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A Simultaneous Perturbation Stochastic
Approximation-Based Actor–Critic

Algorithm for Markov
Decision Processes

Shalabh Bhatnagar and Shishir Kumar

Abstract—A two-timescale simulation-based actor-critic algorithm for
solution of infinite horizon Markov decision processes with finite state and
compact action spaces under the discounted cost criterion is proposed. The
algorithmdoes gradient search on the slower timescale in the space of deter-
ministic policies and uses simultaneous perturbation stochastic approxima-
tion-based estimates. On the faster scale, the value function corresponding
to a given stationary policy is updated and averaged over a fixed number
of epochs (for enhanced performance). The proof of convergence to a lo-
cally optimal policy is presented. Finally, numerical experiments using the
proposed algorithm on flow control in a bottleneck link using a continuous
time queueing model are shown.

Index Terms—Actor-critic algorithms, Markov decision processes, si-
multaneous perturbation stochastic approximation (SPSA), two timescale
stochastic approximation.

I. INTRODUCTION

Dynamic programming (DP) is a general methodology for solving
Markov decision process (MDP) models. However, in order to apply
DP, one requires complete knowledge of transition probabilities of
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the system. These are not easily obtainable in most cases of interest.
Moreover, for solving the Bellman equation, the computational
requirements become prohibitive in the presence of a large state
space. Motivated by these considerations, in recent times, research
on simulation based schemes for solving MDPs has gathered mo-
mentum. These schemes are particularly useful in the case of systems
for which obtaining the transition probabilities is hard; however,
where transitions can be easily simulated. For tackling the curse of
dimensionality, schemes involving certain parametric representations
of the value function and/or policy have also been proposed. These
schemes largely go under the names of neuro-dynamic programming
[2], or reinforcement learning [14]. Among these, methods such as
temporal difference (TD) [14] and Q-learning [15], [16] involve
parameterizations of the value function (also called critic). A scheme
based solely on policy (also called actor) parameterization has been
dealt with in [10]. Those involving parameterizations of both actor
and critic [1], [8] have also been proposed.

In [7], a two timescale simulation based approach for policy iteration
has been developed for MDPs with finite state and action spaces. The
idea there is that one can use a coupled stochastic approximation algo-
rithm that is driven by two different step-size schedules or timescales
where both recursions proceed simultaneously, so as to get the same
effect as that of the two nested loops in policy iteration.

In [10], aMarkov reward process setting is primarily consideredwith
a parameterized class of policies. Here, the parameterization and tuning
of the value function is not considered explicitly; however, for finding
the average cost gradient, knowledge of sample path gradients of per-
formance and transition probabilities are assumed to be known in func-
tional form. With the exception of [8], most of the gradient optimiza-
tion based schemes studied so far have assumed knowledge of explicit
functional form of the transition probabilities. In [8], however, the ran-
domization probabilities are the parameters with regard to which op-
timization is performed. This is possible only for finite action spaces.
Moreover, most of these schemes deal with the long run average cost
setting and not discounted cost.

In this note, we consider infinite horizon MDPs with finite state
and compact action sets. We present a two timescale simulation based,
policy iteration type algorithm that does gradient search in the space
of policies. The faster timescale update in our algorithm is similar to
that in [7], except that we perform an additional averaging over a fixed
number of epochs for enhanced performance. On the slower scale, gra-
dient search using simultaneous perturbation stochastic approximation
(SPSA) [13] type estimates is used for obtaining an optimal policy.
Here, we are able to directly update the action taken in each set and
thus can work with deterministic policies themselves instead of ran-
domized. Note that most schemes (in the literature) mentioned above
have been studied in the setting of finite state and finite action sets.
However, there are several applications, for instance, flow control in
communication networks, for which the setting of finite state and com-
pact (nondiscrete) action sets is more appropriate. Our main motivation
in this note therefore, is to develop an easily implementable algorithm
for such a setting. We also show numerical experiments on an applica-
tion of the above type. A key advantage in using an SPSA based gra-
dient search in the policy space is that the algorithm is computationally
efficient even when the state space is moderately large in size. In [4],
an SPSA-based algorithm is used for solving long-run-average-reward
MDP. For purposes of averaging, the estimates in [4] are taken over re-
generative cycles making the overall scheme less effective. The speed
of our algorithm, on the other hand, is significantly enhanced by using
updates at deterministic epochs with two timescale averaging. More-
over, our algorithm is geared toward finding the solution to the Bellman
equation (that too in the discounted cost setting) which is not the case
with [4]. Finally, even though we do not consider scenarios where the

