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Abstract  41 

The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials 42 

includes two doses administered three weeks apart. While the decision by some public health 43 

authorities to space the doses because of limiting supply has raised concerns about vaccine 44 

efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its 45 

administration. We analyzed humoral and T cells responses three weeks after a single dose of 46 

this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing 47 

activity were elicited in SARS-CoV-2 naïve individuals. However, we detected strong anti-receptor 48 

binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular 49 

responses dominated by the CD4+ T cell component. A single dose of this mRNA vaccine to 50 

individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses 51 

measured, with strong correlations between T helper and antibody immunity. Neutralizing 52 

responses were increased in both potency and breadth, with distinctive capacity to neutralize 53 

emerging variant strains. Our results highlight the importance of vaccinating uninfected and 54 

previously-infected individuals and shed new light into the potential role of Fc-mediated effector 55 

functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses 56 

of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine 57 

scarcity against SARS-CoV-2.   58 

  59 
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Introduction  60 

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiological 61 

agent of the Coronavirus disease 2019 (COVID-19), responsible for the current pandemic that 62 

infected over 120 million people and led to more than 2.66 million deaths worldwide1,2. This 63 

pandemic caused a race for the elaboration of an effective vaccine against SARS-CoV-23,4. 64 

Currently approved vaccines target the highly immunogenic trimeric Spike (S) glycoprotein that 65 

facilitates SARS-CoV-2 entry into host cells via its receptor-binding domain (RBD) that interacts 66 

with angiotensin-converting enzyme 2 (ACE-2)5,6. Among these vaccines, four are approved in 67 

many countries (Pfizer/BioNtech BNT162b2, Moderna mRNA-1273, AstraZeneca ChAdOx1 and 68 

Janssen Ad26.COV2S). The Pfizer/BioNtech BNT162b2 vaccine was developed using a novel 69 

technology based on mRNA7. This technology consists in intramuscular injection of a lipid 70 

nanoparticle-encapsulated synthetic mRNA vaccine encoding the viral Spike glycoproteins of 71 

SARS-CoV-2, which has shown to elicit a robust efficacy against the Wuhan-Hu-1 strain, which 72 

served as template for their development8,9. This vaccine encodes for a membrane-anchored 73 

SARS-CoV-2 full-length spike, stabilized in a prefusion conformation by mutating the furin 74 

cleavage site and introducing two prolines in the S2 fusion machinery7,10. However, the 75 

emergence of mutations in the SARS-CoV-2 S glycoprotein could affect different properties of the 76 

virus including affinity for its receptor, resulting in increased infectivity, transmissibility and evasion 77 

from humoral responses elicited by natural infection or vaccination11. 78 

The D614G Spike mutation appeared very early in the pandemic and is now highly 79 

prevalent in all circulating strains12. The B.1.1.7 variant was first identified in the United Kingdom 80 

and has been spread rapidly to many countries since its identification. This variant contains 81 

several mutations in its S glycoproteins (ΔH69-V70, ΔY144, N501Y, A570D, P681H, T716I, 82 

S982A and D1118H) and has increased infectivity13,14. Among the mutations present in the 83 

B.1.1.7 strain, the N501Y is also present in many other circulating variants (B.1.351 and P.1) and 84 
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increases the affinity for the ACE-2 receptor15,16.  The E484K mutation, is part of the South African 85 

B.1.351 variant and is now found in several SARS-CoV-2 genomes worldwide that spread 86 

rapidly17. Studies have shown that this mutation increases affinity of the S glycoprotein for ACE-87 

218 and confers resistance to neutralization mediated by mAbs and plasma from naturally-infected 88 

and vaccinated individuals19–22. The S477N mutation confers a higher affinity for the ACE-2 89 

receptor and has rapidly spread to many countries in Oceania and Europe23–28.  The S477N and 90 

N501S mutations are found in several SARS-CoV-2 genomes in Quebec (Laboratoire de Santé 91 

Publique du Québec, unpublished data).  92 

 93 

In spite of the proven clinical efficacy of BNT162b2, there are still limitations in the 94 

understanding of the protective components of the immune responses elicited by this vaccine.  95 

Such protection is mediated through a complex interplay between innate, humoral and cell-96 

mediated immunity29,30. Several reports showed that administration of the mRNA vaccine induced 97 

a strong humoral response after two doses, especially against the RBD domain31,32. Robust CD4+ 98 

and CD8+ memory T cell responses are induced after SARS-CoV-2 infection33,34 and play 99 

important roles in resolution of the infection35 including modulating disease severity in humans36 100 

and reducing viral load in non-human primates (NHP)37. However, the detection of these specific 101 

memory T cells has been poorly studied in the SARS-CoV-2 vaccine development and represent 102 

a gap in the understanding of the induced cellular adaptative immune responses which are likely 103 

to also play an important role8,38.   Among CD4+ T cells, the T follicular helper (Tfh) subset is of 104 

particular interest, as it provides help for B cell maturation and development of high affinity 105 

antibody responses in the germinal center (GC) of secondary lymphoid organs. Studies have 106 

shown that a subset of CXCR5+ in blood, called circulating Tfh (cTfh)39,40 has clonal, phenotypic 107 

and functional overlap with GC Tfh and reflect at least in part responses in tissues41,42. 108 

Results from phase III clinical trials have shown a vaccine efficacy of >90% starting 14 109 

days after the injection of a single dose of BNT162b2 mRNA vaccine, thus before the 110 
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administration of a second dose7,9,43. In this report, we characterized the humoral and T cell 111 

immune responses in cohorts of SARS-CoV-2 naïve and naturally-infected individuals prior and 112 

three weeks after a first dose of the BNT162b2 mRNA vaccine.  113 

 114 

Results 115 

Here we analyzed humoral and cellular responses in blood samples from 16 SARS-CoV-116 

2 naïve donors prior and after vaccination (median [range]: 21 days [16-26 days]). In addition, we 117 

examined the same immunological features in 16 individuals that were previously infected around 118 

9 months before vaccination (median [range]: 266 days [116-309 days]) and three weeks after 119 

vaccination (median [range]: 21 days [17-25 days]). For 11 of these donors, we also longitudinally 120 

monitored evolution of the humoral response, from 6 weeks post-symptom onset (PSO, median 121 

[range]: 40 days [16-62 days]) to 3 weeks after vaccination. Basic demographic characteristics 122 

are summarized in Table 1. In the SARS-CoV-2 naïve group, the average age of donors was 48 123 

years old (range: 21-59 years old), and samples were from 3 males and 13 females. In the group 124 

of previously-infected individuals, the average age of the donors was 48 years old (range: 23-65 125 

years old), and samples were from 8 males and 8 females (Table 1).  126 

 127 

Elicitation of SARS-CoV-2 antibodies against the full Spike and its receptor binding domain 128 

To evaluate vaccine responses in SARS-CoV-2 naïve and previously-infected individuals, 129 

we first measured the presence of RBD-specific antibodies (IgG, IgM, IgA) using a previously 130 

described enzyme-linked immunosorbent (ELISA) RBD assay44–46. As expected, in the SARS-131 

CoV-2 naïve group, we did not observe RBD-specific immunoglobulins (Ig) in samples recovered 132 

before vaccination (Figure 1A-D). Three weeks after the first dose, we found a significant increase 133 

in the total RBD-specific immunoglobulin levels with the exception of one donor from the SARS-134 

CoV-2 naïve group who didn’t respond to the vaccine at this time-point.  With the exception of 135 

IgM, vaccination induced similar levels of immunoglobulins (IgA and IgG) targeting the RBD to 136 
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those present in individuals that were naturally infected 9 months ago (Figure 1A-D). In addition, 137 

RBD-specific IgM levels were significantly lower in the vaccinated SARS-CoV-2 naïve group 138 

compared to pre-vaccination samples from the previously-infected participants (Figure 1B). 139 

