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A single amino acid substitution in region 1.2 of the
principal s factor of Streptomyces coelicolor A3(2)
results in pleiotropic loss of antibiotic production
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Department of Molecular Microbiology, John Innes

Centre, Norwich Research Park, Colney, Norwich NR4
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Summary

Antibiotic production in streptomycetes generally

occurs in a growth phase-dependent and develop-

mentally co-ordinated manner, and is subject to

pathway-specific and pleiotropic control. Strepto-

myces coelicolor A3(2) produces at least four chemi-

cally distinct antibiotics, including actinorhodin (Act)

and undecylprodigiosin (Red). afsB mutants of S.

coelicolor are deficient in the production of both

compounds and in the synthesis of a diffusible g-

butyrolactone, SCB1, that can elicit precocious Act

and Red production. Clones encoding the principal

and essential s factor (sHrdB) of S. coelicolor restored

Act and Red production in the afsB mutant BH5. A

highly conserved glycine (G) at position 243 of sHrdB

was shown to be replaced by aspartate (D) in BH5.

Replacement of G243 by D in the afsB1 strain M145

reproduced the afsB phenotype. The antibiotic defi-

ciency correlated with reduced transcription of actII-

ORF4 and redD, pathway-specific regulatory genes

for Act and Red production respectively. Exogenous

addition of SCB1 to the G-243D mutants failed to

restore Act and Red synthesis, indicating that loss of

antibiotic production was not a result of the deficiency

in SCB1 synthesis. The G-243D substitution, which lies

in the highly conserved 1.2 region of undefined

function, had no effect on growth rate or morphological

differentiation, and appears specifically to affect

antibiotic production.

Introduction

Streptomycetes produce approximately 70% of all known

microbial antibiotics, including many with important

applications in human medicine and agriculture. Antibiotic

production in streptomycetes generally occurs in a growth

phase-dependent manner, coinciding with the onset of

aerial mycelium formation in agar-grown cultures and with

stationary phase in liquid-grown cultures (Chater and

Bibb, 1997). The gene clusters that encode antibiotic

biosynthetic pathways are generally regulated by path-

way-specific transcriptional activators, which are in turn

controlled by pleiotropic regulatory genes, some of which

are also required for morphological differentiation

(Champness and Chater, 1994). Expression of both the

pleiotropic and the pathway-specific regulatory genes is

determined by a variety of physiological and environ-

mental factors that include growth rate, small diffusible

signalling molecules, imbalances in metabolism and

various physiological stresses (Bibb, 1996). However, little

is understood of the underlying regulatory mechanisms.

The genetically well-studied Streptomyces coelicolor

A3(2) produces at least four chemically diverse antibio-

tics, and a variety of mutants are pleiotropically deficient

in their synthesis (Bibb, 1996). Among the less well

characterized are afsB mutants, which are deficient in

actinorhodin (Act) and undecylprodigiosin (Red) produc-

tion and in the synthesis of a diffusible signalling molecule

that can cross-feed A factor-deficient mutants of Strepto-

myces griseus (A-factor is a g-butyrolactone required for

streptomycin production and aerial mycelium formation in

S. griseus; Hara et al., 1983). Transcription of actII-ORF4,

the pathway-specific regulatory gene for Act synthesis,

was abolished in the afsB mutant BH5 (Horinouchi et al.,

1989). actII-ORF4 and its homologue redD, a pathway-

specific regulatory gene for Red production, play pivotal

roles in determining the onset of Act and Red bio-

synthesis, and their levels of transcription increase

markedly upon entry into stationary phase (Takano et al.,

1992; Gramajo et al., 1993). Their promoters (actII-

ORF4p and redDp) are recognized efficiently in vitro by an

RNA polymerase (RNAP) holoenzyme containing sHrdD

(Fujii et al., 1996), a non-essential s factor that is a close

homologue of sHrdB, the principal and essential s factor in

S. coelicolor (Buttner et al., 1990). Regions 2.4 and 4.2 of

these two s factors, which are responsible for recognition

of the 210 and 235 regions, respectively, of cognate

promoters, are almost identical, and the two s factors are

likely to recognize similar promoter sequences. As

disruption of hrdD had no effect on Act and Red

production (Buttner et al., 1990), there must be at least
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one other s factor in S. coelicolor that can recognize actII-

ORF4p and redDp in vivo. As a protein with the same

electrophoretic mobility as sHrdB conferred on core RNAP

the ability to transcribe from redDp in vitro, it was possible

that this s factor was sHrdB (Fujii et al., 1996).

