRI scanning 

Participants first completed two 8’09” resting-state fMRI runs with eyes open to allow for 

tracer uptake. Next, participants completed a monetary incentive delay task [44] modified for use 

in PET-MR studies. The task was presented using PsychoPy software version 1.84.1 [45]. The 

task presented a 10’30” neutral block followed by two 11’30” reward blocks. As shown in Figure 
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2, on each trial (6.37-15.17 sec), participants saw a blue polygon cue (1.5 sec), followed by a 

green circle target (0.367 sec) and an outcome (1.5 sec); these stimuli were separated by jittered 

inter-stimulus and inter-trial intervals during which a fixation cross was shown. The task 

required making a speeded button press with the right index finger upon seeing the target. During 

the neutral block, participants completed 63 trials that started with a square cue. No monetary 

rewards were delivered on these trials. Instead, sufficiently speeded button presses resulted in the 

presentation of a grey rectangle as a “no-reward” outcome. The other outcomes indicated either 

no response (“No Response!”), the response was too quick (within 100ms of the target 

presentation: “Too Fast!”), or it was made after an adaptive reaction time (RT) threshold (“Too 

Slow!”) that was programmed such that ~75% of each participant’s responses were successful.  

The neutral block was followed by four reward runs, combined into two blocks (number of 

trials per reward run: block 1: 34/33, block 2: 33/34). The neutral and reward blocks were 

separated by a brief break. In the reward blocks, different polygon cues (square, triangle, 

pentagon, hexagon) indicated that trials could result in no-reward (grey rectangle) or a small (50 

cents), medium (1 dollar), or large reward (5 dollars), respectively; the assignment of the four 

polygons to the four outcomes was stable across the reward blocks and counterbalanced across 

participants. Successful trials (i.e., trials with sufficiently speeded button presses) ended with 

images depicting the no-reward, small, medium, and large reward outcomes (Figure 2). 

Unsuccessful trials yielded the same feedback as in the neutral block (“Too Fast!”, “Too Slow!”, 

or “No Response!”). Following each neutral and reward block, participants rated cues and 

outcomes using a 9-point Likert scale with anchors of “very negative” and “very positive” at the 

ends and “neutral” in the center. 

This MID task includes novel features designed to maximize detection of DA release in the 
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PET-MR environment. First, the first reward block begins ~40min after the [11C]raclopride bolus 

injection after the target/reference ratio stabilized; the long uptake period serves as a baseline 

scan. Second, about 75% of reward trials result in reward feedback, including many $5 rewards; 

this success rate is higher and the large rewards are larger than in many MID studies to enhance 

incentive motivation, which should be evident in stronger signals related to reward anticipation 

and consummation [46]. Third, while most MID versions use explicit reward and neutral cues 

that make the potential outcome of each trial clear, the current design forces participants to learn 

which cues predict which reward magnitudes by experience. By adding associative learning, the 

current design should enhance sensitivity to positive prediction errors (and other learning-related 

signals) encoded by phasic DA release [6]. This modified version of the MID task was developed 

at McLean Hospital (by DD & DAP). 

 

----------------Figure 2---------------- 

 

PET Analysis 

Post-scan reconstruction of the PET data used 1min frames [47]. BPND was defined as the 

ratio of selectively bound ligand to nondisplaceable ligand in the tissue at equilibrium using the 

two-part simplified reference tissue model (SRTM). A voxel-wise map of ASD>Control 

[11C]raclopride BPND (reward>neutral) values was created with a threshold of z-values>2.3 (i.e., 

p<0.012), which was subsequently masked by the bilateral caudate nucleus, putamen, and 

nucleus accumbens regions from the Harvard-Oxford probabilistic atlas (thresholded at 25% and 

binarized). Reduced BPND is interpreted to mean an increase in endogenous DA (i.e., competition 

with [11C]raclopride). However, reduced BPND could also represent decreased binding affinity 
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due to receptor trafficking (i.e., reduced binding affinity due to receptor internalization). Results 

for the contrast of ASD>Control, reward>neutral, signify increased BPND or decreased phasic 

DA release to the reward condition, relative to the neutral condition, in the ASD group compared 

to controls. For a complete description of PET analyses see Supplemental Materials I and 

Sander and colleagues [48]. 