size of the state space is enormous as is the case with schemes in [2],
the required modifications there can quite easily be added on top of our
proposed algorithm.
The rest of the note is organized as follows. The framework and algo-

rithm are presented in Section II. The convergence analysis is presented
in Section III. Numerical experiments are presented in Section IV. Fi-
nally, Section V provides the concluding remarks.

II. FRAMEWORK AND ALGORITHM

Consider a discrete-time dynamic system with s states that are de-
noted by 1; 2; . . . ; s. Let S = f1; . . . ; sg denote the state–space. At
each state i, we are given a set of actions or controls A(i). If the state
is i and an action a 2 A(i) is chosen, the system moves to some
state j with probability p(i; j; a), irrespective of the previous values
of states and actions taken. Also, the cost incurred during this transi-
tion is K(i; a; j). We assume K(i; a; j) is nonnegative for all i, a, j.
Let fXn; n � 1g be a state-valued process (also called an MDP) that
describes the evolution of this system. This process in turn depends on
a control-valued sequence fZng with each Zn 2 A(Xn), n � 1, and
such that for any (states) i0; . . . ; in�1; in, and corresponding actions
a0; . . . ; an�1; an

Pr(Xn+1 = jjXn = in; Zn = an; . . . ; X0 = i0; Z0 = a0)

= p(in; j; an) (1)

8 j 2 S. We assume that all sets A(i) are compact subsets ofRN and
have the form N

j=1 aij;min; a
i
j;max , i 2 S. Let A = [si=1A(i) rep-

resent the action or control space. We make the following assumption
on the cost function and transition probabilities.

Assumption (A): 8 i, j 2 S, a 2 A(i), bothK(i; a; j) and p(i; j; a)
are continuously differentiable w.r.t. a.
By an admissible policy �, we mean a sequence of functions

� = f�0; �1; �2; . . .g with each �k:S ! A, such that �k(i) 2 A(i),
i 2 S, k � 0. Let � be the set of all admissible policies. If �k = �,
8 k � 1, then we call � = f�; �; �; . . .g (or the function � itself) a
stationary policy. Let � 2 (0; 1) be a constant. The aim is to minimize
over all admissible policies � = f�0; �1; �2; . . .g, the infinite horizon
�-discounted cost

V�(x0) = E

1

k=0

�
k
K (xk; �k(xk); xk+1) (2)

starting from a given initial state x0 2 S with evolution of xk’s gov-
erned according to (1). Let

V
�(i) = min

�2�
V�(i); i 2 S (3)

denote the optimal cost. For a given stationary policy �, the function
V�(�) is called the value function corresponding to policy � that takes
value V�(i) when the initial state is i. Under (A), one can show that an
optimal stationary policy exists for this problem and the optimal cost
V � satisfies the Bellman equation

V
�(i) = min

a2A(i)
j2S

p(i; j; a) (K(i; a; j) + �V
�(j)) : (4)

Since any action ai (a1i ; . . . ; a
N
i )

T 2 A(i) � RN , i 2 S,
we can identify any stationary policy � directly with the vector
(a11; . . . ; a

N
1 ; a

1
2; . . . ; a

N
2 ; . . . ; a

1
s; . . . ; a

N
s )

T or simply with the block
vector (a1; . . . ; as)T of actions ordered lexicographically according
to states, i.e., the jth component (j = 1; . . . ; s) of this vector
corresponds to the action taken in state j. Thus, we simply write
� = (a1; . . . ; as)

T . Let k � k represent the sup norm. We call a policy
�0 = (a01; . . . ; a

0
s)
T to be locally optimal if there exists an � > 0

such that V� (i) � V��(i), 8 i 2 S, 8 �� with k�0 � ��k < �. Here,
k�0 � ��k= supi2S;j=1;...;N ja

0;j
i � �aji j. Let V�(i) be the stationary

value or cost-to-go function corresponding to policy � starting from
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i 2 S. It is easy to see the following using (4) and an application of
Cramer’s rule.