 140 

In the group of individuals that were previously infected, despite a decline in the amount 141 

of Ig over time after infection (Figure S1A-D), most donors still had detectable anti-RBD-specific 142 

immunoglobulins just before vaccination, especially anti-RBD IgG (Figure 1A-D). For all 143 

participants, the first dose of vaccination led to a robust increase in anti-RBD IgG and anti-RBD 144 

IgA levels, higher than the first time point measured after the onset of symptoms (16-62 days; 145 

median: 40 days) (Figure 1C-D, S1C-D). Vaccination modestly increased the level of RBD-146 

specific IgM (Figure 1B). Among the studied humoral responses, anti-SARS-CoV-2 neutralization 147 

returned to baseline most promptly, whereas ADCC remained more robust in the convalescent 148 

stage while still responding with a significant increase post vaccination (Figure S1E-G). 149 

 150 

To evaluate if vaccine responses were limited to RBD or could be extended to antibodies 151 

against the full Spike glycoprotein, we used a cell-based ELISA (CBE) assay to measure levels 152 

of antibodies recognizing the native full-length S glycoprotein expressed at the cell surface47. In 153 

SARS-CoV-2 naïve individuals, the pattern was similar to that observed for the anti-RBD specific 154 

response, with a level of total Spike-specific immunoglobulins similar to that observed in 155 

previously-infected individuals before vaccination (Figure 1E). As we observed for anti-RBD Abs, 156 

vaccination of SARS-CoV-2 naïve individuals elicited higher levels of IgG than IgM or IgA (Figure 157 

1F-H). The individual who did not elicit anti-RBD Abs upon vaccination didn’t elicit Abs against 158 

other regions of the Spike, with detection levels no higher than our seropositivity threshold level 159 

(Figure 1E-H).  160 
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Thus, vaccination in the SARS-CoV-2 naïve group elicited antibodies against the RBD 161 

and full Spike that reached similar levels than in naturally infected individuals 9 months post 162 

symptoms onset (Figure 1).  163 

 164 

Recognition of SARS-CoV-2 Spike variants and other Betacoronaviruses 165 

SARS-CoV-2 is evolving, and variants of concern are emerging globally. Some harbor 166 

specific mutations in Spike that are associated with increased transmissibility and/or immune 167 

evasion14,48–51. To evaluate whether a single dose of the Pfizer/BioNTech vaccine elicits 168 

antibodies that are able to recognize a broader spectrum of variants, including Spike with putative  169 

escape mutations, we measured  the ability of plasma from vaccinated individuals to recognize 170 

different Spike variants expressed at the cell surface by flow cytometry, using a method we 171 

recently reported44. Briefly, 293T cells were transfected with plasmids expressing SARS-CoV-2 172 

Spikes from the worldwide predominant strain (D614G)52, the B.1.1.7 variant or  other individual 173 

concerning mutations (E484K, S477N, N501Y) , in parallel with Spike glycoproteins from other 174 

Betacoronaviruses (SARS-CoV-1, MERS-CoV, HCoV-OC43, HCoV-HKU1).Transfected cells 175 

were stained with plasma samples and incubated with secondary Abs recognizing all Ab isotypes. 176 

As expected, none of the SARS-CoV-2 naïve plasma samples obtained before vaccination 177 

(baseline) recognized the SARS-CoV-2 Spike (D614G) or any of its variants (Figure 2A-E). 178 

However, they were able to recognize Spikes from endemic human coronaviruses (HCoV-OC43, 179 

HCoV-HKU1) but not Spikes from highly pathogenic coronaviruses (SARS-CoV-1, MERS-CoV) 180 

(Figure 2F-I). In agreement with our CBE results (Figure 1), vaccination elicited antibodies that 181 

efficiently recognized the full Spike and all the tested variants (Figure 2A-E), except for the same 182 

donor that did not elicit RBD- or Spike-specific Abs. The recognition levels were equivalent to 183 

those observed for previously-infected individuals before vaccination. In the latter group, all 184 

plasma samples recognized the different Spike variants before vaccination, and the first dose of 185 

vaccine led to a significant increase in Spike recognition (Figure 2A-E). When we compared the 186 
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differences in recognition between the SARS-CoV-2 variants, we observed that plasma from 187 

vaccinated SARS-CoV-2 naïve individuals recognized the different SARS-CoV-2 variants less 188 

efficiently compared to D614G Spike (Figure S2A). Plasma from previously infected individuals 189 

recognized all SARS-CoV-2 Spikes before and after vaccination.  Vaccination however robustly 190 

enhanced recognition in this group, albeit a bit less efficiently for the Spike variants (Figure S2C).   191 

We recently reported that SARS-CoV-2 infection elicits cross-reactive antibodies that can 192 

recognize Spike from other human coronaviruses44,45. To evaluate whether vaccination also 193 

elicited antibodies able to recognize Spike glycoproteins from other Betacoronaviruses, we 194 

evaluated the capacity of the different plasma samples to bind cell-surface expressed Spikes from 195 

SARS-CoV-1, MERS-CoV, HCoV-OC43 and HCoV-HKU1. As shown in Figure 2 (panels F-I), 196 

vaccination elicited cross-reactive antibodies in both groups with enhanced recognition of SARS-197 

CoV-1, MERS-CoV and HCoV-HKU1 but not HCoV-OC43.   198 

 199 

Functional activities of vaccine-elicited antibodies 200 

A single dose of the Pfizer/BioNTech vaccine was shown to be up to 90% efficacious 201 

starting two weeks after administration53,43,7. Among the immune responses elicited by the 202 

different SARS-CoV-2 vaccines, the neutralizing response is thought to be associated with 203 

vaccine efficacy7,54,55.  To evaluate whether neutralizing responses were elicited within the first 204 

three weeks upon vaccine administration, we measured the capacity of plasma samples to 205 

neutralize pseudoviral particles carrying the SARS-CoV-2 Spike protein. Briefly, we incubated 206 

several dilutions of plasma with pseudoviruses before adding to 293T target cells stably 207 

expressing the human ACE-2 receptor, as we reported 44–46,56. All pseudoviruses variants were 208 

infectious in this system with SARS-CoV-2 variants, particularly B.1.1.7 exhibiting enhanced 209 

infectivity (Figure S2D). We observed no neutralizing activity in plasma from vaccinated SARS-210 

CoV-2 naïve individuals (Figure 3A), in agreement with previous findings38. As recently 211 

described22,57, we observed that pre-existing SARS-CoV-2 neutralizing antibody responses were 212 
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significantly boosted by a single dose of Spike-encoded mRNA vaccine (Figure 3A). Interestingly, 213 

a single dose enlarged the potency of the neutralizing response that was now able to efficiently 214 

neutralize pseudoviral particles bearing the B.1.1.7 Spike or from other variants with different 215 

concerning mutations (E484K, S477N, N501Y, N501S) (Figure S2E-G). Remarkably it also 216 

boosted neutralization activity against pseudoparticles bearing the SARS-CoV-1 Spike (Figure 217 

S2H). 218 

 219 

Since no neutralizing activity was detected in SARS-CoV-2 naïve vaccinated individuals, 220 

we decided to measure Fc-mediated effector functions that were also shown to play an important 221 

role against SARS-CoV-2 infection58–60. We used a human T-lymphoid cell line resistant to NK 222 

cell-mediated cell lysis (CEM.NKr) and stably expressing the full-length S protein on the cell 223 

surface (CEM.NKr-Spike) to measure antibody-dependent cellular cytotoxicity (ADCC). PBMCs 224 

from healthy individuals were used as effector cells. ADCC activity was measured by the loss of 225 

Spike-expressing GFP+ target cells, as we reported47. In agreement with the lack of Spike-specific 226 

antibodies, SARS-CoV-2 naïve individuals did not have detectable ADCC activity prior to 227 

vaccination (Figure 3B). The first dose of the vaccine induced a significant increase in ADCC 228 

activity, except for one sample, corresponding to the donor who had not developed anti-Spike 229 

antibodies.  We noted that ADCC activity in vaccinated SARS-CoV-2 naïve individuals achieved 230 

comparable levels to those of previously-infected individuals before vaccination. Vaccination of 231 

this group significantly boosted the ADCC activity (Figure 3B). Based on these results it is 232 

tempting to speculate that the generation of antibodies with Fc-mediated effector functions, but 233 

without neutralization, might be sufficient to provide a certain level of protection.  234 