The results presented here show that, in the afsB

mutant BH5, sHrdB contains a G-243D substitution. This

mutation, in the poorly understood region 1.2 of s factors,

appears to affect antibiotic production by reducing the

level of transcription of actII-ORF4 and redD without any

other apparent consequences.

Results

Isolation of a DNA fragment that restores antibiotic

production to the afsB mutant BH5

A previously constructed genomic library of S. coelicolor

M145 DNA made using the low-copy-number plasmid

vector pIJ698 in strain J1501 was introduced into the afsB

mutant BH5 by conjugation according to the method of

Ryding et al. (1998). Of approximately 2400 BH5

exconjugants, 44 produced Act and/or Red on SMMS

agar. Plasmid DNA from 30 antibiotic-producing exconju-

gants was used to transform BH5. Although none of the

preparations conferred a wild-type phenotype, two plas-

mids, pIJ4310 and pIJ4311, restored Red production, and

a third, pIJ4312, restored Act production. Restriction

analysis indicated that pIJ4310 and pIJ4311 contained

essentially the same insert. The 10 kb insert of pIJ4310

and the 11 kb insert of pIJ4312 were cloned as HindIII

fragments in the Escherichia coli±Streptomyces shuttle

vector pHJL401 (approximately 10 copies per chromo-

some in Streptomyces; Larson and Hershberger, 1986),

yielding pIJ4320 and pIJ4313 respectively. Partial com-

plementation of the afsB phenotype of BH5 by each of the

cloned fragments was again observed. Southern analysis

of pulsed field gel electrophoresis (PFGE) gels of AseI-

digested S. coelicolor M145 DNA (kindly provided by H.

M. Kieser) localized the pIJ4313 insert (the `Act' clone) to

AseI fragment A and the pIJ4320 insert to AseI fragment

B (Kieser et al., 1992). Only the location of the pIJ4320

insert was consistent with the position of afsB on the

combined genetic and physical map of the S. coelicolor

chromosome (data not shown; Hara et al., 1983). The

pIJ4320 insert was subsequently localized to the unique

region of cosmid 5B8 in the ordered S. coelicolor cosmid

library (Redenbach et al., 1996). Earlier studies had

shown that the 4.1 kb insert of pIJ6201 that contained the

sporulation gene whiH and the 5 0 region of the principal s

factor gene, hrdB, also mapped to the unique region of

5B8 (Ryding et al., 1998). Southern hybridization revealed

that most, if not all, of this 4.1 kb fragment was contained

in pIJ4320.

hrdB restores the production of Act and Red in BH5

A set of overlapping clones of the pIJ4320 insert was

made in pHJL401 and used, with pIJ6201, to transform

BH5. pIJ4330 possessed the shortest fragment able to

restore Red production on SMMS agar (Fig. 1). Moreover,

the same plasmid restored both Red and Act production

to BH5 grown in liquid SMM, and to levels that were

similar to those observed in the parental strain A700

containing the vector pHJL401 (Table 1). pIJ4330 con-

tained little more than the coding sequence and promoter

region of hrdB. Thus, the mutant phenotype of BH5 can

be partially or completely restored by hrdB, the gene

encoding the principal and essential s factor of S.

coelicolor.

The afsB mutant BH5 carries a point mutation in hrdB

To determine whether afsB was a mutant allele of hrdB,

the hrdB genes of BH5 and A700 were cloned and

Fig. 1. Localization of the region of pIJ4320 that restored Red
production in BH5. The location of the different ORFs in pIJ4320
and their respective functions are shown (EMBL AL022374). To
assay Red production, the BH5 transformants were grown on
SMMS plates containing 5 mg ml21 thiostrepton, and pigment
production was visualized after 4 days at 308C.

Table 1. Production of (A) Red and (B) Act by S. coelicolor
A700(pHJL401), BH5(pHJL401) and BH5(pIJ4330).