fMRI General Functional Connectivity (GFC) Analysis 

We used general functional connectivity (GFC) to examine whole-brain connectivity with 

striatal seed regions in which we observed significant differences in BPND between diagnostic 

groups. GFC, a method that combines resting-state and task fMRI data, offers better test-retest 

reliability and higher estimates of heritability than intrinsic connectivity estimates from the same 

amount of resting-state data alone [49]. In the present study, where combining the two resting-

state runs and three task blocks yields 49’30” of fMRI data for connectivity analyses, GFC also 

offers the advantage of longer durations of fMRI data to be analyzed. This is critical given that 

more than 25min of fMRI data are needed to reliably detect individual differences in 

connectivity [50-52]. 

Voxel-wise whole-brain connectivity was evaluated using the CONN Toolbox’s seed-to-

voxel analysis. Functional images were preprocessed with the default preprocessing pipeline in 

the SPM12 CONN functional connectivity toolbox, version 19c [53]. Steps included: resampling 

to 2�2�2-mm voxels and unwarping, centering, slice time correction, normalization to MNI 

template, outlier detection (ART-based scrubbing), and smoothing to an 8mm Gaussian kernel. 

Motion parameters were entered as multiple regressors and images with framewise displacement 

above 0.5mm or global BOLD signal changes above 3 SD were flagged as potential outliers and 

regressed out [54]. For the majority of the sample (n=19) all five runs of functional data were 
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analyzable and all participants had at least 3 analyzable runs. Reasons for excluded runs: 

technical errors (2), striation artifacts (1), and excessive motion (2). There were no significant 

differences between groups on average motion, t(20)=0.35, p>.05, or average global BOLD 

signal changes, t(20)=1.07, p>.05. 

Supplementary fMRI Activation and Task-Based Generalized Psychophysiological Interactions 

(gPPI) Analyses 

The main objectives of this study were to investigate striatal DA release in ASD and general 

functional connectivity with striatal regions showing impaired DA release in ASD. Therefore, 

fMRI activation methods are presented in Supplemental Materials II and secondary analyses 

using task-based gPPI are described in Supplemental Materials III. 

 

Results 

PET Results 

[11C]raclopride dose did not differ between groups; for the ASD and control group, the mean 

(SD) dose was 12.39 (0.98) mCi and 11.73 (2.14) mCi, respectively, W=52, p=0.63.  

Three striatal clusters showed ASD>control group differences for the contrast of 

(reward>neutral) BPND values, reflecting greater difference in phasic DA release in the reward 

relative to the neutral condition in the ASD group relative to control group. Clusters were located 

in the right putamen, left putamen, and left caudate nucleus/left putamen. Condition-specific 

BPND values were extracted from each participant. In all conditions, there was a significant 

Group � Condition interaction, F’s(1.20)> 8.6, p’s<.009 (see Figure 3 and Table 2). In general, 

the ASD control group exhibited increased BPND in the reward condition relative to the neutral 

condition, interpreted as decreased phasic DA release to rewards, whereas the control group 
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showed the inverse response. Because the left caudate nucleus/left putamen cluster contained 

white matter voxels, this region was further analyzed and sub-regional analysis confirmed the 

presence of the effect in the grey matter of left caudate and putamen (described in Supplemental 

Materials IV). Furthermore, region-of-interest analyses using the 1mm striatum structural atlas 

[55] showed a significant difference in the right putamen and trending differences in the left 

putamen and left caudate (presented in Supplementary Materials V), supporting the 

aforementioned SRTM results. Finally, of note, one cluster in the right caudate nucleus 

demonstrated the opposite pattern of group differences for the contrast of (reward>neutral) BPND 

values: relative to controls, the ASD group exhibited decreased BPND (or increased DA) in the 

reward relative to the neutral condition, Group � Condition interaction, F(1,20)= 7.5, p<.05. 

 

----------------Figure 3 and Table 2---------------- 

 

fMRI General Functional Connectivity (GFC) Results 

Whole-brain GFC analysis revealed significant group differences in connectivity with the 

PET-derived right putamen seed (based on group differences for the contrast of [reward>neutral] 

BPND values), but no other PET-derived striatal seeds. Compared to the control group, the ASD 

group exhibited relatively greater connectivity between the right putamen seed and the precuneus 

and right insular cortex (see Figure 4 and Table 3).  