 235 

Spike-specific T cell vaccine responses differ between SARS-CoV-2 naïve and previously 236 

infected individuals 237 
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We examined whether prior SARS-CoV-2 infection alters the CD4+ and CD8+ T cell 238 

responses to vaccination. To measure SARS-CoV-2-Spike-specific T cells in the two cohorts of 239 

naïve persons and individuals with prior infection, we utilized two complementary methodologies, 240 

T cell receptor (TCR) dependent activation induced marker (AIM) assays and intracellular 241 

cytokine staining (ICS). We performed the cytokine-independent AIM assays as previously 242 

described61 with some modifications. We stimulated PBMC for 15h with an overlapping peptide 243 

pool spanning the Spike coding sequence and measured upregulation of the markers CD69, 244 

CD40L, 4-1BB and OX-40 upon stimulation. We used an AND/OR Boolean combination gating 245 

strategy to identify antigen-specific T cell responses (Figure S3A)62. We examined three 246 

populations of SARS-CoV-2-Spike-specific AIM+ T cells: (i) AIM+ total CD4+ T cells (Figure 4A), 247 

(ii) AIM+ circulating memory Tfh (cTfh) cells (Figure 4B) and (iii) AIM+ total CD8+ T cells (Figure 248 

4C). We and others have shown that AIM assays can sensitively detect infection- and vaccine-249 

induced cTfh responses63,64, including in SARS CoV-2 infection34. 250 

After vaccination, we observed a significant increase in total Spike-specific AIM+CD4+ T 251 

cell responses in both groups of participants (Figure 4A) with significantly stronger responses in 252 

the prior infection group compared to the naïve group. We observed similar patterns with Spike-253 

specific AIM+ cTfh responses which significantly increased after vaccination in both groups (Figure 254 

4B) and stronger in the prior infection group compared to the naïve group. In contrast, there was 255 

a significant gain in Spike-specific AIM+ CD8+ T cell responses after vaccination only in the 256 

previous infected group. At the post-vaccination time points, AIM+ CD8+ T cell responses were 257 

also significantly higher than in the naïve group (Figure 4C). However, the frequencies range of 258 

these responses remains significantly lower than that of AIM+ CD4+ T cell responses regardless 259 

of the time point studied (Figure S3C). 260 

 261 
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To assess functionality and polarization of the SARS-CoV-2-Spike-specific T cell 262 

responses, we measured by ICS the cytokines secreted by CD4+ and CD8+ T cells in response 263 

to a 6h stimulation of PBMC with a Spike peptide pool. T cells were analyzed for expression of 264 

CD40L, CD107a, interferon (IFN)-γ, Interleukin (IL)-2, IL-10, IL-17A and tumor necrosis factor 265 

(TNF)-α. IL-17A expression was undetectable for most participants in both CD4+ and CD8+ T cell 266 

subsets, and CD40L negligible in CD8+ T cells. These subsets were thus not pursued, whereas 267 

all other functions were included in further analysis. We defined frequencies of cytokine+ CD4+ 268 

and CD8+ T cells as percentage of cells positive for one or more cytokines or functional markers 269 

(Figure S3B). Consistent with previous results on T cell responses specific for other viruses after 270 

natural infection61,63 the magnitude of ICS+ T cells was lower than that of AIM+ T cell responses 271 

(Figure S3D-E), but there was a good correlation between both assays (Figure S3F). After 272 

vaccination, the ICS+ CD4+ and ICS+ CD8+ T cell responses were significantly increased only in 273 

the prior infection group (Figure 4D-E) with stronger responses compared to the naïve group. 274 

There were only trends for an increase in CD4+ and CD8+ T cell responses after this single dose 275 

of vaccine in the naïve cohort.  276 

To qualitatively assess Spike-specific T cells in naïve and prior infection groups for 277 

polyfunctional responses after vaccination, we performed coexpression analysis using Boolean 278 

gating and examined each combinations of function (Figure 4F and G). In comparison to naïve 279 

individuals, dominant Spike-specific CD4+ T subsets that were preferentially increased by 280 

vaccination in prior infection included Spike-specific CD4+ T cells coexpressing CD40L, IFN-γ and 281 

TNF-α alone or in combination with other functions (CD107a, IL-2). The frequency of Spike-282 

specific CD8+ T cells expressing IFN-γ or CD107a alone or combined together was also increased 283 

in prior infection compared to naïve participants. 284 

 285 
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These data show that while a single dose of mRNA vaccine could induce detectable Spike-286 

specific CD4+ and CD8+ T cells in most individuals, including Spike-specific cTfh cells, 287 

independently of prior SARS-CoV-2 infection status, immunization elicited more robust and 288 

functionally skewed responses in participants with a history of SARS-CoV-2 infection, compared 289 

to naïve people, with preferential expansion of specific functional subsets. 290 

 291 

Relationship between SARS-CoV-2-Spike-specific T cell responses and humoral 292 

responses 293 

Most protective antibody responses are dependent on CD4+ T cell help, which is critical 294 

for B cell expansion, affinity maturation and isotype switching. Therefore, we assessed whether 295 

pre-existing SARS-CoV-2-Spike-specific CD4+ T cells and cTfh responses were predictive of 296 

higher antibody titers and antibody functions, as measured by neutralization capacity and ADCC 297 

after vaccination, irrespective of prior infection status (Figure 5A). We observed different patterns 298 

of correlations between AIM+ CD4+, AIM+ cTfh and ICS+ CD4+ T cell frequencies measured before 299 

vaccination and vaccine-induced antibody responses (Figure 5A). We found that correlations 300 

between the function-agnostic AIM+ CD4+ T cell measurements and antibody responses were 301 

generally stronger than between ICS+ CD4+ T cell responses and serological measurements 302 

(Figure 5A). Notably, the Ig subsets measured after vaccination in the plasma of each participant 303 

showed significant positive correlations between pre-existing Spike-specific CD4+ T cell and cTfh 304 

responses on the one hand, and anti-Spike IgA and IgG post-vaccination on the other hand 305 

(Figure 5C, D, F and G). In contrast, we observed no significant correlations between total Spike-306 

specific CD4+ T cell responses and anti-Spike IgM levels (Figure 5B) and between Spike-specific 307 

cTfh responses and anti-Spike IgM levels (Figure 5E). At the functional level, we observed 308 

significant correlations between all the pre-vaccination AIM+ Spike-specific memory CD4+ T cells 309 

and cTfh with ADCC and neutralization capacity post-immunization (Figure 5A). 310 
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These results suggest that pre-existing CD4+ T cell responses are beneficial for the 311 

generation of specific and effective humoral responses against SARS-CoV-2 after a single dose 312 

of mRNA vaccine, independently of prior SARS-CoV-2 infection. 313 

 314 

Evaluation of vaccine responses 315 

Assessing the humoral responses revealed that the vaccine-induced responses (in naïve 316 

individuals) show striking similarities with the induced responses upon natural infection. With a 317 

few exceptions such as the neutralizing antibody response, at least for the given time points, the 318 

induced responses are similar (Figures 1-3). This translates into a similar network of pairwise 319 

correlations among all studied parameters when comparing discrete time points before 320 

vaccination in infected individuals and post vaccination in naïve individuals (Figure 6). As 321 

expected, naïve individuals before vaccination harbor hardly any interrelations between humoral 322 

and cellular anti-SARS-CoV-2 responses, which is in line with their overall low and unspecific 323 

absolute levels. Notably, when studying the effects of vaccination in previously infected 324 

individuals, the pairwise correlations are not getting stronger among our studied parameters, but 325 

the network of significant associations is broadened involving more interconnected parameters. 326 

