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A sine finite element using a zig-zag function for the analysis of laminated

composite beams

P. Vidal ⇑, O. Polit

LEME EA 4416, Université Paris Ouest, 50 rue de Sèvres, 92410 Ville d’Avray, France

a b s t r a c t

This paper deals with the influence of the use of the Murakami’s zig-zag function in the sine model for the

analysis of laminated beams. The adding of this function introduces a discontinuity of the first derivative

of the in-plane displacement with only one more unknown. The kinematics is based on a sine distribution

and the transverse displacement remains constant through the thickness. The transverse shear strain is

obtained using a cosine function avoiding the use of shear correction factors. A conforming FE approach is

carried out using Lagrange and Hermite interpolations. It is important to notice that the number of

unknowns is independent of the number of layers. The purpose is to develop a finite element approach

with a low computational cost and without numerical pathology.

This study aims at determining the influence of an additional zig-zag function in the Sine model for sta-

tic and vibration analysis. In this way, mechanical tests for thin/thick laminated and sandwich beams are

presented in order to evaluate the capability of this finite element. The results are compared with elas-

ticity or finite element reference solutions in statics and vibration. Both convergence velocity and accu-

racy are discussed. This finite element yields satisfactory results at a low computational cost.

1. Introduction

Composite and sandwich structures arewidelyused in the indus-

trial field due to their excellent mechanical properties, especially

their high specific stiffness and strength. Nevertheless, they exhibit

complex behavior. In particular, as it is shown in [1], a slope discon-

tinuity on the displacement field occurs at the interface between

two perfectly bonded layers. This phenomenon due to the different

transverse shear and normal strains of the layers is knownas zig-zag

effect. Moreover, the equilibrium equations imply that the trans-

verse shear stress is continuous along the thickness.

The aim of this paper is to determine the influence of an addi-

tional zig-zag function in the Sine model for static and vibration

analysis. This analysis is limited to the elasticity area in relation

to small displacements. In this context, we put the emphasis on

the necessity to take into account this effect, in particular for thick

or highly anisotropic structures.

According to published research, various theories in mechanics

for composite or sandwich structures (beams and plates for the

present scope) have been developed. The following classification

is associated with the dependency on the number of degrees of

freedom (dofs) with respect to the number of layers:

� the Equivalent Single Layer approach (ESL): the number of

unknowns is independent of the number of layers, but the

transverse shear and normal stresses continuity on the inter-

faces between layers are often violated. The first work for

one-layer isotropic plates was proposed in [2]. Then, we can

distinguish the classical laminate theory [3] (it is based on the

Euler–Bernoulli hypothesis and leads to inaccurate results for

composites and moderately thick beams), the first order shear

deformation theory ([4], composite laminates [5]), and higher

order theories ([6–13] for instance). All these studies are based

on a displacement approach, although other approaches are for-

mulated on the basis of mixed formulations [14,15]. It should

be noted that the finite element method is also carried out

([16–19]).

� the Layerwise approach (LW): The number of dofs depends on

the number of layers. This theory aims at overcoming the ESL

shortcoming of allowing discontinuity of out-of-plane stresses

on the interface layers, and has the capacity to take into account

the zig-zag effect. This approach was introduced in [20,21], and

also used in [22–24]. For recent contributions, see [25–29]. The

mixed formulation due to [30,31] is also carried out. See also

[13,32,33].

In this framework, refined models have been developed in

order to improve the accuracy of ESL models avoiding the



additional computational cost of LW approach. Based on physical

considerations and after some algebraic transformations, the

number of unknowns becomes independent of the number of

layers. Whitney [23] has extended the work of Ambartsumyan

[34] for symmetric laminated composites with arbitrary orienta-

tion and a quadratic variation of the transverse stresses in each

layer. A family of models, denoted zig-zag models, was em-

ployed in [35], then in [36–38]. More recently, it was also mod-

ified and improved by some authors [39–44] with different-

order kinematics assumptions, taking into account the transverse

normal strain. The zig-zag effect is included in these approaches

by taking into account the interlaminar continuity of the trans-

verse shear stress.

Another way to improve the description of the zig-zag effect has

been proposed by Murakami [31]. Murakami introduces only one

function through the thickness to describe this phenomenon. So,

the computational cost remains low. This function denoted ‘‘Mura-

kami’s zig-zag function’’ in [45] has been included in some existing

models. It can concern classical theory as well as higher order the-

ory for approaches based on displacement and mixed formulations

[46–53].

These works show that this function is easy to implement and it

enhances the performance of the available models.

This above literature deals with only some aspects of the broad

research activity about models for layered structures and corre-

sponding finite element formulations. An extensive assessment of

different approaches has been made in [54–57]. About the partic-

ular point of the zig-zag effect, see [1].

In this work, a new finite element for rectangular laminated

beam analysis is built, in order to have a low cost tool that is effi-

cient and simple to use. Our approach is associated with the ESL

theory. This element is totally free of shear locking and includes

a refined shear deformation theory [58] avoiding the use of shear

correction factors for laminates. It is based on the sinus model

[58,59] which is a simple approach with a low computational cost.

The new important feature consists of taking advantage of this effi-

cient approach by adding only one specific function more. This one

allows us to take into account the zig-zag effect. So, the deduced

model remains simple without numerical pathology, and includes

only four generalized unknowns.

As far as the interpolation of these finite elements is concerned,

our elements are C0-continuous except for the transverse displace-

ment associated with bending which is C1.

In this article, first the mechanical formulation for the present

model is described. The associated finite element is given. It is

illustrated by numerical tests which have been performed upon

various laminated and sandwich beams in statics and vibration.

A parametric study is given to show the effects of different

parameters such as length-to-thickness ratio and number of

degrees of freedom. The accuracy of computations is also evaluated

by comparisons with an exact three-dimensional theory for

laminates in bending [24] and also two-dimensional finite element

computations using commercial finite element software. We put

the emphasis on the role of the additional zig-zag function in the

framework of the family of Sinus models. In this way, the three

following models are compared. Their main features are also

recalled:

� the Sinus model (denoted Sin) does not include the zig-zag

effect and the continuity of the transverse shear stress.