Incubation time

Strain 27 h 48 h 66 h

A. Red (mg mg21 dry weight).
A700[pHJL401] 0.01 0.11 0.15
BH5[pHJL401] 0.00 0.00 0.01
BH5[pIJ4330] 0.02 0.15 0.23

B. Act (mg mg21 dry weight)
A700[pHJL401] 1.41 28.00 82.50
BH5[pHJL401] 0.00 0.00 13.00
BH5[pIJ4330] 0.24 30.00 66.50

Strains were grown in SMM, and antibiotic production was measured
at three different times.
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sequenced from 100 bp upstream of the hrdB transcrip-

tion start point to 80 bp downstream of the stop codon, a

1887 bp region that included the likely terminator of hrdB

transcription. A single base change (guanine to adenine)

was observed in the afsB mutant BH5 that results in the

replacement of a glycine (G) with an aspartate (D) at

residue 243 of sHrdB. G243 lies at the C-terminal end of

region 1.2 of sHrdB (Fig. 2) and is highly conserved among

essential and non-essential s factors from phylogeneti-

cally diverse bacteria (Lonetto et al., 1992).

Allele exchange experiments confirm that afsB is a mutant

allele of hrdB

pIJ4330 did not fully restore the wild-type phenotype to

BH5 on agar medium; moreover, replacement of the

hrdB-G243D allele by the wild-type gene only partially

restored Act and Red production (data not shown). As

BH5 was obtained by chemical mutagenesis of A700

(Hara et al., 1983), it was conceivable that it contained

additional mutations impairing antibiotic production and

contributing to the afsB phenotype. To assess unambigu-

ously the effect of the G-243D substitution on antibiotic

production, the hrdB allele of strain M145 was replaced by

the mutant allele of BH5, yielding M760. M760 produced

no Act or Red even after 5 days of incubation on nitrogen-

limited SMMS agar (Fig. 3), in contrast to M145, which

produced both in 3 days. On phosphate-limited R2 plates,

Red and Act production was delayed by 2 days in M760.

On rich R5 medium, there was little difference between

the two strains. Thus, the G-243D substitution does

indeed impair Act and Red production, but the phenotype

is medium dependent. Bioassays of M145 and M760

failed to reveal any effect of the mutation on the

production of the calcium-dependent antibiotic (CDA)

made by S. coelicolor, consistent with an earlier com-

parison of BH5 with an afsB1 strain (Adamidis and

Champness, 1992). There was no apparent difference

between M145 and M760 in their ability to produce aerial

hyphae and spores, or in the rate and extent of growth in

liquid minimal medium.

The afsB mutation impairs the production of a diffusible

signalling compound

BH5 is deficient in the production of a diffusible signalling

molecule that can restore antibiotic production and

sporulation to A-factor-deficient mutants of S. griseus

(Hara et al., 1983). Recently, the g-butyrolactone SCB1

was isolated from S. coelicolor M145 and shown to induce

precocious production of both Act and Red in M145

(Takano et al., 2000). SCB1 is one of at least four

stimulatory factors, all believed to be g-butyrolactones,

made by S. coelicolor (Takano et al., 2000). Supernatants

of exponential, transition and stationary phase SMM-grown

Fig. 2. Location of the single amino acid substitution in sHrdB of
S. coelicolor BH5. Conserved regions (Lonetto et al., 1992) and
their proposed functions are shown. Dotted lines indicate poorly
conserved regions. Note that G243 in sHrdB corresponds to G174 in
Lonetto et al. (1992).

Fig. 3. Antibiotic production by S. coelicolor M145(hrdB1) and
M760(hrdB-G-243D) and complementation of M760 by hrdB
(pIJ8760). Three independent transformants of each strain were
grown on SMMS for 5 days at 308C. The plates were photographed
from below to show Act and Red production. On SMMS at this pH,
Act remains in the mycelium as a purple pigment. pIJ8760 is a
derivative of pSET152 containing hrdB.

Fig. 4. Bioassay for the production by M145(pSET152),
M760(pSET152) and M760(pIJ8760) of diffusible factors capable of
inducing antibiotic production in S. coelicolor. Supernatants from
transition phase cultures used for the S1 protection analysis were
extracted with ethyl acetate, and samples were added to a lawn of
the indicator strain M145 plated on SMMS. The absence of
induction immediately around the point of application reflects
inhibition of induction by a high concentration of g-butyrolactones
(Takano et al., 2000).