It indicates that a heterogeneous boost, in this case a Spike mRNA vaccination boost upon natural 327 

infection as prime, brings in new flavors of host responses while diluting others. 328 

 329 

To investigate whether pre-existing humoral responses before vaccination predict the levels of 330 

induced/boosted responses upon vaccination, we performed a tandem correlation analysis 331 

focusing on pairs of correlations between time points before versus after vaccination (Figure S4). 332 

In naïve individuals, as expected, the low and SARS-CoV-2 unspecific responses before 333 

vaccination didn’t predict responses induced by vaccination. In contrast, individuals with previous 334 

SARS-CoV-2 infection harbor a much broader set of parameters pre-vaccination that predict 335 

induced responses post vaccination in the studied data set. Of interest, these correlations differ 336 
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from the few observed in naïve individuals. In previously-infected individuals, most prominent 337 

patterns include the predictive value of binding, ADCC, and neutralization responses pre-338 

vaccination for IgA responses in CBE assays and neutralization against viruses with the E484K 339 

Spike escape mutation post vaccination. 340 

  341 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 18, 2021. ; https://doi.org/10.1101/2021.03.18.435972doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435972


15 

 

Discussion 342 

The mRNA vaccines have demonstrated a >90% efficacy starting 14 days after a single dose but 343 

the immune correlate of protection after a single dose remains unknown7,9,43. Here we measured 344 

several serological and cellular SARS-CoV-2-specific responses in SARS-CoV-2 naïve or 345 

previously-infected individuals. Surprisingly, despite the proven vaccine efficacy three weeks after 346 

vaccination43,53 we observed no neutralizing activity in plasma from SARS-CoV-2 naïve 347 

vaccinated individuals. Neutralization is thought to play a central role in SARS-CoV-2 vaccine 348 

efficacy7,54,55, however, recent observations suggest that they might not be predictive, on their 349 

own, of protection65. Affinity maturation through germinal center selection can lead to more potent 350 

neutralizing antibody responses. While kinetics may differ according to the antigen used and route 351 

of administration, measurable neutralizing titers may take several weeks to develop in humans 352 

and NHP after immunization66, and even after neutralization titers begin to decrease, the somatic 353 

hypermutation (SHM) process can continue for months after acute SARS-CoV-2 infection67. Our 354 

results suggest that while the neutralization potency of vaccine-elicited antibodies is being 355 

developed, other antibody functions such as Fc-mediated effector functions could contribute to 356 

vaccine efficacy early on. Accordingly, three weeks after a single dose we observed strong ADCC 357 

but no neutralization activity (Figure 3). Strikingly, vaccination of previously-infected individuals 358 

induced a very significant increase of pre-existing humoral immunity including ADCC and 359 

neutralization. Neutralization potency was increased enabling neutralization of several variants 360 

including the B.1.1.7 variant, Spikes with the E484K mutation and even the phylogenetically more 361 

distant SARS-CoV-1.    362 

 363 

We also demonstrated that the patterns of vaccine-induced T cell responses have 364 

analogies with those observed for antibody immunity. A single dose of BNT162b2 mRNA vaccine 365 

is also capable of generating SARS-CoV-2-specific T cell immune responses in both groups of 366 
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individuals with a dominant CD4+ T cell responses, suggesting efficacy of the priming 367 

immunization in generating cellular immunity against SARS-CoV-2. However, we observed 368 

differences in the magnitude and quality of these responses between participants with and without 369 

prior infection. Individuals who had already encountered SARS-CoV-2 developed strong Spike-370 

specific memory CD4+ and CD8+ T cells, consistent with secondary memory responses to a recall 371 

antigen. In contrast, naïve individuals showed significantly weaker Spike-specific CD4+ T cell 372 

responses and low to undetectable Spike-specific CD8+ T cell responses by AIM and ICS. Even 373 

though pre-vaccination T-cell responses to SARS-CoV-2 Spike glycoprotein were minimal in 374 

almost all naïve participants, it is still possible that the vaccine amplifies preexisting CD4+ cross-375 

reactive T cell responses to endemic human coronaviruses. This suggests that a single dose of 376 

mRNA vaccine may be sufficient to elicit robust protective T cell responses in previously infected 377 

individuals, naïve persons will likely most benefit from repeat immunization. 378 

 379 

Our results support the parallel use of both AIM and ICS assays for SARS-CoV-2 vaccine 380 

immunomonitoring. While most clinical trials relied on the IFN-γ ELISPOT assay and/or ICS to 381 

measure T cell responses, our data suggest the notion that BNT162b2 and some other SARS-382 

CoV-2 vaccines in advanced clinical evaluation have demonstrated that vaccines for SARS-CoV-383 

2 vaccines preferentially elicit Th1 responses may have to be reconsidered68–71. Indeed, these 384 

assays are sensitive for detection of Th1 cytokines and cytotoxic responses, but largely miss other 385 

important components of virus-specific cellular immunity. Consistent with this, we found that AIM 386 

assays detected vaccine-induced CD4+ and CD8+ T cells in natural infection34. Still, ICS assays 387 

were essential to reveal qualitative differences in cellular responses elicited after vaccination in 388 

previously infected versus naïve participants. With more proinflammatory and antiviral CD4+ and 389 

CD8+ T cell functional profiles in almost all previously-infected individuals, including IFN-γ, TNF-390 

α, and for the CD8+ T cells, cytotoxic functions. Based on current knowledge, we suggest that a 391 
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balanced humoral and Th1-directed cellular immune response may be important for protection 392 

from COVID-19 and the development of effective vaccine-induced immunization. 393 

 394 

Spike-specific CD4+ T cell responses clearly dominated over CD8+ T cell responses, both 395 

for AIM and ICS measurements. Because of their role in antigen-specific B cell survival and 396 

maturation, we studied the correlation of CD4+ T cell responses with antibody immunity. We found 397 

strong positive correlations between Spike-specific AIM+ CD4+ T cell responses measured before 398 

vaccination and isotype-switched IgA and IgG antibody responses after vaccination, as well as 399 

ADCC and neutralization functions, contrasting with no significant correlations with the 400 

unswitched IgM responses. These patterns suggest that pre-existing memory T cell help is a 401 

major modulator of humoral SARS-CoV-2 vaccine responses. While the patterns of predictive 402 

associations were overall similar for total AIM+CD4+ T cells and AIM+ cTfh, the correlations were 403 

weaker with ICS measurements. Again, this suggests that the widely used ICS assays likely miss 404 

CD4+ T cell subsets that are important to sustain the development of vaccine antibody responses. 405 

Consistent with our observations on robust cTfh induction by BNT162b2 mRNA, it was shown 406 

that SARS-CoV-2 mRNA vaccine had a superior capacity, in comparison to rRBD-AddaVax, to 407 

elicit potent SARS-CoV-2-specific GC B cell responses after the administration of a single vaccine 408 

dose, suggesting that GC B cells and Tfh cells strongly correlated with the production of protective 409 

SARS-CoV-2-specific antibody responses72. Our results are also consistent with recent 410 

observations in convalescent COVID-19 donors, with reported correlations between antigen-411 

specific CD4+ T cells73 and cTfh cells74 and SARS-CoV-2-specific antibodies. As the CD4 help-412 

dependent development of high affinity antibody responses is a desired outcome after 413 

vaccination, our results provide clear rationales for assessing CD4+ T cell responses as part of 414 

the evaluation of SARS-CoV-2 vaccine immunogenicity and durability of protection, and for 415 

including function-agnostic techniques such as the AIM assays.  416 
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 417 

The availability of longitudinal sampling with six time points starting from a few weeks post 418 

symptoms onset up to three weeks post vaccination enabled us to investigate the predictive 419 

capacity of distinct time points in infected/convalescent individuals for vaccine outcome in terms 420 

of humoral responses (Figure S5). At the earliest time point, few weeks post symptoms onset, the 421 

predictive power of the studied parameters neutralization, ADCC, and ELISA binding responses 422 