� the Sinus model including the zig-zag function (denoted Sinzz)

does not take into account the continuity of the transverse

shear stress.

� the Sinus model with the continuity of the transverse shear

stress (denoted Sin-c) using the Heaviside function has the

capability to represent the zig-zag effect.

2. Resolution of the mechanical problem

2.1. The governing equations

Let us consider a beam occupying the domain B ¼ ½0; L� � � h
2
6

�

z 6 h
2
� � � b

2
6 x2 6 b

2

� �

in a Cartesian coordinate (x1,x2,z). The beam

has a rectangular uniform cross section of height h, width b and is

assumed to be straight. The beam is made of NC layers of different

linearly elastic materials. Each layer may be assumed to be ortho-

tropic in the beam axes. The x1 axis is taken along the central line

of the beam whereas x2 and z are the two axes of symmetry of the

cross-section intersecting at the centroid, see Fig. 1. As shown in

this figure, the x2 axis is along the width of the beam. This work

is based upon a displacement approach for geometrically linear

elastic beams.

2.1.1. Constitutive relation

Using matrix notations, the one dimensional constitutive equa-

tions of an orthotropic material are given by

r11

r13

� �

¼
C11 0

0 C55

" #

e11
e13

� �

i:e:½r� ¼ ½C�½e� ð1Þ

where we denote: the stress vector [r] ; the strain vector [e]. Fur-
thermore, in Eq. (1), constitutive unidimensional laws are given

by the elastic stiffness matrix ½C�.

Taking into account the classic assumption r22 = r33 = 0 (trans-

verse normal stresses are negligible), the longitudinal modulus is

expressed from the three-dimensional constitutive laws by

C11 ¼ C11 � 2C2
12=ðC23 þ C33Þ ð2Þ

where Cij are orthotropic three-dimensional elastic moduli. We also

have C55 ¼ C55.

2.1.2. The weak form of the boundary value problem

Using the above matrix notation and for virtual displacement
~u� 2 U�

0, the variational principle is given by:

find ~u 2 U (space of admissible displacements) such as:

�
R

B
½eð~u�Þ�T ½rð~uÞ�dBþ

R

B
½u��T ½f �dBþ

R

@BF
½u��T ½F�d@B¼

R

B
q½u��T ½€u�dB

8~u� 2U�
0

ð3Þ

where [f] and [F]are the prescribed body and surface forces applied

on @BF , and [�]T denotes the transpose of the matrix or vector [�].

eð~u�Þ is the virtual strain, and q is the mass density.

Eq. (3) is a classical starting point for finite element

approximations.

2.2. The displacement field for laminated beams

The present model is based on the sine model (denoted Sin)

developped in [60,58,59,61–63] for various applications on beams,

plates and shells. It is improved by only one additional zig-zag

function to take into account the discontinuity of the slope of the

in-plane displacement at the interface between two adjacent

layers.

h/2

Fig. 1. The laminated beam and coordinate system.



So, the kinematics of the model (denoted Sinzz) is assumed to

be of the following particular form (with w0 = @w/@x1) including

the zig-zag function:

For a layer (k)

uðkÞ
1 ðx1; x2; zÞ ¼ uðx1Þ � zw0ðx1Þ

0 þ f ðzÞðx3ðx1Þ þw0ðx1Þ
0Þ

þZkðzÞuZZðx1Þ

u3ðx1; x2; zÞ ¼ w0ðx1Þ

8

>

<

>

:

ð4Þ

It must be emphasized that only one supplementary function is

introduced, associated with the Murakami’s zig-zag function Zk(z)

which is defined by

ZkðzÞ ¼ ð�1ÞkfkðzÞ with fkðzÞ ¼
2

hk

z�
1

2
ðzk þ zkþ1Þ

� �

ð5Þ

where hk is the thickness of the kth layer while (zk, zk+1) are the bot-

tom and top coordinates of this layer (see Fig. 3). It is obvious that

Zk(z) is a piecewise linear function with bi-unit amplitude for all the

layers because we have fk(z) 2 [�1,1]. The physical meaning of the

zig-zag term is illustrated in Fig. 2 by comparing the in-plane dis-

placement of the Sin and Sinzz model.

In the classic approach, w0 is the bending deflection following

the z-direction, while u is associated with the uniform extension

of the cross-section of the beam along the central line, and x3 is

the shear bending rotation around the x2 axis.

In the context of the sine model, we have f ðzÞ ¼ h
p sin pz

h
. This

choice can be justified from the three-dimensional point of view,

using the work of Cheng [64]. As it can be seen in [65], a sine term

appears in the solution of the shear equation (see Eq. (7) in [64]).

Therefore, the kinematics proposed can be seen as an approxima-

tion of the exact three-dimensional solution. Furthermore, the sine

function has an infinite radius of convergence and its Taylor expan-

sion includes not only the third order terms but all the odd terms.

Moreover, the derivative of this function will represent the

transverse shear strain distribution due to bending. So, the free

boundary conditions at the top and bottom surfaces of the beam

are satisfied.

And, it is not necessary to introduce transverse shear correction

factors.

Finally, only 3 or 4 generalized displacements are included in

Eq. (4) for the Sin and Sinzz model respectively. Note that the

Sin-c model is not presented here for brevity reason. It also in-

cludes 3 generalized displacements, see [66] for more details.

2.2.1. Expression of strains

Matrix notation can be easily defined using a generalized dis-

placement vector as:

½u� ¼ ½FuðzÞ�½Eu�

with½Eu�
T ¼ u .

.

.
w0 w0 ;1

.

.

.
x3

.

.

.
uZZ

h i ð6Þ

and [Fu(z)] depends on the normal coordinate z according to:

½FuðzÞ� ¼
1 0 f ðzÞ � z f ðzÞ ZkðzÞ

0 1 0 0 0

� �

ð7Þ

The strains for the laminated beam are:

e11 ¼ u;1 � zw0;11 þ f ðzÞðx3;1 þw0;11Þ

þZkðzÞuZZ;1

c13 ¼ f 0ðzÞðx3 þw0
0Þ þ Z0

kðzÞuZZ

ð8Þ

These expressions can be described using a matrix notation:

½e� ¼ ½FsðzÞ�½Es� with

½Es�
T ¼ u;1

.