Lemma 1: Under (A), V�(i), 8 i 2 S are continuously differen-
tiable functions of �.

For i 2 S, let ai(n) a1i (n); . . . ; a
N
i (n)

T

denote the nth update of ai (used in the algorithm). Then,
�(n) = (a1(n); . . . ; as(n))

T corresponds to the nth
update of policy �. Let for n � 0, 4(n) 2 RNs be a
vector of mutually independent and mean zero random
variables 4j

i (n), j = 1; . . . ; N , i 2 S (viz., 4(n) =
(41

1(n); . . . ;4
N
1 (n);41

2(n); . . . ;4
N
2 (n); . . . ;41

s(n); . . . ;4
N
s (n))T )

taking values in a compact set E � RNs and having a
common distribution. One can alternatively define 4(n) as
4(n) = (41(n); . . . ;4s(n))

T , for n � 0, with suitably defined
4i(n), i 2 S. We make the following standard assumption (see [13]
for a similar condition) on the random variables 4j

i (n), i 2 S,
j = 1; . . . ; N , n � 0.

Assumption (B): 9 �K < 1 such that for any n � 0, i 2 S and
j 2 f1; . . . ; Ng, E[ 4j

i (n)
�2

] � �K .
Let � > 0 be a given fixed constant. Let �ji (x) for x 2 R denote

the projection �ji (x) = min aij;max;max(aij;min; x) . Let for

y = (y1; . . . ; yN )T 2 RN , �i(y) = �1i (y1); . . . ;�
N
i (yN)

T
.

Then, �i(y) is a projection of y 2 RN on the set A(i). Further, let
�(z) for some z z11 ; . . . ; z

N
1 ; . . . ; z

1
s ; . . . ; z

N
s

T
2 RNs denote

�(z) = (�1(z1); . . . ;�s(zs))
T , with each zi = z1i ; . . . ; z

N
i

T
.

Consider now two independent parallel simulations fX1(n)g
and fX2(n)g, respectively. Suppose the policy used at the
nth update in the first simulation is �1(n) = (�1(a1(n) �
�41(n)); . . . ; (�s(as(n)��4s(n)))

T , while that in the second simu-
lation is�2(n) = (�1(a1(n)+�41(n)); . . . ;�s(as(n)+�4s(n)))

T ,
respectively. We shall also represent policies �r(n), r = 1; 2, n � 0,
simply as �r(n) = (�r1(n); . . . ; �

r
s(n))

T , with �ri (n), r = 1; 2,
i 2 S, suitably defined. Let fb(n)g and fc(n)g be two step-size
sequences that satisfy

n

b(n) =
n

c(n) =1;
n

b(n)2;
n

c(n)2 <1 and

c(n) = o(b(n)): (5)

Suppose now that for any i 2 S, a 2 A(i), f�1n(i; a)g and f�
2
n(i; a)g

are independent families of independent and identically distributed
(i.i.d.) random variables each with distribution p(i; �; a). Let L � 1
be a given fixed integer. Consider quantities V r

nL+m(i), r = 1; 2,
n � 0, m = 0; 1; . . . ; L � 1, i 2 S, that are defined via recursions
(7) below. These are used for estimating the corresponding stationary
value functions for given policy updates in the two simulations. For all
i 2 S, r = 1; 2, we initialize V r

0 (i) = V r
1 (i) = � � � = V r

L�1(i) = 0.
Then, 8 i 2 S, j = 1; . . . ; N , we have

aji (n+ 1) = �ji aji (n) + c(n)
V 1
nL(i)� V 2

nL(i)