A s factor mutant deficient in antibiotic production 997
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cultures of M145 and M760 were examined for the

presence of SCB1. Although high-performance liquid

chromatography (HPLC) analysis detected SCB1 in

transition and stationary phase cultures of M145, it was

barely detectable in M760. Furthermore, ethyl acetate

extracts of transition phase culture supernatants of M145

induced markedly precocious Act and Red production in

M145, whereas extracts from M760 showed only slight

stimulation (Fig. 4). The ability of BH5 and its parent A700

to produce stimulatory activity was also examined by

bioassay. Activity was readily detected in the A700

extract, but none was observed in that from BH5 even

when concentrated 100-fold (data not shown).

The wild-type hrdB allele fully complements the afsB

phenotype of M760

A derivative of pSET152 (Bierman et al., 1992), pIJ8760,

with a 2.1 kb Sal I±Rsr II fragment containing the promoter

and coding region of hrdB, which integrates at the

chromosomal FC31 attB site, fully restored Act and Red

production in M760 (Fig. 3). The complemented mutant

also synthesized SCB1 at the wild-type level, as indicated

by both HPLC and bioassay (Fig. 4).

The afsB mutation reduces transcription of actII-ORF4

and redD, but does not affect redZ or rrnD transcription

In SMM-grown cultures, M145 started to produce Red at

the beginning of transition phase and Act during stationary

phase; M760 did not produce either antibiotic. S1 nuclease

protection assays with RNA isolated from these cultures

showed that, compared with M145, there was a marked

reduction in M760 in the transition phase-associated

elevation of transcription of the pathway-specific regulatory

genes actII-ORF4 and redD, which usually precedes

antibiotic production (Takano et al., 1992; Gramajo et al.,

1993) (Fig. 5). When M760 was complemented with

pIJ8760, the levels of actII-ORF4 and redD transcription

were fully restored, and Act and Red production occurred

as in M145 (Fig. 5). Transcription of redD in vivo is

absolutely dependent on a second pathway-specific

regulatory gene, redZ (White and Bibb, 1997), but the

G-243D substitution had no effect on redZ transcription

(Fig. 5; although the redZ signal is weak, repeated

experiments failed to reveal any significant effect of the

afsB mutation on redZ transcription). Transcription of

rrnD, one of the six rRNA gene sets of S. coelicolor, was

assessed using the same RNA samples. rrnD is tran-

scribed from four promoters (P1 to P4; Baylis and Bibb,

1988), at least one of which, P2, is recognized by sHrdB in

vitro (Kang et al., 1997). The characteristic pattern of rrnD

transcription was observed in both strains (Fig. 6), i.e.

strong expression during exponential phase, with a sharp

decrease during transition phase. Despite repeated

attempts, no significant difference could be detected

Fig. 5. Transcription of actII-ORF4, redD, redZ and hrdB in SMM-
grown cultures of S. coelicolor M145(pSET152), M760(pSET152)
and M760(pIJ8760). RNA was isolated during exponential (E),
transition (T) and stationary (S) phases and subjected to S1
nuclease protection analysis. tRNA, yeast tRNA control. The grey
and black boxes denote the production of Red and Act,
respectively, by M145(pSET152) and M760(pIJ8760).

Fig. 6. Transcription of rrnD in SMM-grown cultures of S. coelicolor
M145(hrdB1) and M760(hrdB-G-243D). RNA was isolated during
exponential (E), transition (T) and stationary (S) phases and
subjected to S1 nuclease protection analysis. Total RNA (1 mg)
was used for each reaction. P1, P2, P3 and P4 reflect transcripts
originating at the four rrnD promoters, PS represents a processing
site, and S5 is of unknown origin. tRNA, yeast tRNA control. SM,
32P end-labelled, HindIII-digested pBR322. nt, nucleotides.
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between M760 and M145 for any of the rrnD promoters,

including P2, consistent with the absence of any

detectable difference in growth rate between the two

strains on a range of media.