 

----------------Figure 4 and Table 3---------------- 

 

Supplementary fMRI Activation and Task-Based gPPI Results 
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fMRI activation results are described in Supplemental Materials VI. Results of secondary 

task-based gPPI analyses are presented in Supplemental Materials VII. 

Task Reaction Time and Valence Ratings 

As shown in Supplementary Materials VIII, there were no significant group or group 

interaction effects for RT or valence ratings, p’s > 0.05, although these measures indicated the 

task elicited motivated behavior and positive subjective experience. 

Correlations between Striatal Dopamine Binding and ASD Symptom Severity 

Exploratory correlational analyses in the ASD group considered associations between 

(reward>neutral) BPND values in the four striatal PET clusters that differentiated groups, and 

ADOS-2 calibrated severity scores [56], SRS total t-scores, and RMITE scores. Only one 

association emerged in the hypothesized direction: decreased phasic DA release to incentives in 

the left putamen was related to worse performance on the RMITE, a measure of theory-of-mind, 

in the ASD group (p=0.03; see Figure 5). This result was only significant at an uncorrected 

significance threshold. 

 

Discussion 

The social motivation hypothesis of autism proposes that impaired reward circuitry responses 

to social information give rise to social communication symptoms in ASD. Although numerous 

fMRI, electrophysiological, and behavioral studies have investigated this framework [57], no 

previous molecular imaging study has directly investigated striatal DA functioning in ASD. In 

this study we evaluated striatal DA functioning in ASD via simultaneous PET and fMRI during 

incentive processing using the D2/D3 dopamine receptor antagonist [11C]raclopride and a novel 
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MID task. We supplemented our PET analysis by using fMRI to examine functional connectivity 

of striatal regions that showed impaired DA release in ASD. 

Analysis of [11C]raclopride PET data revealed relatively decreased phasic DA release to 

rewards in the ASD group in several striatal clusters, including the putamen and caudate nucleus. 

The putamen and the caudate nucleus comprise the dorsal striatum, a structure shown to be 

centrally involved in reinforcement learning and goal-directed behaviors that are facilitated by 

dorsal striatal DA release [58, 59]. Specifically, the dorsal striatum plays an important role in 

learning stimulus-action-outcome associations and stimulus-action coding [60]. Though the 

present study did not investigate reward learning, this pattern of impaired dorsal striatal DA 

release in the ASD group is consistent with the well-documented deficits in learning [61, 62] and 

flexible responses to environmental contingencies [63] in ASD that may result from atypical 

computation of prediction errors [64, 65]. The neuroimaging literature addressing reward 

learning in ASD has found decreased frontostriatal activity during both implicit and explicit 

social reward learning tasks [15, 66, 67], underscoring the potential relevance of impaired reward 

learning to core ASD symptoms. 

fMRI functional connectivity with PET-derived striatal seed regions was evaluated with a 

general functional connectivity (GFC) approach. The only PET-derived seed region that showed 

group differences in GFC was the right putamen. Greater connectivity was observed in the ASD 

group between the right putamen and the precuneus and right insular cortex. The precuneus has 

direct connections to the basal ganglia [68], is involved in self-referential processing [69] and 

has been linked to mentalizing deficits in ASD [70]. Notably, increased striatal connectivity with 

the precuneus during reward processing has been associated with depressive symptom severity in 

anhedonic patients with major depressive disorder (MDD) [71]. Thus, in the present context, 
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increased connectivity between a putamen cluster demonstrating decreased phasic DA release 

and the precuneus may reflect decreased motivation, indicating a possible shared feature of ASD 

and MDD. 

The right putamen PET-derived seed also demonstrated increased connectivity with the right 

insular cortex in the ASD group. The insular cortex, and in particular its anterior portion, is a 

critical hub for regulating large-scale brain network dynamics [72] and is part of the salience 

network that integrates sensory, autonomic, and hedonic input to guide behavior [73]. In ASD, 

there is evidence that the insula plays a key role in social and non-social ASD impairments [74]. 