2�4j
i (n)

(6)

where, for m = 0; 1; . . . ; L � 1, r = 1; 2

V r
nL+m+1(i) =V r

nL+m(i) + b(n)

� (K (i; �ri (n); �
r
nL+m(i; �ri (n)))

+ �V r
nL+m (�rnL+m(i; �ri (n)))

�V r
nL+m(i)) : (7)

The quantities V r
nL+m(i), r = 1; 2, i 2 S,n � 0,m 2 f0; 1; . . . ; L�

1g, are the estimates of stationary value functions corresponding to
policies �r(n). We perform here an additional averaging (on top of the
two timescale averaging) overL epochs for better algorithmic behavior.
The value of L is chosen arbitrarily. We let L = 100 in our numerical
experiments in Section V.

Remark: Note that f�rn(i; a)g, r = 1; 2, can be simulated without
an explicit knowledge of p(i; �; a). For instance, in the example consid-
ered in Section V, given the distributions of the arrival and service time
processes, �rn(i; a) simply corresponds to the simulated state in the (in-
dependently generated) nth sample, after T time units, when state at
current instant is i and arrival rate is a. Thus, even though p(i; �; a)
may not be known (or may be very hard to compute) in closed form,
�rn(i; a) can still be simulated.

III. CONVERGENCE ANALYSIS

Let Fl = �(~ai(p); ~4i(p); V
1
p (i); V

2
p (i);p � l; i 2

S; �1p(i; ~�
1
i (p)); �

2
p(i; ~�

2
i (p)); p < l; i 2 S), l � 1. Here,

~ai(p) = ai(n) and ~4i(p) = 4i(n) for nL � p � (n + 1)L � 1.

Also, ~�1i (p), ~�
2
i (p) are defined by ~�1i (p) = �i ~ai(p)� � ~4i(p) and

~�2i (p) = �i ~ai(p) + � ~4i(p) , respectively. Thus, ~�ri (p) = �ri (n)

for nL � p � (n + 1)L� 1, r = 1; 2. Note that iterates (7) can be
written as follows: For i = 1; . . . ; s, r = 1; 2, k � 0

V r
k+1(i) =V r

k (i) + b(n)

�
j2S

p (i; j; ~�ri (k))

� (K (i; ~�ri (k); j) + �V r
k (j))� V r

k (i)

+ b(n) K (i; ~�ri (k); �
r
k (i; ~�

r
i (k)))

+ �V r
k (�

r
k(i; ~�

r
i (k)))

�
j2S

p(i; j; ~�ri (k))

� (K (i; ~�ri (k); j) + �V r
k (j)) : (8)

We now state the following result whose proof follows from [15, Th.
2.1], in a similar manner as [7, Cor. 5.2].

Lemma 2: The iterates V r
k (i), r = 1; 2, satisfy supk kV

r
k (i)k <

1 8 i 2 S.
Consider now sequences fMr

i (l); l � 1g, r = 1; 2, i 2 S,
defined by Mr

i (l)
l�1

k=0
b(k) [(K(i; ~�ri (k);�

r
k(i; ~�

r
i (k))) +

�V r
k (�

r
k(i; ~�

r
i (k)))) �

j2S
p(i; j; ~�ri (k)) (K(i; ~�ri (k); j) +

�V r
k (j))], i 2 S, r = 1; 2, l � 1. We have the following.

Lemma 3: The sequences fMr
i (l); l � 1g, r = 1; 2, i 2 S, con-

verge a.s.
Proof: It is easy to see that fMr

i (l);Flg, r = 1; 2, i 2 S, form
martingale sequences. Moreover, it is easy to verify that their corre-
sponding quadratic variation processes converge a.s. The claim now
follows by [11, Prop. VII.2.3(c)].
Define fs(n); n � 0g as follows: s(0) = 0,

s(n) = n�1

i=0
c(i), n � 1. For j = 1; . . . ; N ,

i 2 S, let 4j
i (t) = 4j

i (n) for t 2 [s(n); s(n + 1)],
n � 0. Further, let 4i(t) = 41

i (t); . . . ;4
N
i (t)