(IgA, IgG, IgM, and total Ig) were low; however starting time point 2, total Ig, IgG, and ADCC 423 

responses gain power to significantly predict stronger IgG responses post vaccination. At the 424 

latest time point post symptoms onset, the predictive capacity of IgG and total Ig were partly 425 

diluted, but overall broadened, including predictions towards stronger IgA and IgM responses post 426 

vaccination.   427 

 428 

We note that vaccination of SARS-CoV-2 naïve individuals bring their SARS-CoV-2 specific 429 

humoral and T cells responses to similar levels than the ones presented in individuals that were 430 

infected around nine months ago. Recent studies showed that natural infection confers up to 80% 431 

of protection from re-infection75,76, however whether the same immune responses than those 432 

elicited by vaccination confer this protection remains unknown. These results give support to the 433 

consideration by various jurisdictions of a widened interval between the first and second dose in 434 

the context of vaccine shortage to protect a larger proportion of the population. The United 435 

Kingdom has decided to wait up to 12 weeks before administering the second dose of SARS-436 

CoV-2 vaccines77 whereas Canada extended this interval up to 16 weeks78. This is also advocated 437 

in the United States in the context of the surging B.1.1.7 variant79.  While the duration of a 438 

protective immune response elicited by a single dose of mRNA vaccines is unknown, given that 439 

memory is a core function of the immune system it is unlikely to decline within these intervals. 440 

Nevertheless, addressing this question will be very important as the larger the interval between 441 
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doses the easier it will be to maximize the protection globally given the limited vaccine supply 442 

worldwide.  443 
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Material and Methods 444 

Ethics Statement  445 

All work was conducted in accordance with the Declaration of Helsinki in terms of informed 446 

consent and approval by an appropriate institutional board. Blood samples were obtained from 447 

donors who consented to participate in this research project at CHUM (19.381). Plasma and 448 

PBMCs were isolated by centrifugation and Ficoll gradient, and samples stored at -80°C and in 449 

liquid nitrogen, respectively, until use. 450 

 451 

Plasma and antibodies 452 

Plasma from SARS-CoV-2 naïve and previously-infected donors were collected, heat-inactivated 453 

for 1 hour at 56°C and stored at -80°C until ready to use in subsequent experiments. Plasma from 454 

uninfected donors collected before the pandemic were used as negative controls and used to 455 

calculate the seropositivity threshold in our ELISA, cell-based ELISA, ADCC and flow cytometry 456 

assays (see below). The RBD-specific monoclonal antibody CR3022 was used as a positive 457 

control in our ELISA, cell-based ELISA, and flow cytometry assays and was previously described 458 

44,45,80.  Horseradish peroxidase (HRP)-conjugated antibodies able to detect all Ig isotypes (anti-459 

human IgM+IgG+IgA; Jackson ImmunoResearch Laboratories) or specific for the Fc region of 460 

human IgG (Invitrogen), the Fc region of human IgM (Jackson ImmunoResearch Laboratories) or 461 

the Fc region of human IgA (Jackson ImmunoResearch Laboratories) were used as secondary 462 

antibodies to detect antibody binding in ELISA and cell-based ELISA experiments. Alexa Fluor-463 

647-conjugated goat anti-human Abs able to detect all Ig isotypes (anti-human IgM+IgG+IgA; 464 

Jackson ImmunoResearch Laboratories) were used as secondary antibodies to detect plasma 465 

binding in flow cytometry experiments. 466 

 467 

Cell lines 468 
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293T human embryonic kidney cells (obtained from ATCC) were maintained at 37°C under 5% 469 

CO2 in Dulbecco's modified Eagle's medium (DMEM) (Wisent) containing 5% fetal bovine serum 470 

(FBS) (VWR) and 100 μg/ml of penicillin-streptomycin (Wisent). CEM.NKr CCR5+ cells (NIH AIDS 471 

reagent program) were maintained at 37°C under 5% CO2 in Roswell Park Memorial Institute 472 

(RPMI) 1640 medium (Gibco) containing 10% FBS and 100 μg/ml of penicillin-streptomycin. 473 

293T-ACE2 and 293T-SARS-CoV-2 Spike cell lines were previously reported 44. HOS and 474 

CEM.NKr CCR5+ cells stably expressing the SARS-CoV-2 Spike glycoproteins were previously 475 

reported47.  476 

 477 

Protein expression and purification 478 

FreeStyle 293F cells (Invitrogen) were grown in FreeStyle 293F medium (Invitrogen) to a density 479 

of 1 x 106 cells/mL at 37°C with 8 % CO2 with regular agitation (150 rpm). Cells were transfected 480 

with a plasmid coding for SARS-CoV-2 S RBD using ExpiFectamine 293 transfection reagent, as 481 

directed by the manufacturer (Invitrogen). One week later, cells were pelleted and discarded. 482 

Supernatants were filtered using a 0.22 µm filter (Thermo Fisher Scientific). The recombinant 483 

RBD proteins were purified by nickel affinity columns, as directed by the manufacturer 484 

(Invitrogen). The RBD preparations were dialyzed against phosphate-buffered saline (PBS) and 485 

stored in aliquots at -80°C until further use. To assess purity, recombinant proteins were loaded 486 

on SDS-PAGE gels and stained with Coomassie Blue. 487 

 488 

Enzyme-Linked Immunosorbent Assay (ELISA) 489 

The SARS-CoV-2 RBD ELISA assay used was previously described 44,45. Briefly, recombinant 490 

SARS-CoV-2 S RBD proteins (2.5 μg/ml), or bovine serum albumin (BSA) (2.5 μg/ml) as a 491 

negative control, were prepared in PBS and were adsorbed to plates (MaxiSorp Nunc) overnight 492 

at 4°C. Coated wells were subsequently blocked with blocking buffer (Tris-buffered saline [TBS] 493 

containing 0.1% Tween20 and 2% BSA) for 1h at room temperature. Wells were then washed 494 
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four times with washing buffer (Tris-buffered saline [TBS] containing 0.1% Tween20). CR3022 495 

mAb (50ng/ml) or a 1/250 dilution of plasma from SARS-CoV-2-naïve or previously-infected 496 

donors were prepared in a diluted solution of blocking buffer (0.1 % BSA) and incubated with the 497 

RBD-coated wells for 90 minutes at room temperature. Plates were washed four times with 498 

washing buffer followed by incubation with secondary Abs (diluted in a diluted solution of blocking 499 

buffer (0.4% BSA)) for 1h at room temperature, followed by four washes. HRP enzyme activity 500 

was determined after the addition of a 1:1 mix of Western Lightning oxidizing and luminol reagents 501 

(Perkin Elmer Life Sciences). Light emission was measured with a LB942 TriStar luminometer 502 

(Berthold Technologies). Signal obtained with BSA was subtracted for each plasma and was then 503 

normalized to the signal obtained with CR3022 present in each plate. The seropositivity threshold 504 

was established using the following formula: mean of all SARS-CoV-2 negative plasma + (3 505 

standard deviation of the mean of all SARS-CoV-2negative plasma). 506 

 507 

Cell-Based ELISA  508 

Detection of the trimeric SARS-CoV-2 Spike at the surface of HOS cells was performed by a 509 

previously-described cell-based enzyme-linked immunosorbent assay (ELISA)47. Briefly, parental 510 

HOS cells or HOS-Spike cells were seeded in 96-well plates (4×104 cells per well) overnight. Cells 511 

were blocked with blocking buffer (10 mg/ml nonfat dry milk, 1.8 mM CaCl2, 1 mM MgCl2, 25 mM 512 

Tris [pH 7.5], and 140 mM NaCl) for 30min. CR3022 mAb (1 μg/ml) or plasma from SARS-CoV-513 