.

.
w0;1 w0;11

.

.

.
x3 x3;1

.

.

.
uZZ uZZ;1

h i ð9Þ

and [Fs(z)] depends on the normal coordinate z as:

½FsðzÞ� ¼
1 0 f ðzÞ � z 0 f ðzÞ 0 ZkðzÞ

0 f 0ðzÞ 0 f 0ðzÞ 0 Z0
kðzÞ 0

� �

ð10Þ

2.2.2. Matrix expression for the weak form

From the weak form of the boundary value problem Eq. (3), and

using Eqs. (9), (10) and (6), Eq. (7) , an integration throughout the

cross-section is performed analytically in order to obtain an unidi-

mensional formulation. Therefore, the first left and right term of

Eq. (3) can be written under the following form:

R

B
½eð~u�Þ�T ½rð~uÞ�dB ¼

R L

0
E�
s

� �T
½k�½Es�dx1 with

½k� ¼
R

X
½FsðzÞ�

T ½C�½FsðzÞ�dX
ð11Þ

and

R

B
q½u��T ½€u�dB ¼

R L

0
E�
u

� �T
½m� €Eu

� �

dx1 with

½m� ¼
R

X
q½FuðzÞ�

T ½FuðzÞ�dX
ð12Þ

where [C] is the constitutive law given in Section 2.1.1, and X rep-

resents the cross-section � h
2
6 z 6 h

2

� �

� � b
2
6 x2 6 b

2

� �

.

In Eqs. (11) and (12), the matrices [k] and [m] are the integra-

tion throughout the cross-section of the beam material

characteristics.

2.3. The finite element approximation

This section is dedicated to the finite element approximation of

the generalized displacements, see matrices ½Es�; E�
s

� �

; ½Eu�, and E�
u

� �

,

Eqs. (9) and (6). It is briefly described, and the reader can obtain a

detailed description in [59].

2.3.1. The geometric approximation

Given the displacement field constructed above for sandwich

and laminated beams, a corresponding finite element is developed

in order to analyze the behavior of laminated beam structures un-

der combined loads. Let us consider the eth element Lhe of the mesh

[Lhe . This element has three-nodes, denoted by (gj)j=1,2,3, see Fig. 4.

Sinzz

Sin

Fig. 2. Inclusion of the zig-zag function to the Sinus model (in-plane displacement).

layer (k)

layer (1)

..
.

..
.

layer (NC)

−1

+1

Fig. 3. Transverse coordinate of laminated beam.



A point with coordinate x1 on the central line of the beamwill be as

follows:

x1ðnÞ ¼
X

2

j¼1

NljðnÞ : x
e
1ðgjÞ ð13Þ

where Nlj(n) are Lagrange linear interpolation functions and x1
e(gj)

are Cartesian coordinates (measured along the x1 axis) of the node

gj of the element Le
h. n is an isoparametric or reduced coordinate

and its variation domain is [�1,1].

2.3.2. Interpolation for the bending-traction beam element

The finite element approximations of the assumed displace-

ment field components are hereafter symbolically written as

uh
i ðx1; x2; zÞ where the superscript h refers to the mesh [Lhe .

From the kinematics (see Eq. (4)), the transverse displacement

wh must be C1 – continuous; whereas the rotation x3
h, the exten-

sion displacement uh and uh
ZZ can be only C0 – continuous. There-

fore, the generalized displacement wh is interpolated by the

Hermite cubic functions Nhj(n).

According to the transverse shear locking phenomena, the other

shear bending generalized displacements, rotationxh
3, are interpo-

lated by Lagrange quadratic functions denoted Nqj(n). This choice

allows the same order of interpolation for both wh
;1 and xh

3 in the

corresponding transverse shear strain components due to bending,

and enables to avoid transverse shear locking using the field com-

patibility approach, see [67].

Finally, traction uh and uh
ZZ are interpolated by Lagrange qua-

dratic functions.

2.3.3. Elementary matrices

In the previous section, all the finite element mechanical

approximations were defined, and elementary rigidity Ke
uu

� �

and

mass Me
uu

� �

matrices can be deduced from Eqs. (11) and (12). It

has the following expression:

Ke
uu

� �

¼
R

Le
½B�T ½k�½B�dLe

Me
uu

� �

¼
R

Le
½N�T ½m�½N�dLe

ð14Þ

where [B] and [N] are deduced from the relation between the gen-

eralized displacement vectors Eqs. (9), (6) and the elementary vec-

tor of degrees of freedom (dofs) denoted by [qe]:

½Es� ¼ ½B�½qe� ½Eu� ¼ ½N�½qe� ð15Þ

The matrices [B] and [N] contain only the interpolation functions,

their derivatives and the jacobian components.

The same technique can be used defining the elementary

mechanical load vector, denoted Be
u

� �

, but it is not detailed here.

3. Results and discussions

In this section, several static and dynamic tests are presented

showing the advantages and the limitations of our finite element.

3.1. Static analysis

The aim of the present investigation is to study the efficiency of

this element to analyze the flexural behavior of highly inhomoge-

neous sandwich and laminated beams for static mechanical prob-

lems. The results are compared with the sinus model (denoted Sin),

the sinus model with the heaviside function denoted Sin-c (see

[66]), and a reference solution (exact solution [24] or commercial

code ANSYS). To evaluate the performance of the element in bend-

ing, the considered cases are given in the four following sections.

3.1.1. Properties of the finite element

Before proceeding to the detailed analysis, numerical computa-

tions are carried out for the rank of the element (spurious mode),

convergence properties and the effect of aspect ratio (shear

locking).

The test is about simply supported symmetric composite

beams. It is detailed below:

Geometry: composite cross-ply beam (0�/90�/ 0�) and

length-to-thickness ratio S = 20 (S ¼ L
h
); half

of the beam is meshed. All layers have the

same thickness.

Boundary conditions: simply supported beam subjected to a

sinusoidal load qðx1Þ ¼ q0 sin
px1
L
.