The G-243D substitution enhances transcription of hrdB

but not the level of sHrdB

S1 nuclease protection analysis of hrdB transcription was

carried out using the same RNA stocks used to assess

actII-ORF4 and redD expression (Fig. 5). The level of the

hrdB transcript was markedly increased in M760 com-

pared with M145, regardless of growth phase. Comple-

mentation with wild-type hrdB resulted in intermediate

transcript levels [Fig. 5, M760(pIJ8760)]. To distinguish

between increased transcription of hrdB and increased

mRNA stability, hrdB promoter (hrdBp) activity was

assessed in M145 and M760 using the luciferase-based

reporter plasmid pIJ5971 (M. S. B. Paget, personal

communication). pIJ5985, a derivative of pIJ5971 carrying

luxAB under the control of hrdBp, was introduced into

both strains. Luciferase activity was three- to sixfold

higher in M145(pIJ5985) than in M145(pIJ5971) (Fig. 7),

reflecting transcription from hrdBp, and three- to 4.5-fold

higher in M760(pIJ5985) than in M145(pIJ5985), indicat-

ing elevated levels of hrdB transcription in the hrdB

mutant. The intermediate level of promoter activity

observed in M760(pIJ8760) (Fig. 5) presumably reflects

the presence of two copies of hrdB (one wild-type and one

mutant allele). Proteins extracted from the same M145

and M760 cultures that had been used to isolate RNA

were subjected to Western analysis using antibody raised

against S. coelicolor sHrdB. A protein of 66 kDa, corre-

sponding in size to sHrdB, was detected with equal

intensity in both extracts, irrespective of growth phase

(Fig. 8). Thus, elevated transcription of hrdB-G-243D

does not result in overproduction of sHrdB. Extended

exposure of the Western blot revealed several putative

sHrdB degradation products that were present at much

higher levels (five- to 10-fold) in M760, suggesting that

sHrdB (G-243D) may be less stable than the wild-type

protein.

Discussion

The afsB mutant BH5 is deficient in antibiotic production

and in the synthesis of a diffusible signalling molecule.

Here, we show that this mutant phenotype is attributable

to a single nucleotide change, resulting in a G to D

substitution at amino acid position 243 of the principal and

essential s factor, sHrdB, at the end of conserved region

1.2. This G is conserved in a large number of s factors of

different classes from phylogenetically diverse bacteria

(Lonetto et al., 1992). The mutation has no other apparent

phenotypic consequences.

Although both actII-ORF4p and redDp are recognized

efficiently in vitro by sHrdD, which is likely to be extremely

similar to sHrdB in its promoter specificity (Tanaka et al.,

1991), in vitro transcription of redDp was also directed by

a protein corresponding in size to sHrdB (Fujii et al., 1996).

As none of the close homologues of sHrdB (sHrdD, sHrdA

and sHrdC) is required in vivo for antibiotic production

(Buttner and Lewis, 1992), it is likely that both actII-

ORF4p and redDp are recognized by RNAP containing

Fig. 7. hrdBp activity in S. coelicolor
M145(hrdB1) and M760(hrdB-G-243D).
Transcription from hrdBp was monitored by
following hrdBp-dependent luciferase activity
in SMM-grown cultures of S. coelicolor
M145(pIJ5985) and M760(pIJ5985) during
exponential (E), transition (T) and stationary
(S) phases. M145 and M760 containing the
vector pIJ5971 were used as controls.

Fig. 8. Western analysis of sHrdB levels in S. coelicolor
M145(pSET152), M760(pSET152) and M760(pIJ8760). Proteins
were extracted from the same exponential (E), transition (T) and
stationary (S) phase cultures used for the S1 nuclease protection
analyses (Fig. 5). Because there was no significant difference
between the time courses, only one point from each growth phase
is shown. The presence of pSET152 did not affect expression
of sHrdB.

A s factor mutant deficient in antibiotic production 999
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sHrdB. The G-243D substitution also resulted in decreased

and delayed transcription of scbA and scbR (data not

shown), genes likely to be involved in the synthesis and

regulation of SCB1, respectively (E. Takano, unpublished

data), presumably explaining the low level of SCB1

production in the G-234D mutants. Comparison of the

235 and 210 regions of the actII-ORF4, redD, scbA and

scbR promoters reveals sequences that are similar to the

consensus sequence for sHrdB-dependent promoters

(Brown et al., 1992). Although the deficiency in Act and

Red production could simply have reflected reduced

SCB1 synthesis, exogenous addition of SCB1 to BH5

and M760 failed to restore antibiotic production, indicating

that the effect of the G-243D substitution was not

mediated solely through scbA and scbR expression.