2 naïve or previously-infected donors (at a dilution of 1/250) were prepared in blocking buffer and 514 

incubated with the cells for 1h at room temperature. Respective HRP-conjugated antibodies were 515 

then incubated with the samples for 45 min at room temperature. For all conditions, cells were 516 

washed 6 times with blocking buffer and 6 times with washing buffer (1.8 mM CaCl2, 1 mM MgCl2, 517 

25 mM Tris [pH 7.5], and 140 mM NaCl). HRP enzyme activity was determined after the addition 518 

of a 1:1 mix of Western Lightning oxidizing and luminol reagents (PerkinElmer Life Sciences). 519 

Light emission was measured with an LB942 TriStar luminometer (Berthold Technologies). Signal 520 
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obtained with parental HOS was subtracted for each plasma and was then normalized to the 521 

signal obtained with CR3022 mAb present in each plate. The seropositivity threshold was 522 

established using the following formula: mean of all SARS-CoV-2 negative plasma + (3 standard 523 

deviation of the mean of all SARS-CoV-2negative plasma). 524 

 525 

Cell surface staining and flow cytometry analysis 526 

293T cells were transfected with full length Spike of different Betacoronavirus. 48h post-527 

transfection, S-expressing cells were stained with the CV3-25 Ab or plasma from SARS-CoV-2-528 

naïve or previously-infected donors, prior and after vaccination (1/250 dilution). AlexaFluor-647-529 

conjugated goat anti-human IgM+IgG+IgA Abs (1/800 dilution) were used as secondary 530 

antibodies. The percentage of transduced cells (GFP+ cells) was determined by gating the living 531 

cell population based on viability dye staining (Aqua Vivid, Invitrogen). Samples were acquired on 532 

a LSRII cytometer (BD Biosciences) and data analysis was performed using FlowJo v10.7.1 (Tree 533 

Star). The seropositivity threshold was established using the following formula: (mean of all 534 

SARS-CoV-2 negative plasma + (3 standard deviation of the mean of all SARS-CoV-2 negative 535 

plasma). 536 

 537 

ADCC assay  538 

For evaluation of anti-SARS-CoV-2 antibody-dependent cellular cytotoxicity (ADCC), parental 539 

CEM.NKr CCR5+ cells were mixed at a 1:1 ratio with CEM.NKr.SARS-CoV-2.Spike cells. These 540 

cells were stained for viability (AquaVivid; Thermo Fisher Scientific, Waltham, MA, USA) and 541 

cellular dyes (cell proliferation dye eFluor670; Thermo Fisher Scientific) to be used as target cells. 542 

Overnight rested PBMCs were stained with another cellular marker (cell proliferation dye 543 

eFluor450; Thermo Fisher Scientific) and used as effector cells. Stained target and effector cells 544 

were mixed at a ratio of 1:10 in 96-well V-bottom plates. Plasma from SARS-CoV-2 naïve or 545 

previously-infected individuals (1/500 dilution) or monoclonal antibody CR3022 (1 µg/mL) were 546 
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added to the appropriate wells. The plates were subsequently centrifuged for 1 min at 300xg, and 547 

incubated at 37°C, 5% CO2 for 5 hours before being fixed in a 2% PBS-formaldehyde solution. 548 

ADCC activity was calculated using the formula: [(% of GFP+ cells in Targets plus Effectors)-(% 549 

of GFP+ cells in Targets plus Effectors plus plasma/antibody)]/(% of GFP+ cells in Targets) x 100 550 

by gating on transduced live target cells. All samples were acquired on an LSRII cytometer (BD 551 

Biosciences) and data analysis was performed using FlowJo v10.7.1 (Tree Star). The specificity 552 

threshold was established using the following formula: (mean of all SARS-CoV-2 negative plasma 553 

+ (3 standard deviation of the mean of all SARS-CoV-2negative plasma). 554 

 555 

Plasmids 556 

The plasmids expressing the human coronavirus Spikes of SARS-CoV-2, SARS-CoV-16,81,  557 

HCoV-OC4344 and MERS-CoV82 were previously reported. The HCoV-HKU1 Spike expressing 558 

plasmid was purchased from Sino Biological. SARS-CoV-2 Spike mutations were introduced 559 

using the QuikChange II XL site-directed mutagenesis protocol (Stratagene). The presence of the 560 

desired mutations was determined by automated DNA sequencing. The plasmid encoding the 561 

Spike of theB.1.1.7 variant was codon-optimized and synthesized by Genscript. 562 

 563 

Viral infectivity 564 

293T cells were transfected with the lentiviral vector pNL4.3 R-E- Luc (NIH AIDS Reagent 565 

Program) and plasmid encoding for the indicated Spike glycoprotein (D614G, B.1.1.7, 566 

D614G/E484K, D614G/N501S, D614G/S477N and D614G/N501Y) at a ratio of 5:4. Two days 567 

post-transfection, cell supernatants were harvested and stored at -80°C until use. The RT activity 568 

was evaluated by measure of the incorporation of [methyl-3H]TTP into cDNA of a poly(rA) 569 

template in the presence of virion-associated RT and oligo(dT). Normalized amount of RT 570 

activity pseudoviral particles were added to 293T-ACE2 target cells for 48h at 37°C. Then, cells 571 

were lysed by the addition of 30 µL of passive lysis buffer (Promega) followed by one freeze-thaw 572 
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cycle. An LB942 TriStar luminometer (Berthold Technologies) was used to measure the luciferase 573 

activity of each well after the addition of 100 mL of luciferin buffer (15mM MgSO4, 15mM KPO4 574 

[pH 7.8], 1mM ATP, and 1mM dithiothreitol) and 50 mL of 1mM d-luciferin potassium salt (Thermo 575 

Fisher Scientific). RLU values obtained were normalized to D614G. 576 

 577 

Virus neutralization assay 578 

293T cells were transfected with the lentiviral vector pNL4.3 R-E- Luc (NIH AIDS Reagent 579 

Program) and a plasmid encoding for the indicated Spike glycoprotein (D614G, B.1.1.7, 580 

D614G/E484K, D614G/N501S, D614G/S477N, D614G/N501Y and SARS-CoV-1) at a ratio of 581 

5:4. Two days post-transfection, cell supernatants were harvested and stored at -80°C until use. 582 

293T-ACE2 target cells were seeded at a density of 1×104 cells/well in 96-well luminometer-583 

compatible tissue culture plates (Perkin Elmer) 24h before infection. Pseudoviral particles were 584 

incubated with the indicated plasma dilutions (1/50; 1/250; 1/1250; 1/6250; 1/31250) for 1h at 585 

37°C and were then added to the target cells followed by incubation for 48h at 37°C. Then, cells 586 

were lysed by the addition of 30 µL of passive lysis buffer (Promega) followed by one freeze-thaw 587 

cycle. An LB942 TriStar luminometer (Berthold Technologies) was used to measure the luciferase 588 

activity of each well after the addition of 100 mL of luciferin buffer (15mM MgSO4, 15mM KPO4 589 

[pH 7.8], 1mM ATP, and 1mM dithiothreitol) and 50 mL of 1mM d-luciferin potassium salt (Thermo 590 

Fisher Scientific). The neutralization half-maximal inhibitory dilution (ID50) represents the plasma 591 

dilution to inhibit 50% of the infection of 293T-ACE2 cells by SARS-CoV-2 pseudoviruses.  592 

 593 

Intracellular Cytokine Staining 594 

PBMCs were thawed and rested for 2 h in RPMI 1640 medium supplemented with 10% FBS, 595 

Penicillin-Streptomycin (Thermo Fisher scientific, Waltham, MA) and HEPES (Thermo Fisher 596 

scientific, Waltham, MA). 2×106 PBMCs were stimulated with a Spike glycoprotein peptide pool 597 
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(0.5 μg/ml per peptide from JPT, Berlin, Germany) corresponding to the pool of 315 overlapping 598 

peptides (15-mers) spanning the complete amino acid sequence of the Spike glycoprotein. 599 

Cell stimulation was carried out for 6h in the presence of mouse anti-human CD107A, Brefeldin 600 