Material properties:

EL ¼ 172:4 GPa; ET ¼ 6:895 GPa;GLT ¼ 3:448 GPa;

GTT ¼ 1:379 GPa; mLT ¼ mTT ¼ 0:25

where L refers to the fiber direction, T refers to the normal direction.

This element has a proper rank without any spurious energy

modes when exact integration is applied to obtain all the stiffness

matrices (see [59]). There is also no need to use shear correction

factors here, as the transverse strain is represented by a cosine

function.

Table 1 gives the convergence of the Sinzz model for the trans-

verse displacement and the transverse shear stress for S = 20. For

this last component, the results are obtained using the equilibrium

equation at the post-processing level i.e. r13ðzÞ ¼ �
R z

�h=2
r11;1dx3. It

must be noticed that the deflection is less sensitive to the mesh

than the shear stress and the convergence velocity is very high.

Based on progressive mesh refinement, a N = 8 mesh is adequate

to model the laminated beam for a bending analysis. Moreover,

the results obtained are in good agreement with the reference val-

ues with few elements. In particular, a N = 1 mesh gives excellent

result for the deflection.

Considering various values for aspect ratio, the normalized dis-

placement obtained at the middle of the simply supported com-

posite beam is shown in Fig. 5 along with the exact solution [68],

and they are found to be in excellent agreement. It is also inferred

from Fig. 5 that the present element is free from shear locking phe-

Fig. 4. Description of the laminated beam finite element dof.

Table 1
�r13ð0;0Þ, wm for different number of dofs: mesh convergence study – 3 layers (0�/90�/

0�) � S = 20.

wm ¼ 100wðL=2;0ÞETh
3

q0L
4

�r13ð0;0Þ ¼ r13=q0

N Dof number Error (%) Equil. Eq Error (%)

1 6 0.6154 0.5 5.8068 33

2 12 0.6151 0.5 7.9604 9

Sinzz 4 24 0.6151 0.5 8.5483 2

8 48 0.6151 0.5 8.6988 0.5

16 96 0.6151 0.5 8.7367 0.1

Exact 0.6185 8.7483



nomenon as the element is developed using a field compatibility

approach.

3.1.2. Bending analysis of laminated composite beam

This test is about simply supported symmetric and anti-sym-

metric composite beams from Ref. [68]. It is detailed below.

Geometry: composite cross-ply beam (0�/90�/0�) and

(0�/90�) and length-to-thickness ratio from

S = 4 to S = 40; half of the beam is meshed.

All layers have the same thickness.

Boundary conditions: simply supported beam subjected to a

sinusoidal load qðx1Þ ¼ q0 sin
px1
L
.

Material properties: same properties as in Section 3.1.1

The two layer case (0�/90�) is first presented. The numerical

results for deflection, in-plane displacements, shear stress and

in-plane stress are given in Tables 2–4 with respect to the span-

to-thickness ratio: S = 4 (thick), S = 20 (moderately thick), S = 40

(thin). The percent error with respect to S for the three models is

compared in these tables.

For the displacements, the model including the zig-zag function

gives more precise results than the two sinus models (Sin and Sin-

c). The error is less than 3% regardless of the length-to-thickness

ratio. Concerning the stresses, the improvement is also significant.

The maximum error is 6% for the thick beam. It seems that the

influence of the zig-zag function is more important than the conti-

nuity of the transverse shear stress, especially for the thick beam.

Note that the results of the three models are rather good for

SP 20, the maximum error rate is 1.4%.

For S = 4, the variation of the normalized in-plane stress, trans-

verse shear stress and in-plane displacement through the thickness

are presented in Fig. 6 for the three models. This figure proves

again the good performance of the Sinzz model with respect to

the two other ones for the thick case. For S = 40, the results of this

family of sine models are very close. Only the results related to the

Sinzz model are shown in Fig. 7. Finally, it is seen from these fig-

ures that the element performs quite well for thick beams as well

as thin beams.

Next, the three layers (0�/90�/0�) case is evaluated. The results

are summarized in Tables 5–7. Figs. 8 and 9 show the in-plane

and transverse shear stresses and in-plane displacement for S = 4

and S = 40. It should be noted that the Sinzz model improves the

accuracy of the results only for the thick beam. In fact, the zig-

zag effect is more pronounced for S = 4, and the Sinzz model has

the best capability to represent this behavior (see Fig. 8). For all

cases, the error rate associated to this model remains less than

4.9%. From Figs. 8 and 9, we can conclude that the results are in

good agreement with respect to the reference solution, and the

previous remarks about the Sinzz model are validated. For the thin

structure, the results of the three models are similar.

3.1.3. Bending analysis of a sandwich beam under uniform pressure

The test deals with a sandwich beam under a uniform pressure.

The three simple models are assessed in this severe test to evaluate

the limitations and the role of the zig-zag function. This example is

detailed now.

Geometry: The 3-layer sandwich beam has graphite-

epoxy faces and a soft core with thickness

0.1 h/0.8 h/0.1 h and length-to-thickness

ratio S = 2.5, S = 5, S = 10; half of the beam

is meshed.

Boundary conditions: clamped/clamped (C/C) beam under an

uniform pressure q0
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Fig. 5. Variation of the non-dimensional maximum displacement (wm = 100w(L/

2,0) ETh
3/(q0L

4)) with respect to aspect ratio S – three layers (0�/90�/0�); mesh N = 8

; Sinzz model.

Table 2

Comparison between the different Sinus models: without zig-zag effects (Sin), with zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress (Sin-c)

– �u (0,h/2) and �wðL=2;0Þ for different values of S – 2 layers (0�/90�).

S �u(0,h/2) �wðL=2; 0Þ

Sinzz Error (%) Sin-c Error (%) Sin Error (%) Exact Sinzz Error (%) Sin-c Error (%) Sin Error (%) Exact

4 4.62 1.1 3.40 25 3.93 13.6 4.56 4.5438 3 4.1811 11 4.403 6.2 4.7076

20 486.34 <0.01 479.02 1 482.52 0.5 486.35 2.7036 0.2 2.6837 0.7 2.6981 0.1 2.7092

40 3865.8 <0.01 3843.9 0.3 3858.16 <0.1 3865.6 2.6450 <0.1 2.6350 0.2 2.6436 0.1 2.6462

Table 3

Comparison between the different Sinus models: without zig-zag effects (Sin), with

zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress

(Sin-c) � �r13ð0;�h=4Þ (maxi) for different values of S – 2 layers (0�/90�).