T
,

i 2 S, and 4(t) = (41(t); . . . ;4s(t))
T . Suppose

for any bounded, continuous, real valued function
v(�), �̂ji (v(y)) = lim0<�!0 �ji (y + �v(y))� y=� ,
j = 1; . . . ; N , i 2 S. For any x = (x1; . . . ; xN )T 2 RN ,

let �̂i(x) = �̂1i (x1); . . . ; �̂
N
i (xN)

T

. Also, for any

z = z11 ; . . . ; z
N
1 ; . . . ; z

1
s ; . . . ; z

N
s

T
2 RNs, let

�̂(z) = �̂11(z
1
1); . . . ; �̂

N
1 (zN1 ); . . . ; �̂1s(z

1
s); . . . �̂

N
s (zNs )

T

.
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For policy � = (a1; . . . ; as)
T and given V = (V1; . . . ; Vs)

T ,
let F�(i; ai; V )

j2S
p(i; j; ai) (K(i; ai; j) + �Vj). Thus, given

�, it follows from (4) that V� = (V�(1); . . . ; V�(s))
T is the solu-

tion of the linear system V�(i) = F�(i; ai; V�), 8 i 2 S. Let for i,
k 2 S, j = 1; . . . ; N , ri

jV�(k) denote the gradient of V�(k) w.r.t.
aji . For simplicity, letriV�(k) = ri

1V�(k); . . . ;r
i
NV�(k)

T
. Con-

sider the systems of ODEs shown in (9) and (10) at the bottom of
the page, respectively. In (9), E[�] denotes expectation with regard to
the common c.d.f. of 4j

i (t), j = 1; . . . ; N , i 2 S, t � 0. Also,
�1i (t) = �i(ai(t)� �4i(t)) and �2i (t) = �i(ai(t)+ �4i(t)), i 2 S.
Define f~b(n)g as follows: For n � 0, ~b(n) = b ([n=L]), where [n=L]
denotes the integer part of n=L. It is easy to see that

n
~b(n) =1,

n
~b(n)2 <1 and c(n) = o(~b(n)). Note also that ~b(n) is a faster

step-size parameter than b(n). In the following, we shall work with
f~b(n)g as the natural step-size sequence in place of fb(n)g. Now, de-
fine ft(n)g as follows: t(0) = 0, t(n) = n�1

i=0
~b(i), n � 1. Consider

the following system of ODEs: For i 2 S, r = 1; 2

_�i(t) = 0

_V r
i (t) =F~� (t)(i; ~�

r
i (t); V

r)� V r
i (t): (11)

Note that here we are solving s coupled minimization problems corre-
sponding to (4). In the system of ODEs (11), the first recursion corre-
sponds to a stationary policy � (that is independent of t). Now, consider
ODEs

_V r
i (t) = F~� (i; ~�ri ; V

r)� V r
i (t); r = 1; 2: (12)

One can show as in [7, Lemma 5.3] that V~� (i), r = 1; 2, are
the unique asymptotically stable equilibrium points for (12).
Suppose M = f� j �̂i riV�(i) = 0 8 i 2 Sg. Also, for
given � > 0, M � = f� j 9�0 2 M s:t: k� � �0k < �g.
In order to prove our main result, Theorem 1, we proceed
through a series of approximation steps that follow. Let us de-
note by F (i; �ri (n); V

r
nL+m(�rnL+m(i; �ri (n)))) the quantity

K (i; �ri (n); �
r
nL+m(i; �ri (n))) + �V r

nL+m (�rnL+m (i; �ri (n))),
r = 1; 2. Consider functions �xr(t) = (�xr1(t); . . . ; �x

r
s(t))

T , r = 1; 2,
defined by �xri (t(n)) = V r

nL(i), with the maps t ! �xr(t) being
continuous linear interpolations on [t(n); t(n + 1)], n � 0.
Given T > 0, define fTng as follows: T0 = 0 and for n > 1,
Tn = minft(m) j t(m) � Tn�1 + Tg. Let In = [Tn; Tn+1]. Define
also functions xr;n(t) = (xr;n1 (t); . . . ; xr;ns (t))T , r = 1; 2, t 2 In,
n � 0, according to _xr;ni (t) = F~� (t) (i; ~�

r
i (t); x

r;n(t)) � xr;ni (t),
with xr;ni (Tn) = �xr(t(mn)) = V r

m (i) for some mn. We now have
the following.