A and monensin (BD Biosciences, San Jose, CA) at 37 °C and 5% CO2. DMSO-treated cells 601 

served as a negative control. Cells were stained for aquavivid viability marker (Thermo Fisher 602 

scientific, Waltham, MA) for 20 min at 4 °C and surface markers (30 min, 4 °C), followed by 603 

intracellular detection of cytokines using the IC Fixation/Permeabilization kit (Thermo Fisher 604 

scientific, Waltham, MA) according to the manufacturer’s protocol before acquisition on a 605 

Symphony flow cytometer (BD Biosciences, San Jose, CA). Antibodies used for surface and 606 

intracellular staining are listed in the Supplemental Table 2. Stained PBMCs were acquired on 607 

Symphony cytometer (BD Biosciences) and analyzed using FlowJo v10.7.1 software. 608 

 609 

Activation-induced marker assay 610 

PBMCs were thawed and rested for 3h in 96-well flat-bottom plates in RPMI 1640 supplemented 611 

with HEPES, penicillin and streptomycin and 10% FBS. 1.7×106 PBMCs were stimulated with a 612 

Spike glycoprotein peptide pool (0.5 μg/ml per peptide) for 15h at 37 °C and 5% CO2. A DMSO-613 

treated condition served as a negative control and SEB-treated condition (0.5 μg/ml) as positive 614 

control. Cells were stained for viability dye for 20min at 4 °C then surface markers (30 min, 4 °C) 615 

(See Supplementary Table 3 for antibody staining panel). Cells were fixed using 2% 616 

paraformaldehyde before acquisition on Symphony cytometer (BD Biosciences). Analyses were 617 

performed using FlowJo v10.7.1 software. 618 

 619 

Statistical analysis 620 

Symbols represent biologically independent samples from SARS-CoV-2 naïve individuals (n=16) 621 

and SARS-CoV-2 prior infection individuals (n=16). Lines connect data from the same donor. 622 

Statistics were analyzed using GraphPad Prism version 8.0.1 (GraphPad, San Diego, CA). Every 623 
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dataset was tested for statistical normality and this information was used to apply the appropriate 624 

(parametric or nonparametric) statistical test. Differences in responses for the same patient before 625 

and after vaccination were performed using Wilcoxon matched pair tests. Differences in 626 

responses between naïve and previously-infected individuals were measured by Mann-Whitney 627 

tests. Differences in responses against the SARS-CoV-2 variants for the same patient were 628 

measured by Friedman test. P values < 0.05 were considered significant; significance values are 629 

indicated as ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, ∗∗∗∗ p < 0.0001. Line charts were created with 630 

Prism 8.4.3 using normalized data and Akima spline interpolation. For correlations, Spearman’s 631 

R correlation coefficient was applied. Statistical tests were two-sided and p<0.05 was considered 632 

significant. 633 

 634 

Software scripts and visualization 635 

Normalized heatmaps were generated using the complexheatmap, tidyverse, and viridis 636 

packages in R and RStudio83,84 . Normalizations were done per “Analysis group”, e.g., separately 637 

for all neutralization data, T cell responses, etc, except for binding analysis, which was normalized 638 

per individual parameter because different antibodies are needed for the detection of IgG, IgM 639 

and IgA responses. IDs were grouped and clustered separately according to naïve versus 640 

previously-infected individuals, and also according to the time points before vaccination (V0) and 641 

after vaccination (V1). Squared correlograms were generated using the corrplot and 642 

RColorBrewer packages in program R and RStudio. Edge bundling graphs were generated in 643 

undirected mode in R and RStudio using ggraph, igraph, tidyverse, and RColorBrewer packages. 644 

Edges are only shown if p < 0.05, and nodes are sized according to the connecting edges’ r 645 

values. Nodes are color-coded according to groups of parameters. Area graphs were generated 646 

for the display of normalized time series. The plots were created in RawGraphs using 647 

DensityDesign interpolation and vertically un-centered values85 . Line charts in overlay were 648 

created with Prism 8.4.3 using normalized data per response and Akima spline interpolation. 649 
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Figure Captions  670 

Table 1. Characteristics of the vaccinated SARS-CoV-2 cohort  671 

 672 

Figure 1. Elicitation of RBD- and Spike-specific antibodies by a single dose of 673 

Pfizer/BioNTech mRNA vaccine in SARS-CoV-2 naïve and previously-infected individuals. 674 

(A-D) Indirect ELISA was performed by incubating plasma samples from naïve and previously-675 

infected donors collected before and after the first dose of vaccine with recombinant SARS-CoV-676 

2 RBD protein. Anti-RBD antibody binding was detected using HRP-conjugated (A) anti-human 677 

IgM+IgG+IgA (B) anti-human IgM, (C) anti-human IgA, or (D) anti-human IgG. Relative light unit 678 

(RLU) values obtained with BSA (negative control) were subtracted and further normalized to the 679 

signal obtained with the anti-RBD CR3022 mAb present in each plate. (E-H) Cell-based ELISA 680 

was performed by incubating plasma samples from naïve and previously-infected donors 681 

collected before and after the first dose of vaccination with HOS cells expressing full-length 682 

SARS-CoV-2 Spike. Anti-Spike antibody binding was detected using HRP-conjugated (E) anti-683 

human IgM+IgG+IgA (F) anti-human IgM, (G) anti-human IgA, or (H) anti-human IgG. RLU values 684 

obtained with parental HOS (negative control) were subtracted and further normalized to the 685 

signal obtained with the CR3022 mAb present in each plate. Limits of detection are plotted. (* P 686 

< 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001; ns, non-significant). 687 

 688 

Figure 2. Detection of SARS-CoV-2 Spike variants and other Betacoronaviruses. 689 

(A-I) Cell-surface staining of 293T cells expressing full-length Spike from different SARS-CoV-2 690 

variants and other human Betacoronavirus using plasma samples collected before and after first 691 

dose of vaccination in SARS-CoV-2 naïve and previously-infected donors. The graphs represent 692 

the median fluorescence intensities (MFI) obtained. Limits of detection are plotted. (* P < 0.05; ** 693 

P < 0.01; *** P < 0.001; **** P < 0.0001; ns, non-significant).  694 
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 695 

Figure 3. Neutralization and Fc-effector function activities in SARS-CoV-2 naïve and 696 

previously-infected individuals before and after a single dose of Pfizer/BioNTech mRNA 697 

vaccine.  698 

(A) Neutralizing activity was measured by incubating pseudoviruses bearing SARS-CoV-2 Spike 699 

glycoproteins, with serial dilutions of plasma for 1 h at 37°C before infecting 293T-ACE2 cells. 700 

Neutralization half maximal inhibitory serum dilution (ID50) values were determined using a 701 

normalized non-linear regression using GraphPad Prism software. (B) CEM.NKr parental cells 702 

were mixed at a 1:1 ratio with CEM.NKr-Spike cells and were used as target cells. PBMCs from 703 

uninfected donors were used as effector cells in a FACS-based ADCC assay. Limits of detection 704 

are plotted. (*** P < 0.001; **** P < 0.0001; ns, non-significant).  705 

 706 

Figure 4. Spike-specific CD4+ and CD8+ T cell vaccine responses quantitatively and 707 

qualitatively differ in SARS-CoV-2 naïve versus previously-infected individuals.  708 

Net frequencies after Spike peptide pool stimulation of (A) total Spike-specific AIM+ CD4+ T cells, 709 

(B) Spike-specific AIM+ cTfh (C) Spike-specific AIM+ CD8+ T cells in each donor prior to (V0) and 710 

post (V1) vaccination in the SARS-CoV-2 naïve participants and those with previous SARS-CoV-711 

2 infection. Net frequencies of total S-specific responses measured by ICS for (D) CD4+ and (E) 712 

CD8+ T cells for each donor prior to and post vaccination. ICS+ populations include cells that 713 

expressed at least one cytokine and effector function upon 6h S peptide pool stimulation (CD40L, 714 