�r13ð0;�h=4Þ

S Sinzz Error (%) Sin-c Error (%) Sin Error (%) Exact

4 2.843 5 3.057 13 2.972 9.8 2.706

20 14.574 0.3 14.684 <0.1 14.602 0.1 14.620

40 29.174 0.5 29.197 0.4 29.180 0.4 29.325

Table 4

Comparison between the different Sinus models: without zig-zag effects (Sin), with

zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress

(Sin-c) – �r11ðL=2;�h=2Þ for different values of S – 2 layers (0�/90�).

S �r11ðL=2;�h=2Þ

Sinzz Error (%) Sin-c Error (%) Sin Error (%) Exact

4 31.8 6 33.5 11 33.3 11 30.0

20 703.6 0.5 703.9 0.6 692.39 1 699.7

40 2803.1 0.3 2805.2 0.4 2751.7 1.4 2792.6



Material properties: Face : E11 = 131.1 GPa, E22 = E33 = 6.9 GPa,

G12 = 3.588 GPa,

G13 = 3.088 GPa,G23 = 2.3322 GPa,

m12 = m13 = 0.32, m23 = 0.49.

Core : E11 = 0.2208 MPa,E22 = 0.2001 MPa,

E33 = 2760 MPa,

G12 = 16.56 MPa,G13 = 545.1 MPa,

G23 = 455.4 MPa, m12 = 0.99, m13 = 0.00003,

m23 = 0.00003.

Mesh: N = 16

Results: the results are presented under a non-dimensional form

as: �w ¼ 100wY0=hS
4
q0; �r11 ¼ r11=S

2q0; �s13 ¼ s13=Sq0

with Y0 = 6.9 GPa. They are compared with results from

a commercial code with a very refined mesh including

3800 dofs (Cf. [69]). It is to be noted that the tranverse

shear stress is calculated at x = L/8 because the 2D FE

solution is not valid at a fixed edge.

Table 8 shows that the Sinzz model allows us to improve the

quality of the estimation of the in-plane, transverse shear stresses
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Fig. 6. Distribution of �r11 (left), �r13 (middle) and �u (right) along the thickness – S = 4 – two layers (0�/90�) – Sinzz/Sin-c/sin.
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Fig. 7. Distribution of �r11 (left) and �r13 (right) along the thickness – S = 40 – two layers (0�/90�) – Sinzz.

Table 5

Comparison between the different Sinus models: without zig-zag effects (Sin), with zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress (Sin-c)

– �wðL=2; 0Þ and �u(0,h/2) for different values of S – 3 layers (0�/90�/0�).

�u(0,h/2) �wðL=2; 0Þ

S Sinzz Error (%) Sin-c Error (%) Sin Error (%) Exact Sinzz Error (%) Sin-c Error (%) Sin Error (%) Exact

4 0.9929 4.9 1.0114 7 0.8914 5 0.9456 2.8027 3 2.7894 3 2.7258 5.5 2.8899

20 67.368 0.6 66.992 <0.1 66.202 1 66.941 0.6151 0.5 0.6173 <0.01 0.6046 2 0.6185

40 520.04 0.1 518.28 <0.1 517.64 <0.1 519.11 0.5371 0.1 0.5367 <0.01 0.5344 0.4 0.5379

Table 6

Comparison between the different Sinus models: without zig-zag effects (Sin), with

zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress

(Sin-c) – �r13ð0;0Þ for different values of S – 3 layers (0�/90�/0�).

�r13ð0; 0Þ

S Sinzz Error

(%)

Sin-c Error

(%)

Sin Error

(%)

Exact

4 1.4202 0.8 1.321 7 1.5207 6 1.4318

20 8.6988 0.5 8.691 0.6 8.743 <0.1 8.7483

40 17.5400 0.5 17.536 0.6 17.563 0.4 17.641

Table 7

Comparison between the different Sinus models: without zig-zag effects (Sin), with

zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress

(Sin-c) – �r11ðL=2;h=2Þ for different values of S – 3 layers (0�/90�/0�).

S �r11ðL=2;h=2Þ

Sinzz Error (%) Sin-c Error (%) Sin Error (%) Exact

4 19.5 3.9 19.9 5 19.7 5 18.8

20 265.4 0.8 264.6 0.5 262.0 0.5 263.2

40 1024.4 0.4 1023.5 0.4 1013.6 0.6 1019.7



and the deflection for the very thick cases. The inclusion of the zig-

zag function is not sufficient for the moderately thick structures,

and the conditions on the continuity of the transverse shear stress

become also important. Figs. 10 and 11 show that the distribution

of the in-plane stress is rather good. Nevertheless, these models

cannot take into account the non-symmetrical distribution of the
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Fig. 8. Distribution of �r11 (left) – �r13 (middle)-�u (right) along the thickness – S = 4 – three layers (0�/90�/0�) – Sinzz/Sin-c/sin.
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Fig. 9. Distribution of �r11 (left) and �r13 (middle) -�u (right) along the thickness – S = 40 – three layers (0�/90�/0�) – Sinzz.

Table 8

Comparison between the different Sinus models: without zig-zag effects (Sin), with zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress (Sin-c)

– sandwich – uniform pressure – clamped/clamped.

