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Abstract Mechanistic aspects of the thermal decompo-

sition of benzyl-triethyl-ammonium tetrafluoroborate

(BTEATFB) employing simultaneous TG-DSC coupled

with a quadrupole mass spectrometer are considered in this

work. The experiments were conducted in an inert atmo-

sphere of helium. The decomposition of BTEATFB pro-

ceeds through several competing mechanisms. While

nucleophilic substitution reaction occurs through the for-

mation of a tertiary amine and plays an important role in

the initial stages of the decomposition, and the probability

of Hoffman elimination also exists.
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Introduction

Among many other quaternary ammonium compounds:

halides, hydroxides, and tetrafluoroborates of benzyl-tri-

ethyl- ammonium and benzyl-tri-n-butyl ammonium cat-

ions have been extensively used as phase-transfer catalysts

[1–7]. Quaternary ammonium compounds such as choline

are important in medical research [8]. Inclusion in the

synthesis mixture of various quaternary salts, particularly

bulky alkyl ammonium cations, has introduced a new

structure-directing parameter into the synthesis mechanism

[9], so that new type of zeolites have been patented [10–12]

to widen up the scope of zeolite chemistry and applica-

tions. Toxicological evaluation was performed on human

colon carcinoma cell line (CaCo-2) of ionic liquids based

on imidazolium, guanidinium, ammonium, phosphonium,

pyridinium, and pyrrolidinium cations [13].

The present work envisages studying the thermal

decomposition of benzyl-tri-ethyl ammonium tetrafluoro-

borate (BTEATFB) in an inert atmosphere of Helium, and

has not been considered hitherto. This is a prelude to using

this compound as an additive for the modification of the

thermal decomposition of ammonium per chlorate, a

widely used oxidizer in composite solid rocket propellant

technology even today.

Experimental

The pure compound BTEATFB was procured from M/s.

Aldrich Chemicals. The thermal decomposition was stud-

ied using simultaneous TG-DSC coupled with Quadrupole

Mass Spectrometer (QMS). Measurements were carried out

at Netzsch’s laboratory, Germany, employing STA/QMS

409-403 systems.
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A sample heating rate of 5 �C min-1, an inert atmo-

sphere of Helium, and a gas flow rate of 75 mL min-1

were employed in this study. The QMS data acquisition

was carried out in the scan mode, in the mass range of

10–200 amu.

Results and discussion

The TG-DTG curves of BTEATFB are shown in Fig. 1.

This compound decomposes in two distinct steps with a

mass loss of 78.5 and 20.3 % (as observed from TG).
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Fig. 1 TG curve of benzyl-triethyl-ammonium tetrafluoroborate. The

derivative curve (mass-loss rate) is also plotted
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Fig. 2 DSC curve of benzyl-triethyl-ammonium tetrafluoroborate
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Fig. 3 Mass spectrum of evolved gases at a sample temperature of

324 �C
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Fig. 4 Intensity of mass fragments with m/z = 26, 27, 29, and 30 of

evolved gases as a function of temperature
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Fig. 5 Intensity of mass fragments with m/z = 39 and 44 of evolved

gases as a function of temperature

Table 1 Assignment for the evolved mass fragments during thermal

decomposition of benzyl-triethyl-ammonium tetrafluoroborate

m/z value Peak assignment

14 N?

17 NH3

18 H2O

26 CH:CH

28 CH2=CH2

30 CH2=NH2

39 C2HN

44 CH3CH2N1H

58 CH2=NH1C2H5

65 (C7H7) tropylium
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Maximum mass-loss rates were observed at 325 and

489 �C.

Figure 2 shows the DSC curve of BTEATFB. The

enthalpy of fusion was found to be 172 J g-1 (DSC). A

second endothermic (broad double peak) was observed

between 280 and 350 �C (with peak temperature at

325 �C). This peak is caused by the decomposition of the

compound BTEATFB. The endothermic decomposition

enthalpy is 1,222 J g-1. In the DSC curve, endothermic

peaks occur at 109.4 and 325 �C, corresponding to fusion

and decomposition processes of the compound BTEATFB.

Figure 3 shows the intensities of mass fragments formed

in the quadrupole mass spectrometer as the sample

undergoes thermal decomposition at 324 �C. Significant

intensities were observed of mass fragments with m/z =

14, 16, 17, 18, 28, and 32. These peaks are due to the

formation of H2O, N2, O2 and C2H6 as decomposition

products.

The intensities of mass fragments with m/z = 26, 27, 29,

and 30 as a function of sample temperature are shown in

Fig. 4 along with TG-curve; those corresponding to

m/z = 39 and 44 are shown in Fig. 5, and those corre-

sponding to m/z = 58, 63, and 65 are shown in Fig. 6. The

significant intense peaks and their assignment are shown in

Table 1.

The thermal decomposition of complex fluoro anions at

temperatures of interest is characterized by the formation

of gaseous components such as BF3, NH3, and HF [14]. For

example, the decomposition of NH4BF4 is represented by

the reaction

NH4BF4 ! NH3 gð Þ þ HF gð Þ þ BF3 gð Þ

It is well-accepted that the quaternary ammonium

compounds of the type R4N1X2 decompose thermally to

yield an amine (R3N) and the corresponding alkyl

compound [15].