The G-243D substitution results in elevated levels of

the hrdB transcript, but not of sHrdB protein. This, together

with the apparent decreased stability of the mutant

protein, suggests that sHrdB may negatively regulate its

own synthesis. In Bacillus subtilis, spo0H encodes the

early sporulation-specific s factor, sH (Dubnau et al.,

1988). Analysis of two temperature-sensitive alleles of

spo0H, spo0H1 and spo0H5, which show a sporulation-

deficient phenotype at 438C revealed rapid degradation of

the sH protein in both mutants (Ohashi et al., 1999).

spo0H5 contains a single nucleotide replacement that

results in a G-30E substitution in region 1.2 of sH; this

position corresponds precisely to G243 in sHrdB. In both

spo0H5 and afsB mutants, the small neutral G in the

wild-type sequence is replaced by a large acidic residue

(E for sH and D for sHrdB). As suggested for spo0H5,

the G-243D substitution in sHrdB could decrease the

affinity of the s factor for core RNAP (spo0H mutations

are suppressed by an amino acid substitution in the b-

subunit), potentially resulting in enhanced proteolysis

of the free s factor. Elevated transcription of hrdB in the

G-243D mutants would then compensate for the increase

in protein turnover.

Why should a mutation in such a highly conserved

region of a principal s factor have such a specific effect on

antibiotic production? s factors possess a number of

conserved regions, and functions have been ascribed to

several (Fig. 2; Lonetto et al., 1992). For example,

regions 2.4 and 4.2 interact directly with the 210 and

235 regions of cognate promoters. In contrast, the

function of region 1 is relatively poorly understood. Region

1.1 appears to inhibit DNA binding by region 4 (Dombroski

et al., 1992; 1993). Deletion analysis revealed that region

1.1 is also required for efficient isomerization of a closed

promoter complex to an open complex and for the

transition from the open complex to a ternary initiated

complex (Wilson and Dombroski, 1997). Further deletion

of region 1.2 resulted in arrest of initiation at the earliest

closed complex, suggesting that region 1.2 is required for

open complex formation (Wilson and Dombroski, 1997).

The 2.6 AÊ crystal structure of a segment of s70 of E. coli,

which extends from the C-terminal part of region 1.2

(including G126, which corresponds to G243 in sHrdB) to

the N-terminal portion of region 2.4, has been determined

(Malhotra et al., 1996). s70 possesses a large non-

conserved segment between regions 1.2 and 2.1 that is

absent from most other principal s factors, including

sHrdB. Nevertheless, regions 1.2±2.4 are likely to be

similarly disposed regardless of the presence or absence

of the non-conserved region (Malhotra et al., 1996). The

C-terminal G126 of region 1.2 of E. coli s70 (correspond-

ing to G243 in sHrdB) lies close to the N-terminus of region

2.1 (the regions both form parts of antiparallel helices).

Deletion of region 2.1 in s70 and s32 of E. coli (Lesley and

Burgess, 1989; Lesley et al., 1991), as well as a point

mutation in region 2.1 of sE of Bacillus subtilis (Shuler

et al., 1995), all reduce binding of s factor to core RNAP.

Conceivably, an amino acid substitution at the end of

region 1.2 that influences the positioning of region 2.1

could affect the interaction of s with core RNAP. In

Pseudomonas fluorescens, overexpression of the princi-

pal s factor enhances production of the antibiotics

pyoluteorin and 2,4-diacetylphloroglucinol in the wild-

type strain (Schnider et al., 1995), whereas in S.

coelicolor, the presence of hrdB on a multicopy plasmid

results in precocious overproduction of Red (M. J.

Buttner, personal communication). In each case, the

antibiotics are normally made in stationary phase, and the

elevated levels of production, apparently associated in

both species with increased synthesis of the principal s

factor, might reflect limited availability of this s factor once

growth has ceased. Thus, a reduction in core binding

mediated by the G-243D mutation might account for the

loss of Act and Red production in S. coelicolor, as well for

the decrease in SCB1 synthesis.

Alternatively, the G-243D substitution may cause a

conformational change in sHrdB that perturbs its inter-

action with a regulatory protein. The latter could act

negatively, perhaps in an analogous fashion to Rsd of

E. coli, which has an inhibitory effect on s70-dependent

transcription (Jishage and Ishihama, 1998; 1999), or

positively as a transcriptional activator (e.g. upon expo-

sure to DNA-methylating agents, Ada of E. coli activates

transcription of specific genes by contacting s70; Landini

and Busby, 1999). However, none of the S. coelicolor

mutants that are pleiotropically deficient in antibiotic

production through a mutation in a potential transcriptional

regulatory gene have a phenotype similar to that of the

G-243D mutants. Alternatively, the mutation may per-

turb interaction with a small molecule effector, such as

guanosine 3 0,5 0-bis(pyrophosphate) (ppGpp). Under

conditions of nitrogen limitation, the S. coelicolor relA

mutant M570, which is deficient in ppGpp synthesis,
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fails to produce Act and Red, but still makes CDA at