Lemma 4: limn!1 supt2I kxr;n(t)� �xr(t)k = 0, r = 1; 2, w.p.
1.

Proof: It is easy to see that for r = 1; 2

�xri (t(n+ 1)) = �xri (t(n))

+
t(n+1)

t(n)

F~� (t) (i; ~�
r
i (t); �x

r(t))dt

+
t(n+1)

t(n)

F~� (t(n)) (i; ~�
r
i (t(n)); �x

r(t(n)))

�F~� (t)(i; ~�
r
i (t); �x

r(t)) dt

+ (Mr
i (n+ 1)�Mr

i (n)) :

Now, since �xri (�), i 2 S, are bounded (by Lemma 2 ) and continuous,
one can easily check that t(n+1)

t(n)
(F~� (t(n)) (i; ~�

r
i (t(n));�x

r(t(n)))�

F~� (t) (i; ~�
r
i (t); �x

r(t)))dt � O(~b(n)2). Also

xr;ni (t) = xr;ni (Tn) +
t

T

F~� (s)(i; ~�
r
i (s); x

r;n(s))ds:

The claim now follows from (5), Lemma 3 and Gronwall’s inequality.

Now, observe that the first iteration (6) of the algorithm can be
written as follows:

aji (n+ 1) = �ji aji (n) +
~b(n)�(n)

where �(n) = o(1) since c(n) = o(~b(n)). From Lemma 4, note that
the algorithm (6) and (7) asymptotically tracks trajectories of the ODE
(11). Now, by [6, Th. 1], we have the following.

Lemma 5: For all i 2 S, r = 1; 2, kV r
n (i) � F~� (n)(i; ~�

r
i (n);

V~� (n))k ! 0 a.s. as n ! 1.
Consider now �-fields Gl, l � 1, defined by Gl = �(ai(p);

V 1
pL(i); V

2
pL(i); p � l; i 2 S;4i(p); p < l; i 2 S). Defining

appropriate martingale sequences (as before) w.r.t. Gl, for the
slower recursion using second term on the right-hand side
of (6), one can again argue that these are a.s. convergent.
Now, define ~xr(t) = (~xr1(t); . . . ; ~x

r
s(t))

T , r = 1; 2, and
a(t) = (a1(t); . . . ; as(t))

T as follows: ~xri (s(n)) = V r
nL(i),

r = 1; 2 and ai(s(n)) = ai(n), n � 0, with linear interpolation on
intervals [s(n); s(n+ 1)], n � 0. One can rewrite (6) as shown in the
equation at the bottom of the page, where �(n) is o(1) by the above
and Lemma 5. Now, using a standard argument as in [9, pp. 191–194],
it can be shown that (6) asymptotically tracks the trajectories of (9) on
the slower scale. Let A(i)o, i 2 S, represent the interior of the action
set A(i). Also, let s

i=1 A(i) represent the cartesian product of all
action sets. We now have the following.

Theorem 1: Given � > 0, 9�0 > 0 such that 8 � 2 (0; �0], the
algorithm (6) and (7) converges toM � with probability one.