NR4BX4 ! NR3 gð Þ þ RX gð Þ þ BX3 gð Þ

As BTEATFB is analogous to tetra alkyl ammonium

compounds, its thermal decomposition can be predicted to

follow similar pattern as for NH4BF4.or for NR4BX4.

The thermal decomposition of benzyl quaternary-

ammonium compounds proceeds through several compet-

ing reaction mechanisms. The products formed depend on

the temperature of pyrolysis and the bulkiness of the

alkyl substituent about the quaternary ammonium center.

The major components are mainly those from a simple

nucleophilic substitution reaction between the fluoroborate

anion and the bulky quaternary ammonium cation. The

reaction path and the possible products are shown in

Scheme 1.

The formation of an intermediate amine in the thermal

decomposition of quaternary ammonium compounds was

reported by Haskins and Mitchell [8], Udupa [16], Nambiar

et al. [17], and Prasad and Krishnamurthy [18]. Similar

observations were made in the thermal decomposition of

tetra alkyl ammonium thiomolybdates [19] and thiotung-

astates [20].

Due to the bulkiness of the benzyl group, the possibility

of formation of its corresponding amine is doubtful. The

triethyl amine formed according to Scheme 1 boils at

88.8 �C, and hence under experimental conditions (at

higher temperatures), being unstable, undergoes further

fragmentation according to Scheme 2.

Further, the C–C bond next to the heteroatom (nitrogen)

is frequently cleaved, leaving the charge on the fragment

containing the heteroatom (nitrogen) whose non-bonding

electrons provide resonance stabilization. Accordingly, the

triethyl amine formed as per Scheme 1 can yield

  H5C2  C2H5 H 

     N  C CH3 

   H BF4
–

   C6H5CH2

N (C6H5CH2) (C2H5)2 + C2H5F + BF3

           (Alternately) 

  H5C2  C2H5

     N       C2H5            (C2H5)3N + (C6H5CH2) F + BF3

    C6H5CH2

BF4
–

Scheme 1 Decomposition pathways of benzyl-triethyl-ammonium

tetrafluoroborate

5C2  C2H5

) CH2CH3   (C2H5)2N  +

2H5

) CH2 = CH2   (m/z = 28) 

H

N+ (

C

(

CH3CH2N
+H (m/z = 44) 

• •–

–

Scheme 2 Degradation pathway of triethylamine
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Alternately, the ionized triethyl amine, with the elimina-

tion of two molecules of ethylene (Scheme 4) can yield eth-

ylamine which boils at 16.6 �C can further yield fragments

CH2=NH2 (m/z = 30) and CH3CH=N1H2 (m/z = 44).

A peak corresponding to m/z = 30 is good though not

conclusive evidence for a straight chain primary amine.

Yet another possibility for intermediary amine so

formed according to Scheme 1 to undergo cyclization [18]

as per Scheme 5 which explains for the appearance of

molecular fragment corresponding to m/z = 30.

The most studied reaction of quaternary ammonium

salts is the Hofmann degradation [21] which would give

rise to benzyldimethylamine, hydrogen fluoride, and the

corresponding alkene (Scheme 2). The evidence for the

Hofmann elimination depends on the detection of the

alkene. The appearance of the mass fragment correspond-

ing to m/z = 28 is the evidence to conclude that the Hof-

mann elimination is taking place (Fig. 2). Further, in alkyl

N (C2H5)3
+  ( ) CH •

3  (C2H5)2N
+ = CH2

( ) CH–

–

2 = CH2 (m/z = 28) 

CH2 = NH+C2H5 (m/z = 58) 

Scheme 3 Cleavage at C–C

bond next to heteroatom

2  CH2

2H5N
 + H 

 CH2  CH2

CH

C

H 

CH3CH2NH2  + 2[CH2 = CH2]  

(m/z = 45)   (m/z = 28) 

     ( ) CH3             ( ) H

2 = NH2  CH3CH = N+H2   (m/z = 44) CH

(m/z = 30) 

••– –

Scheme 4 Alternate path for triethyl amine decomposition

2  CH3

2H5  N  + 

CH

C

CH2  CH3

CH2  CH3  CH3 (m/z = 30) 

C2H5  N 

CH2  Aziridine 

Scheme 5 Stable cyclic aziridine formation

 (C6H5CH2) (C2H5)2N    +         1, 2 - H•  shift  (C7H7) + Tropylium ion        

( )CH≡CH (m /z = 26)

              +  (m /z = 65) 

–

–

Scheme 6 Formation of

Tropylium ion
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Fig. 6 Intensity of mass fragments with m/z = 58, 63, and 65 of

evolved gases as a function of temperature
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substituted aromatic compounds, cleavage is possible at the

bond b to the ring, giving the resonance stabilized benzyl

ion, or more likely, the tropylium ion [22]. These are again

relatively high temperature processes taking place.

The appearance of a peak corresponding to m/z = 26

and 65 (Fig. 6) supports the above hypothesis.

Conclusions

In the thermal decomposition of BTEATFB, while at low

temperatures simple displacement reactions appear to be

predominant. At higher temperatures, more complex multi-

center reactions are the probability. Observation of a strong

peak corresponding to m/z = 28 is confirmative of the

existence of Hofmann elimination process.
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