the wild-type level (Chakraburtty and Bibb, 1997), a

phenotype that is strikingly similar to that of M760. Loss

of Act and Red in M570 reflects diminished transcription

of actII-ORF4 and redD respectively (Chakraburtty and

Bibb, 1997). Moreover, induction of ppGpp synthesis in

exponentially growing cultures correlates with enhanced

transcription of both genes (Takano and Bibb, 1994).

Although the mechanism whereby ppGpp exerts a

positive influence on transcription is not understood,

ppGpp binds to the b-subunit of E. coli RNAP (Chatterji

et al., 1998), and mutations that confer resistance to the

growth-inhibitory effects of high levels of ppGpp synthesis

in E. coli are found in genes encoding the b2, b 0- and s70-

subunits of RNAP (Hernandez and Cashel, 1995). Thus, it

is conceivable that the G-243D substitution prevents the

formation of an effective interaction between core RNAP

containing ppGpp and sHrdB that is required for the

activation of transcription of actII-ORF4 and redD.

In conclusion, we have identified a single amino acid

substitution at a highly conserved region of the principal

and essential s factor of S. coelicolor that diminishes the

production of two antibiotics and a diffusible signalling

molecule without any other apparent phenotypic conse-

quences. Further analysis of this mutation may provide

new insights into the role of this relatively uncharacterized

region in s factor function.

Experimental procedures

Bacterial manipulations

S. coelicolor A3(2) strains used were M145 (SCP12, SCP22;
Hopwood et al., 1985) and its afsB derivative M760 (hrdB-G-
243D), A700 (argA1, proA1, cysD18; Hopwood et al., 1985)
and its afsB derivative BH5 (Hara et al., 1983) and J1501
(hisA1, uraA1, strA1, pgl, SCP12, SCP22; Hopwood et al.,
1985). The strains were grown on various agar media: SMMS
(Floriano and Bibb, 1996); MM with mannitol, R2 and R5
(Hopwood et al., 1985); or in 50 ml of SMM (Takano et al.,
1992) or YEME (Hopwood et al., 1985) liquid media. For
transformation of S. coelicolor (Hopwood et al., 1985),
unmethylated DNA was isolated from E. coli ET12567
(MacNeil et al., 1992). E. coli K-12 strain DH5a (Sambrook
et al., 1989) was used for routine subcloning. Conjugation
between E. coli and S. coelicolor was as described by Paget
et al. (1999) and Flett et al. (1997).

Antibiotic and g-butyrolactone production assays

Act and Red production were assayed in SMM-grown
cultures (Strauch et al., 1991). g-Butyrolactone production
was analysed by HPLC and by bioassay (Takano et al.,
2000). CDA assays were carried out on Oxoid nutrient agar
(Hopwood et al., 1985) or SMMS plates using B. subtilis as
indicator (Floriano and Bibb, 1996).

Cloning and sequencing of the hrdB alleles of BH5 and

A700

hrdB lies on a 4.1 kb Sal I fragment (Buttner et al., 1990).
DNA from BH5 and A700 was digested with Sal I, and
fragments in the size range 4.0±4.4 kb were recovered by
electroelution after agarose gel electrophoresis. The frag-
ments were cloned in Sal I-digested and dephosphorylated
pIJ2925 (Janssen and Bibb, 1993), and the ligation mixture
was used to transform E. coli DH5a. Colony hybridization,
using the 4.1 kb Bgl II hrdB insert of pIJ2034 (Buttner et al.,
1990) as probe, identified two hrdB-containing clones
(pIJ4341 and pIJ4344) from the BH5 partial library and one
(pIJ4343) from the A700 partial library. The BH5 and A700
hrdB alleles were sequenced by the dideoxy chain termina-
tion method (TaqTrack kit, Promega) using synthetic primers.