Proof: Suppose �(n) 2 s

i=1 A(i)o. Then, choose
� > 0 small such that �1i (n) = ai(n) � �4i(n) and
�2i (n) = ai(n) + �4i(n), respectively, for all i 2 S. Now,
using appropriate Taylor series expansions of terms in the numerator
of (F� (n)(i; �

1
i (n); V� (n))�F� (n)(i; �

2
i (n); V� (n))) =2�4

k
i (n)

around the point ai(n) and from (B), one can derive that a.s.; see (13) at
the bottom of the next page. For �(n) on the boundary of s

i=1 A(i),
a similar claim as above can be obtained except with a suitable scalar
multiplying the second term on the left-hand side of (13). Now,
V�(i) � 0, 8 i 2 S, since K(i; a; j) � 0 8 i; j 2 S, a 2 A(i). For

_�ji (t) = �̂ji E
F� (t)(i; �

1
i (t); V� (t))� F� (t)(i; �

2
i (t); V� (t))

2�4j
i (t)

; j = 1; . . . ; N; i 2 S (9)

_�i(t) = �̂i �riV�(t)(i) ; i 2 S: (10)

aji (n+ 1) = �ji aji (n) + c(n) E
F� (n) i; �1i (n); V� (n) � F� (n) i; �2i (n); V� (n)

2�4j
i (n)

Gn + �(n)
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Fig. 1. Convergence behavior for T = 5 with � = 0:2.

the ODE (10), observe that riV�(i) � �̂i �riV�(i) < 0 outside
the set M . It is easy to see that M serves as an asymptotically stable
attractor set for (10) with

i2S
V�(i), serving as the associated strict

Lyapunov function for (10). The claim follows.
Remark: Note thatM contains all Kuhn–Tucker points of (10) that

include both stable and unstable equilibria. In principle, the stochastic
approximation scheme may get trapped in an unstable equilibrium. In
[12], with noise assumed to be sufficiently “omnidirectional” in addi-
tion, it is shown that convergence to unstable fixed points is not pos-
sible; see also [3] for conditions on avoidance of unstable equilibria that
lie in certain compact connected chain recurrent sets. However, in most
cases (even without extra noise conditions) due to the inherent random-
ness, stochastic approximation algorithms converge to stable equilibria.
By continuity ofV�(i), i 2 S, one then obtains an “�-locally optimum”
�. Next, note that Theorem 1 merely gives the existence of a �0 > 0
for given � > 0 such that 8 � 2 (0; �0], convergence to an �-locally
optimal policy is assured. We found from numerical experiments that
a small enough � chosen arbitrarily works well in most cases. A small
� has the same effect as that of a larger step-size and which results in
a large variance during initial runs. On the other hand, however, it also
helps to speed up convergence. Finally, for obtaining a globally optimal
policy, one can use in addition, a “slowly decreasing Gaussian noise”
as in simulated annealing algorithms [5].

IV. NUMERICAL EXPERIMENTS

We consider a continuous time queueing model of flow control in
communication networks. A single bottleneck node is fed with two
arrival streams, one an uncontrolled Poisson stream and the other a
controlled Poisson process. Service times are assumed to be i.i.d., with

exponential distribution. We assume that the node has a finite buffer of
size B. Suppose T > 0 is a given constant. Let qn denote the queue
length observed at time nT , n � 0. The controlled source thus sends
packets according to a Poisson process with rate �c(n) during the time
interval [nT; (n+ 1)T ) and at instant (n+ 1)T , upon observation of
qn+1, the source changes its rate to some �c(n+1). The aim is to find
a stationary optimal policy that assigns rates to individual states. We
use our simulation based algorithm for this purpose.
In the experiments, we considered two cases for buffer size values,

B = 50 and B = 1000, respectively. The constraint interval for the
rate values was chosen to be [0:05; 4:5] (same over all states).We chose
two values for the uncontrolled traffic rate: �u = 0:2 and �u = 0:8,
respectively. We show here results corresponding toB = 50 and �u =
0:2 as similar results were obtained for the other combinations of these.
The service rate was chosen to be � = 2:0 in all cases. We considered
the cost function to be K(i; ai; j) = jj � B=2j. We observed similar
behavior using two other cost functions K(i; ai; j) = rji � B=2j +
jj �B=2j, r 2 (0; 1) andK(i; ai; j) = (ji�B=2j+ jj �B=2j)=2,
respectively. Cost functions of the aforementioned type are useful in
cases where the goal is to maximize throughput and minimize delays
simultaneously as in multimedia applications involving integrated ser-
vice networks. We denote the near-optimal rate as computed by our
algorithm in state i by a�i , i 2 S.
We ran all simulations for 15 000 iterations of the rate vector with