A meta-analysis of functional neuroimaging ASD studies found insula hypoactivation in ASD 

during a range of social processing tasks [75], suggesting that insula dysfunction may be central 

to the disorder [76] given the multiple functions subserved by the insula, including attention and 

affective processing of salient social information [77]. Increased functional connectivity between 

the putamen and insula has been reported during rest in children with ASD, though this pattern 

of abnormal insular connectivity was not specific to the putamen but rather observed in a number 

of dorsal and ventral striatal seeds and cortical regions [78]. The finding in the present context of 

increased connectivity between a putamen cluster demonstrating decreased phasic DA release to 

rewards and the right insular cortex highlights that striatal DA signals may drive the impaired 

functioning of various associative and limbic cortices implicated in the pathophysiology of ASD. 

Exploratory fMRI activation in response to the incentive task revealed decreased activation 

in the left putamen during reward anticipation and in the anterior cingulate gyrus during reward 

outcomes in the ASD group, though the former finding was at an uncorrected threshold. Broadly, 

these results are consistent with the literature documenting decreased neural responses to 

monetary rewards in ASD using fMRI [12]. Exploratory gPPI connectivity analyses revealed 
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ASD>control group differences during reward anticipation in connectivity between the PET-

derived left putamen cluster that demonstrated group differences for the contrast of 

(reward>neutral) BPND values and the orbital frontal cortex, a region implicated in oxytocin 

response in ASD [26]. Finally, exploratory correlational analyses in the ASD group revealed that 

decreased phasic DA release to incentives in the left putamen was related to worse theory-of-

mind, a core ASD impairment [79], highlighting the clinical significance of PET findings. 

This study had several limitations. First, the sample sizes are small. Second, the imaging task 

presented monetary rewards rather than social rewards. This design was to ensure a robust 

striatal DA response in the control group given the extant literature demonstrating striatal DA 

release to monetary rewards in nonclinical samples using [11C]raclopride [e.g., 80, 81]. Although 

the social motivation hypothesis of autism highlights impaired responses to social rewards in 

ASD, several studies report striatal dysfunction to both social and non-social rewards in ASD [12, 

57, 82, 83]. Thus, the present study has mechanistic relevance to address impaired social 

motivation responses in ASD. This study was also restricted to participants with higher cognitive 

abilities and may not represent the broader ASD population. In this regard, we have established 

PET-MR protocols for adults with ASD with lower intellectual functioning [84] and recently 

completed a PET-MR study that included individuals with ASD with full-scale IQs ranging from 

47 to 112 [85]. Finally, two results should be interpreted with caution until replicated: 1) a 

cluster in the right caudate nucleus showed increased phasic DA release to rewards in the ASD 

group, a finding that was unexpected and in the opposite direction of other striatal PET clusters; 

and 2) the relation between phasic DA release in the left putamen and performance on the 

theory-of-mind measure was only significant at an uncorrected threshold.  
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In spite of these limitations, this study is the first PET-MR investigation of striatal DA 

functioning in ASD. Using [11C]raclopride in conjunction with a reward processing task, we 

report evidence consistent with impaired phasic DA release to rewards in the striatum in ASD. 

We further demonstrated that functional connectivity in the ASD group was increased between a 

PET-derived right putamen seed (that exhibited decreased phasic DA release to rewards) and the 

precuneus and right insula, suggesting a molecular mechanism that may address, in part, the 

pathogenisis of impaired functional brain networks in ASD. These results indicate that ASD is 

characterized by impaired striatal DA functioning, consistent with the social motivation 

hypothesis of autism, and highlights that PET-MR may be a suitable tool to evaluate novel 

treatments aimed at improving striatal DA functioning in ASD. More broadly, the use of 

simultaneous PET-MR represents an important means to address the heterogeneity of ASD [86] 

by identifying individuals characterized by homogenous molecular etiologies. It additionally 

holds the promise of validating the molecular underpinnings of fMRI signals. Finally, it provides 

perhaps the most direct linkages possible between human disorders and preclinical animal 

models characterized by common molecular pathophysiologies [87].
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Table 1. Participant characteristics 

 
  ASD (n = 10)  Control (n = 12) Test statistic p-value 

  M (SD) M (SD)   