Replacement of wild-type hrdB by the BH5 hrdB allele in

S. coelicolor M145

The 4.1 kb Sal I insert of pIJ4341 from BH5 was cloned in
pDH5, a plasmid unable to replicate in Streptomyces
(Hillemann et al., 1991), yielding pIJ4351, which was used
to transform M145 to thiostrepton resistance. Transformants
were presumed to contain pIJ4351 integrated at hrdB. To
obtain derivatives that had lost the plasmid for allele
replacement, two transformants were grown non-selectively
for one round of sporulation on R5 followed by two rounds
in liquid YEME medium. The cultures were spread on MM
mannitol to give about 2500 colonies. Two independent
thiostrepton-sensitive clones were identified by replica plating
(one from each of the original clones). Allele exchange in
both clones was confirmed using the polymerase chain
reaction (PCR) and sequencing. Southern analysis failed
to reveal any rearrangements in the hrdB region of both
isolates. One of the strains was designated M760.

RNA isolation and S1 nuclease protection analysis

RNA from SMM-grown mycelium (Strauch et al., 1991) was
subjected to S1 nuclease protection assays using PCR-
generated probes for redD and actII-ORF4 prepared as
described by Floriano and Bibb (1996), except that the 294
nucleotide actII-ORF4 probe was made with the unlabelled
primer 5 0-ATAGGAGATCGCTTGTGACGGCA-3 0 and yielded
a 228 nucleotide protected product. The 259 nucleotide redZ
probe, which yields a 155 nucleotide protected fragment, was
generated using pIJ4132 (White and Bibb, 1997) as template
and 5 0-CAGGATGACGCGGTCGCAGCACA-3 0 and 5 0-TCAC-
GACAAGATCTTCTTGAGGT-3 0 as labelled and unlabelled
primers respectively. For hrdB, the 5 0 end of the labelled primer
5 0-GCCATGACAGAGACGGACTCGGCG-3 0 was located 217
nucleotides downstream of the hrdB transcription start site,
and the 5 0 end of the unlabelled primer 5 0-CGGCCGCAAGG-
TACGCGTTGATGA-3 0 126 nucleotides upstream; the PCR
template was pIJ2034 (Buttner et al., 1990). For rrnD,
pIJ2820 (Baylis and Bibb, 1988) was the PCR template,
with the labelled and unlabelled primers 5 0-GTATACCCG-
TAATCGGGTGA-3 0 and 5 0-TGGGCCCGCATCACCATCGG-
3 0 respectively. Hybridizations were carried out using NaTCA
buffer (Murray, 1986; Janssen et al., 1989). S1 nuclease
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protection experiments were performed with 25 fmol of each
probe and with 30 or 40 mg of total RNA, with the exception
of rrnD, where 1 mg was used (the same amount of total
RNA was used within a set of comparable hybridizations).
Experiments were carried out at least twice using RNA
isolated from independently grown cultures.

Luciferase activity tests

hrdB promoter (hrdBp) activity was assessed using pIJ5985,
a derivative of the integrative luxAB-based reporter plasmid
pIJ5971 containing a 0.5 kb hrdBp fragment (M. S. B. Paget,
personal communication). Plasmids were introduced into S.
coelicolor by conjugation from E. coli ET12567 (pUZ8002)
(Paget et al., 1999). Plasmid-containing strains were grown
in 50 ml of SMM, and culture samples were harvested at
different times of growth. Luciferase activity was determined
by adding 100 ml of 1% n-decylaldehyde (Sigma; in 9%
ethanol) to 100 ml of culture and measuring light production
over 30 s using a Lumat LB9501 detection system (Beat-
hood). The value for each sample corresponds to the
average of three measurements; light production was
standardized to OD450.

Immunoblotting

Proteins were extracted from 5±10 ml of the SMM-grown
cultures used for RNA analysis. Mycelium was harvested by
centrifugation, frozen quickly in liquid nitrogen and kept at
2808C until extraction, when it was resuspended in extraction
buffer [10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 10% glycerol,
1 mM dithiothreitol (DTT)] containing protease inhibitors
(CompleteTM; Boehringer Mannheim) and sonicated. After
centrifugation at 13 000 r.p.m. and 48C for 45 min, 1 mg of
soluble proteins from each sample was separated on a 10%
SDS±polyacrylamide gel and transferred to a nitrocellulose
membrane for immunodetection using the ECL Western
blotting analysis system (Amersham Pharmacia Biotech).
Anti-sHrdB antibody, kindly provided by J.-H. Roe, was used
as primary antibody (dilution 1:10000) with peroxidase-
labelled anti-mouse antibody (Amersham, dilution 1:2000)
as the second antibody.
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