S Sinzz Error (%) Sin-c Error (%) Sin Error (%) ANSYS

2.5 �r13ðL=8; 0Þ 0.3261 0.1 0.3089 5.3 0.3306 1 0.3263

�r11ðL=2;�h=2Þ 2.0642 1 2.2184 5 1.9416 7 2.1000

�wðL=2;0Þ 19.1094 6 17.9749 12 17.8530 13 20.5340

5 �r13ðL=8; 0Þ 0.3795 2 0.3844 0.9 0.3912 0.8 0.3880

�r11ðL=2;�h=2Þ 0.9295 1 0.9459 0.7 0.8717 7 0.9398

�wðL=2;0Þ 5.5730 6 5.6569 5.0 5.3975 9 5.9550

10 �r13ðL=8; 0Þ 0.3965 4 0.3973 3.7 0.3976 4 0.4125

�r11ðL=2;�h=2Þ 0.6175 0.3 0.6215 0.4 0.6029 2 0.6193

�wðL=2;0Þ 1.7153 6 1.7810 3 1.6868 8 1.8358
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Fig. 10. Distribution of �r11 and �r13 along the thickness – S = 2.5 – sandwich – Sinzz – uniform pressure – C/C.



quantity of interest for the very thick cases (see Fig. 10 right for

instance).

3.1.4. Bending analysis of a sandwich beam under a sinusoidal

pressure

The test deals with a sandwich beam under sinusoidal pressure

with different values of face to core stiffness ratio. The three simple

models are assessed in this severe test to evaluate the limitations

and the role of the zig-zag function. This case has already been

studied in [50].

This example is detailed now.

geometry: The 3-layer sandwich beam has aluminum

alloy faces and a soft core with thickness

0.1 h/0.8 h/0.1 h and length-to-thickness

ratio S = 4/10/20/40/100; half of the beam

is meshed.

Boundary conditions: simply supported (S/S) beam under a sinu-

soidal pressure qðx1Þ ¼ q0 sinð
px1
L
Þ

Material properties: Face : Ef = 73000 MPa,m = 0.34.

Core : Ec = gEf, with g = 10,100

Mesh: N = 16

Results: The results ð�u; �w; �r11; �r13Þ are made non-dimensional

using:

�u ¼
Efu1ð0;�h=2Þ

hq0

�w ¼
100Efu3ðL=2;0Þ

S4hq0

�r11 ¼
r11ðL=2;�h=2Þ

q0

�r13 ¼
r13ð0; 0Þ

q0

ð16Þ

They are provided in Table 9 and Table 10. They are compared with

results from a commercial code with a very refined mesh including

3800 dofs.
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Fig. 11. Distribution of �r11 and �r13 along the thickness – S = 10 – sandwich – Sinzz – uniform pressure – C/C.

Table 9

Comparison between the different Sinus models: without zig-zag effects (Sin), with zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress (Sin-c)

– error rate for the in-plane and transverse displacements.

�u �w

S 4 10 20 40 100 4 10 20 40 100

g = 10

Reference 26.62 389.01 3078.81 24564.1 383518 42.28 27.29 25.13 24.59 24.44

Sin 1.7% 0.4% 0.2% 0.1% 0.1% 4% 1.5% 0.7% 0.5% 0.5%

Sin-c 0.5% 0.2% 0.04% 0.01% 0.002% 1% 0.2% 0.04% 0.01% 0.003%

Sinzz 0.2% 0.2% 0.1% 0.1% 0.1% 2% 0.9% 0.6 % 0.5% 0.5%

g = 100

Reference 43.61 463.74 3444.01 27014 419741 198.49 55.01 33.80 28.47 26.97

Sin 24% 6% 1.7% 0.5% 0.1% 48% 29% 12% 4% 1%

Sin-c 0.3% 0.2% 0.07% 0.02% 0.00% 0.8% 0.1% 0.04% 0.00% 0.00%

Sinzz 7% 2% 0.7% 0.2% 0.1% 23% 14% 6% 2% 0.7%

Table 10

Comparison between the different Sinus models: without zig-zag effects (Sin), with zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress (Sin-c)

– error rate for the in-plane normal and transverse shear stresses.

�r11 �r13

4 10 20 40 100 4 10 20 40 100

g = 10

Reference �19.57 �114.38 �452.63 �1805.6 �11353 1.49 3.75 7.50 15.02 37.53

Sin 2% 0.7% 0.5% 0.4% 1% 1.1% 0.3% 0.2% 0.1% 0.1%

Sin-c 0.4% 0.1% 0.04% 0.07% 0.6% 0.7% 0.2% 0.1% 0.1% 0.1%

Sinzz 0.5% 0.5% 0.4% 0.4% 1% 1.3% 0.3% 0.2% 0.1% 0.1%

g = 100

Reference �32.06 �136.35 �506.30 �1985.7 �12451 1.38 3.53 7.08 14.18 35.47

Sin 24% 6% 2% 0.8% 1% 1% 0.0% 0.1% 0.1% 0.1%

Sin-c 0.4% 0.1% 0.00% 0.06% 0.8% 0.7% 0.2% 0.1% 0.1% 0.1%

Sinzz 8% 2% 1% 0.5% 1% 0.6% 0.2% 0.1% 0.1% 0.1%



The following remarks can be made:

� For g = 10, the maximum error rate of the Sinzz model is 2 % (for

S = 4). In this case, the use of the Sinzz model is justified only for

the thick beam when compared with the Sin model.

� When g increases, the role of the additional zig-zag function is

significant when compared with the Sin model, even for the

moderately thick structures. The accuracy of results decreases

quickly when the length-to-thickness ratio decreases (thick

beam). In this case, the validity of the Sinzz model is limited

to the moderately thick or thin beam.

� For the thin structure SP 40, the error rate for the Sinzz model

remains less than 2%.

� For this sandwich case, the Sin-c model is the most accurate

model regardless of the degree of anisotropy and the slender-

ness ratio. So, it shows that the capability to take into account

both the continuity conditions on the transverse shear stress

and the zig-zag effect is an important feature in the framework

of the family of sinus models.

Note that the error of the transverse displacement is more sen-

sitive to the variation of the degree of anisotropy g. For the thick

cases, it is necessary to enrich this term to avoid this and include

the transverse normal strain.

3.2. Free-vibration tests

In this section, some examples of sandwich and laminated

beams are used to evaluate this finite element in the free vibration

case. It concerns a wide range of length-to-thickness ratios for

symmetric, unsymmetric and sandwich beams. These examples

are taken from [70–72]. The results are compared with the ANSYS

solution with a very refined mesh or the exact 2D solution. Some of

these examples are extended to a very thick beam to assess this fi-

nite element.