initial rate values for all states in all cases set at 0.5. Convergence had
been achieved in all cases we considered during this period. On a Pen-
tium 4 personal computer, it took about 1.5 min for 15 000 iterations,
for B = 50 and about 30 min for the same number of iterations, for
B = 1000. Thus the amount of computation using this approach is
seen to grow only linearly with the number of states. The samewas also

lim
�#0

E
F� (n)(i; �

1
i (n); V� (n))� F� (n)(i; �

2
i (n); V� (n))

2�4k

i
(n)

Gn +ri

k V�(n)(i) = 0: (13)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 4, APRIL 2004 597

Fig. 2. Feedback policies after convergence for � = 0:2.

Fig. 3. Value functions for � = 0:2.

verified using some other state–space cardinalities as well. We chose
L = 100 in all cases. Also, the step-size sequences were chosen as
c(n) = 1=n, b(n) = 1=n2=3, 8 n � 1, with c(0) = b(0) = 1. The
values of � and � were set at 0.1 and 0.9, respectively. The perturbation
sequences were chosen as i.i.d., Bernoulli distributed random variables
4i(n) = �1 w.p. 1/2, 8 n � 0. In Fig. 1, we plot the sample conver-
gence behavior for rates corresponding to states 10, 20, 30 and 40, for
T = 5, with �u = 0:2 and B = 50. We use the symbols a[10], a[20]
etc., to denote these rates in the figure. In Figs. 2 and 3, we present
plots of feedback policies and value functions (after convergence of
algorithm), respectively, for T = 5, 10 and 15, with �u = 0:2. The
value functions V �(i), i = 0; . . . ; B, were computed by averaging

over 1000 independent sample paths of the Markov chain under the
stationary policy obtained after convergence of algorithm for the var-
ious cases, with each path terminated after 30 000 “T -instants.”
FromFig. 2, observe that for givenT , the rates are high for low queue

length values and become low when queue length values are high. This
is obvious because of the form of the cost function. Also, the rate curves
become flatter as T is increased. Note that T =1 corresponds to the
open loop or state invariant policy case. Thus, as T is increased, the
effect of the controller tends to die down. From Fig. 3, note that the
values obtained are lowest for T = 5. Also, in most cases, the value
function dips somewhere near B=2 and rises on either side. This is
expected because of the form of the cost function and the discounted
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TABLE I
STEADY STATE PERFORMANCE METRICS FOR � = 0:2

cost criterion, because of which a significant contribution to the value
function comes from the initial stages as costs accrued from later stages
get discounted heavily.

Next, in Table I, we use the rates obtained after convergence of our
algorithm for various values of T , for computing certain steady state
performance measures of interest. We use these rates to compute the
steady-state mean queue length E[q], average rate of the controlled
source ���

c
, long run average cost J�, variance of queue length V ar(q)

and the stationary probability (P �) that the queue length is in the re-
gion = f(B=2)� 2; . . . ; (B=2) + 2g. The previous metrics are ob-
tained using another simulation that runs for 30 000 “T -instants” using
standardMonte-Carlo estimates.We computed thesemetrics in order to
get an idea of the steady-state system performance (in addition) using
our algorithm. From Table I, it is clear that the steady state performance
degrades as T increases in both cases. For instance, V ar(q) and J� in-
crease whileP � decreases. Note that the average rate for all cases when
�u = 0:2 is close to 1.8 which ensures almost complete bandwidth uti-
lization in all cases.

V. CONCLUSION

In this note, we developed a two timescale gradient search based
actor–critic algorithm for solving infinite horizon MDPs with
finite-state and compact action spaces under the discounted cost crite-
rion. The algorithm was theoretically shown to converge to a locally
optimal policy. We showed numerical experiments using a continuous
time queueing model for rate-based flow control. The algorithm is
found to be computationally efficient with the computational effort
growing only linearly with the number of states.
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