ADOS-2 CSS 8.3 (2.1) --- --- --- 

SRS-2 Total T score 67.6 (12.2) 46.67 (7.2) t(20) = 5.01 <0.001** 

WASI-2 Full Scale IQ 116.5 (11.9) 120.67 (8.9) t(20) = 0.94 0.36 

RMITE 22.6 (3.50) 27 (2.30) t(20) = -3.54 0.002* 

SES 38.3 (14.4) 39.67 (11.5) t(20) = 0.25 0.81 

Age 24.9 (3.6) 25.67 (4.3) t(20) = 0.45 0.66 

Sex 10 ♂ 10 ♂, 2♀ χ
2 = 0.22 

0.48 

Note. ASD = Autism spectrum disorder group; Control = Control group; M = mean; SD = 
standard deviation; ADOS-2 CSS = Autism Diagnostic Observation Schedule, 2nd edition 
Calibrated Severity Score [56]; SRS-2 = Social Responsiveness Scale, Second Edition [88]; 
WASI-2 = Wechsler Abbreviated Scale of Intelligence, 2nd edition [39]; RMITE = Reading the 
Mind in the Eyes Test, Revised Version [40]; SES = Socioeconomic status measured by the 
Hollingshead Four Factor Index of Socioeconomic Status [89]. 
*: p<.005; **: p<.0001 
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Table 2.  Striatal clusters demonstrated ASD>control group differences for the contrast of 
(reward>neutral) BPND values at the threshold of z>2.3, reflecting greater difference in phasic 
DA release in the reward relative to the neutral condition in the control group relative to the ASD 
group. 
 

Cluster Label Cluster 

Size 

(voxels) 

Max Z 

value 

Max X Max Y Max Z 

left caudate nucleus / 
putamen 

87 3.95 -18 2 10 

right putamen 41 2.84 22 6 -2 

left putamen 40 3.22 -26 -16 -8 
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Table 3. Regions showing greater connectivity in the ASD relative to the control group with the 

PET-derived right putamen seed that demonstrated group differences for (reward>neutral) BPND 

values. 

Region Cluster Size 

(voxels) 

X Y Z Cluster-level  

family-wise error-corrected p-value 

Precuneus 71 8 -66 24 .016 

Right Insular Cortex 70 48 -4 10 .018 
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Figure 1. Timing of data collection, data modelling, and participant behavior during scanning. 
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Figure 2. The PET-MR incentive task. Each trial consisted of a cue phase and an outcome phase. Trials were presented first in a 
neutral block that consisted of only neutral trials and then in two reward blocks that consisted of neutral trials and reward trials of 
varying magnitudes (small, medium, or large). 
  

 

A
ll rig

h
ts

 re
s
e
rv

e
d
. N

o
 re

u
s
e
 a

llo
w

e
d
 w

ith
o
u
t p

e
rm

is
s
io

n
. 

(w
h
ic

h
 w

a
s
 n

o
t c

e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 m

e
d
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. 

T
h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t
th

is
 v

e
rs

io
n
 p

o
s
te

d
 A

u
g
u
s
t 1

1
, 2

0
2
0
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/2

0
2
0
.0

8
.1

0
.2

0
1
7
2
1
9
7

d
o
i: 

m
e
d
R

x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/2020.08.10.20172197


Raclopride ASD  36 
 

 

Figure 3.  Striatal clusters that showed ASD>Control [11C]raclopride BPND (reward>neutral), signifying decreased phasic release of 
dopamine to rewards in the ASD group relative to the control group, were evident in the left putamen, right putamen, and a cluster that
spanned the left caudate nucleus and putamen. For all clusters, the Group � Condition interaction effect on [11C]raclopride BPND 
values were significant.  In the right putamen cluster, the ASD group demonstrated a pattern of greater phasic DA release to neutral 
than reward blocks. 
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Figure 4. ASD>Control differences in general functional connectivity between the PET-derived right putamen seed and precuneus and
right insula, displayed in MNI152 space at peak coordinates for each target region. The bar graph shows the effect size for each target 
region, represented by the Fisher-transformed correlation coefficients, separated by group. 
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Figure 5.  Association between left putamen (reward>neutral) BPND values and the Reading the Mind in the Eyes” Test, Revised 
Version (RMITE) scores in the ASD group. Higher RMITE scores indicate better performance. Higher BPND values indicate 
decreased phasic dopamine release to incentives. 
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