3.2.1. Free vibration of symmetric laminated composite [70,71]

The example is issued from [70] and [71]. It deals with a sym-

metric laminated composite with the following characteristics:

Geometry: The beam studied has a length of L = 6.35

m, and a thickness h = 0.2794 m (thin

S � 22.7), and h = 2.794 m (thick S � 2.2).

It possesses three layers at (90�/0�/90�),

with thickness (0.25 h/0.5 h/0.25 h).

Boundary conditions: simply supported beam

Material properties: The material used is boron epoxy which

has the following mechanical properties:

E11 = 241.5 GPa, E22 = E33 = 18.89 GPa,G12 =

G13 = 5.18 GPa,

G23 = 3.45 GPa,m12 = m13 = 0.24,

m23 = 0.25,q = 2015 kg/m3.

Mesh: N = 8

Results: The mode shapes are precised as: bend, sh, t/c for bend-

ing, shear, axial and traction/compression mode

respectively.

(Tables 11 and 12 present numerical values of frequencies for

the thin and very thick beam. Results of the Sinzz model are better

than those of the Sin and Sin-c models regardless of the length-to-

thickness ratio. For the thin structure, the results of Table 11 show

the good agreement with reference values for eight natural

frequencies. The maximal error rate does not exceed 2.4 for all

models. For the very thick structure, we can highlight the impor-

tance of the zig-zag function for the three highest frequencies.

3.2.2. free vibration of anti-symmetric lay-up

In this section, a laminated composite with an anti-symmetric

lay-up is considered.

Geometry: composite cross-ply beam (0�/90�) and

length-to-thickness ratio S = 2, S = 5,

S = 10, S = 20.

Boundary conditions: free vibration of a simply supported beam

Material properties:

EL ¼ 181 GPa; ET ¼ 10:3 GPa;GLT ¼ 7:17 GPa;

GTT ¼ 2:87 GPa; mLT ¼ 0:25; mTT ¼ 0:33

where L and T refer to the fiber and transverse direc-

tion respectively.

Results: the results are presented under a non-dimensional nat-

ural frequency as follows: �x ¼ xLSðq=Y0Þ
1=2, with

Y0 = 10.3 GPa, q = 1578 kg/m3 (see Table 13). They are

compared with two-dimensional results computed from

ANSYS with a refined mesh [73]. The thickness modes

are omitted because the present models have not the

capability to predict them due to the constant approxi-

mation across the thickness of u3.

For the very thick beam (S = 2/5), it is necessary to include the

zig-zag function in the Sin model. The improvement is really signif-

icant compared with the two other models. In this case, these ones

give very poor results.

When S is greater than 10, the error rate of the Sinzz model

remains less than 3.6%. The influence of the additional function

occurs mainly for the highest bending modes.

3.2.3. free vibration of sandwich beam [72]

The example of sandwich beam has the following

characteristics:

Table 11

Comparison between the different Sinus models: without zig-zag effects (Sin), with

zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress

(Sin-c) – natural frequencies – 3 layers (90�/0�/90�) – S � 22.7.

Sinzz Error

(%)

Sin-c Error

(%)

Sin Error

(%)

Ansys

Freq (Hz) thin beam

Bend 14.94 0.0 14.98 0.3 14.97 0.2 14.93

Bend 57.68 0.0 57.94 0.4 57.85 0.3 57.67

Bend 123.13 0.1 123.96 0.8 123.55 0.5 122.90

Bend 205.35 0.4 207.23 1.3 206.18 0.8 204.50

Bend 299.38 0.7 302.75 1.8 300.71 0.9 297.23

Bend 401.17 0.9 406.91 2.4 403.60 1.5 397.28

Bend 510.46 1.6 517.43 3 512.67 2 502.19

sh 632.94 0.4 632.94 0.4 640.06 1.5 630.25

Table 12

Comparison between the different Sinus models: without zig-zag effects (Sin), with

zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress

(Sin-c) – natural frequencies – 3 layers (90�/0�/90�) – S � 2.2.

Sinzz Error

(%)

Sin-c Error

(%)

Sin Error

(%)

Ansys

Freq (Hz) thick beam

Bend 82.62 0.5 83.66 1 82.81 0.7 82.17

Bend 195.18 0.0 195.67 0.3 195.62 0.2 195.22

sh 274.98 0.2 274.94 0.2 277.98 1.3 274.31

Bend 311.31 0.4 313.36 1 319.36 2.9 310.07

Bend 429.81 1.3 442.07 4.1 460.18 8.4 424.311

Bend 460.54 5.0 501.47 14.2 515.41 17.4 438.81

Bend 550.61 2.5 585.51 8.9 621.47 15.6 537.42



Geometry: The 3-layer sandwich beam has graphite-

epoxy faces and a soft core with thickness

0.1 h/0.8 h/0.1 h and length-to-thickness

ratio S = 2, S = 5, S = 10, S = 20.

Boundary conditions: simply supported beam

Material properties: Face : E11 = 131.1 GPa, E22 = E33 = 6.9 GPa,

G12 = 3.588 GPa, G13 = 3.088 GPa,G23 = 2.3322

GPa, m12 = m13 = 0.32, m23 = 0.49,qf = 1000

kg/m3. Core : E11 = 0.2208MPa,E22 = 0.2001

MPa, E33 = 2760 MPa, G12 = 16.56 MPa, G13 =

545.1 MPa, G23 = 455.4 MPa, m12 = 0.99,

m13 = 0.00003, m23 = 0.00003,qc = 70 kg/m3.

Results: results are presented under a non-

dimensional natural frequency as follows:
�x ¼ xLSðqf =Y0Þ

1=2 with Y0 = 6.9 GPa- Cf.

Table 14. We define an anisotropy ratio gv
such that: Eface = gv Ecore and Gface = gvGcore

Table 14 shows that the influence of the zig-zag function is

limited to the highest modes for the very thick beam. The most

important characteristic is the capability of the model to take

into account both the interlaminar continuity and the zig-zag

effect. For SP 5, the error rate for the Sin-c model does not

exceed 3.4%.

Table 13

Comparison between the different Sinus models: without zig-zag effects (Sin), with zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress (Sin-c)

– natural frequencies – anti-symmetric lay-up (0�/90�).

S Natural frequencies �x

Sinzz Error (%) Sin-c Error (%) Sin Error (%) Ansys

2 Bend 3.31 3.5 3.51 10 3.38 6 3.20

Bend 7.93 7.6 9.38 27 8.63 17 7.37

sh 8.19 5.6 8.04 4 8.77 13 7.76

Bend 9.11 3.0 16.34 85 14.80 67 8.85

Bend 13.65 24 23.79 117 22.07 101 10.94

5 Bend 4.81 0.8 4.87 2 4.83 1 4.77

Bend 14.97 2.4 15.60 6 15.19 4 14.61

Bend 26.56 4.5 28.64 12 27.30 7 25.40

tc 35.99 1.6 36.39 3 38.12 7 35.42

Bend 38.70 7.4 43.09 19 40.29 12 36.02

sh 49.69 2.4 50.29 3 54.15 11 48.52

10 Bend 5.30 0.2 5.32 0.5 5.30 0.3 5.29

Bend 19.26 0.7 19.49 2 19.33 1 19.12

Bend 38.33 1.5 39.33 4 38.67 2 37.77

Bend 60.01 2.4 62.57 7 60.91 4 58.60

Bend 83.08 3.6 88.13 9 84.87 6 80.22

tc 88.85 0.5 88.92 0.5 90.06 2 88.44

20 Bend 5.45 0.0 5.46 0.1 5.45 < 0.1 5.45

Bend 21.22 0.2 21.28 0.4 21.23 0.3 21.18

Bend 45.76 0.5 46.08 1 45.86 0.7 45.55

Bend 77.28 0.9 78.23 2 77.58 1 76.59

Bend 114.14 1.5 116.31 3 114.86 2 112.40

Bend 155.18 2.4 159.32 5 156.58 3 151.48

tc 188.09 0.1 188.09 0.1 188.63 0.4 187.89

Table 14

Comparison between the different Sinus models: without zig-zag effects (Sin), with zig-zag function (Sinzz), and with zig-zag and continuity of the transverse shear stress (Sin-c)

– natural frequencies – sandwich beam.

S Natural frequencies �x

Sinzz Error (%) Sin-c Error (%) Sin Error (%) Ansys Exact 2D [72]

2 Bend 3.68 4.2 3.57 1.3 3.67 4 3.53 –

sh 5.50 3.0 5.34 0.0 5.54 3.7 5.34 –

Bend 8.00 5.5 8.03 5.9 7.99 5.4 7.58 –

Bend 12.84 7.0 13.77 14 13.22 10 11.99 –

Bend 17.96 8.6 21.08 27 19.61 18 16.53 –

5 Bend 8.07 3.1 7.85 0.3 8.09 3.4 7.82 7.82

Bend 17.96 3.9 17.43 0.8 17.96 3.9 17.28 17.27

Bend 28.11 4.4 27.42 1.8 28.01 4. 26.93 26.90

sh 34.40 3 33.42 0. 34.66 3.7 33.40 –

Bend 38.81 4.9 38.27 3.4 38.62 4.3 37.01 36.93

10 Bend 12.46 1.8 12.25 0.1 12.49 2.1 12.23 12.23

Bend 32.27 3.1 31.41 0.3 32.37 3.4 31.30 31.29

Bend 52.07 3.6 50.53 0.5 52.17 3.8 50.26 50.21

Bend 71.88 3.9 69.77 0.8 71.90 3.8 69.21 68.09

Bend 92.05 4.1 89.52 1.2 91.88 3.9 88.41 88.18

Bend 112.83 4.4 110.11 1.9 112.43 4. 108.02 107.61

t/c 121.04 0.8 121.04 0.8 121.04 0.8 120.03 –

20 Bend 15.44 0.4 15.39 0. 15.50 0.8 15.38 15.38

Bend 49.87 1.8 49.04 0.1 49.99 2. 48.98 48.94

Bend 89.25 2.6 87.18 0.2 89.53 2.8 87.01 86.90

Bend 169.10 3.4 164.26 0.4 169.56 3.6 163.58 163.12

Bend 209.04 3.7 202.88 0.6 209.45 3.8 201.64 200.87

t/c 242.08 0.2 242.06 0.2 242.08 0.2 241.61 –



To estimate the influence of the degree of anisotropy, the error

rate with respect to the anisotropy coefficient gv for the first and

second modes is presented in Fig. 12. The three models are com-

pared. It can be seen that the additional function allows to decrease

the error rate when gv increases. But, the previous remark in Sec-

tion 3.1.4 is confirmed, that is, the Sin-c model which has a double

feature (continuity and zig-zag effect) is necessary. The figure

shows that this model is insensitive to the anisotropy ratio for

the sandwich beam.

4. Conclusion

In this article, a sine model including the zig-zag function, de-

noted Sinzz, has been presented and evaluated through a wide

variety of stacking sequences, length-to-thickness ratios in statics

and vibration. It consists of a three-node multilayered (sandwich

and laminated) beam finite element without numerical patholo-

gies. There is no need for transverse shear correction factors. The

number of unknowns is low.

This element is assessed in the framework of the sinus model

for heterogeneous beam. Each of one has different features: special

attention is pointed towards the influence of this additional func-

tion which allows to represent the slope discontinuity of the in-

plane displacement through the thickness. Only one more un-

known is necessary. Another important aspect concerning the con-

tinuity conditions of the transverse shear stress is also discussed.

The following comments can be made about the specific role of

this zig-zag function with respect to the other FE belonging to the

sinus family:

� the improvement of the results is important for the thick

beams.

� the influence increases when the degree of anisotropy increases

for thick and moderately thick sandwich beams.

Moreover, note that the sine model must not only take into ac-

count the zig-zag effect but also the continuity conditions of the

transverse shear stress for the sandwich beam. These two require-

ments are particularly important when the degree of anisotropy in-

creases for static or vibration analysis.
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