CD107a, IFN-γ, IL-2, IL-10 and TNF-α for CD4+; CD107a, IFN-γ, IL-2, IL-10 and TNF-α for CD8+ 715 

T cells). In (A-E), net frequency of the Spike-stimulated condition was calculated by subtracting 716 

the frequency detected in a DMSO control; bars correspond to median values and symbols 717 

represent biologically independent samples from n=16 SARS-CoV-2 naïve individuals and n=16 718 

SARS-CoV-2 individuals with prior infection, lines connect data from the same donor. Analysis of 719 

the polyfunctionality of Spike-specific (F) CD4+ and (G) CD8+ T cells measured by ICS at the post 720 
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vaccination (V1) time point. Data were analyzed by combinatorial gates based on the 721 

coexpression of CD40L, CD107a, IFN-γ, IL-2, IL-10 and TNF-α for CD4+ and CD107a, IFN-γ, IL-722 

2, IL-10 and TNF-α for CD8+ T cells. Box-and-whisker plots show median values (line), 25th to 75th 723 

percentiles (box outline) and minimum and maximum values (whiskers). In (F) and (G) net 724 

frequency responses greater than 2-fold over DMSO control (background) were considered, 725 

significant p-values were indicated by * (* for <0.05; ** for <0.01, *** for <0.001). (A-E) P values 726 

were calculated by paired two-tailed Wilcoxon test for comparisons between the V0 and V1 time 727 

points in the same individual and Mann-Whitney for comparisons between the two cohorts at 728 

either the V0 or the V1 time point. (F-G) Comparisons between the polyfunctionality patterns were 729 

calculated using Mann-Whitney test.   730 

 731 

Figure 5. Total Spike-specific CD4+ T cells and Spike-specific cTfh responses at baseline 732 

correlate with humoral responses after vaccination.  733 

(A) Heatmap showing associations between total Spike-specific CD4+ T cell and Spike-specific 734 

cTfh responses at baseline (V0) and antibodies (against RBD and Spike), ADCC and 735 

neutralization functions after vaccination (V1). Color represents Rho value for each association 736 

calculated (Spearman correlation) and significant p-values were indicated by * (* for <0.05; ** for 737 

<0.01, *** for <0.001). Absence of significant correlations between IgM against Spike and AIM+ 738 

CD4+ T cells (B) and AIM+ cTfh responses (E). Positive correlations between IgA against Spike 739 

and AIM+ CD4+ T cells (C) and AIM+ cTfh responses (F). Positive correlation between IgG against 740 

Spike and AIM+ CD4+ T cells (D) and AIM+ cTfh responses (G). AIM+ cells were measured by flow 741 

cytometry and antibodies were quantified by CBE. Each symbol identifies one donor (SARS-CoV-742 

2 naïve donors are represented by triangles and previously infected donors by circles). 743 

 744 

Figure 6. Mesh of correlations of humoral and cellular parameters at discrete time points 745 

before and after vaccination in SARS-CoV-2 naïve versus previously infected individuals.  746 
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Edge bundling correlation plots where red and blue edges represent positive and negative 747 

correlations between connected parameters, respectively. Only significant correlations (p < 0.05, 748 

Spearman rank test) are displayed. Nodes are color-coded based on the grouping of parameters 749 

according to the legend. Node size corresponds to the degree of relatedness of correlations. Edge 750 

bundling plots are shown for correlation analyses using four different data sets, i.e., SARS-CoV-751 

2 naïve and previously infected individuals before and after vaccination, respectively. 752 

 753 

 754 

  755 
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Group n
Days between symptom onset and 

vaccination (median; day range)

Days after vaccination 

(median; day range)

Age (average; 

age range)

Sex

F (n) M (n)

SARS-CoV-2

Naïve 
16 / 21 (16 - 26) 48 (21-59) 13 3

SARS-CoV-2

Prior infection
16 266 (116-309) 21 (17 - 25) 48 (23-65) 8 8

Table 1. Vaccinated SARS-CoV-2 cohort
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Supplemental Information 1 

Supplemental information includes 5 figures and 3 tables and can be found online. 2 

 3 

Supplemental Figure 1. Longitudinal humoral responses in previously-infected SARS-4 

CoV-2 individuals. 5 

Serological samples from eleven individuals that were previously infected were collected at 6 

different time points after symptoms onset (between 16- and 309-days post-symptoms onset) and 7 

three weeks after vaccination37. (A-D) RBD ELISA. Anti-RBD antibody binding was detected using 8 

HRP-conjugated (A) anti-human IgM+IgG+IgA (B) anti-human IgM, (C) anti-human IgA, or (D) 9 

anti-human IgG. Relative light unit (RLU) values obtained with BSA (negative control) were 10 

subtracted and further normalized to the signal obtained with the anti-RBD CR3022 present in 11 

each plate, as described in the material and methods section. (E) Neutralizing activity was 12 

measured by incubating pseudoviruses with serial dilutions of plasma for 1 h at 37°C before 13 

infecting 293T-ACE2 cells. Neutralization half maximal inhibitory serum dilution (ID50) values were 14 

determined using a normalized non-linear regression using GraphPad Prism software. (F) 15 

CEM.NKr parental cells were mixed at a 1:1 ratio with CEM.NKr-Spike cells and were used as 16 

target cells. PBMCs from uninfected donors were used as effector cells in a FACS-based ADCC 17 

assay. (G) Line charts showing normalized immune responses in overlay over the study period 18 

from 293 days before until 25 days post SARS-CoV-2 vaccination in individuals with prior SARS-19 

CoV-2 infection. Curves were generated using Monotone X interpolation of data points. Time point 20 

of vaccination is displayed at X=0. Limits of detection are plotted. 21 

 22 

Supplemental Figure 2. Impact of SARS-CoV-2 mutations on vaccine elicited humoral 23 

responses. 24 

(A-C) Cell-surface staining of 293T cells expressing full-length Spike from different SARS-CoV-2 25 

variants using plasma samples collected in (A) SARS-CoV-2 naïve donors after first dose of 26 
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vaccine, in previously-infected donors (B) before and (C) after vaccination. The graphs represent 27 

the median fluorescence intensities (MFI) obtained normalized to the MFI obtained with the CV3-28 

25 Ab. (D) Pseudoviral particles bearing SARS-CoV-2 S glycoproteins from different variants were 29 

used to infect 293T-ACE2 cells for 2 days at 37°C. RLU values obtained were normalized to 30 

D614G. These experiments were repeated three times. Error bars indicate means ± SEM. (E-H) 31 

Neutralizing activity was measured by incubating indicated pseudoviruses with serial dilutions of 32 

plasma for 1 h at 37°C before infecting 293T-ACE2 cells. Neutralization half maximal inhibitory 33 

serum dilution (ID50) values were determined using a normalized non-linear regression using 34 

GraphPad Prism software. Limits of detection are plotted.  (* P < 0.05; ** P < 0.01; *** P < 0.001; 35 

**** P < 0.0001; ns, non-significant). 36 

 37 

Supplemental Figure 3. Gating strategy of measurements of Spike-specific T cell 38 

responses and comparisons of AIM and ICS assays.  39 

Representative flow cytometry gates to identify Spike-specific T cells in PBMCs from naïve and 40 

previously-infected donors. (A) Boolean OR gating strategy were used to analyze activation-41 

induced markers (AIM+) Spike-specific responses in CD4+ T cells and cTfh (in blue) and CD8+ T 42 

cells (in pink) after a 15h stimulation with a Spike peptide pool. AIM+ T cells include cells that were 43 

CD69+OX40+ or CD69+CD40L+ or CD69+4-1BB+ or OX40+4-1BB+ or CD40L+4-1BB+ or 44 

CD40L+OX40+. (B) Boolean OR gating strategies were used to analyze by intracellular staining 45 

(ICS) the cytokine/effector functions in CD4+ (in blue) and CD8+ (in pink) T cells and identify T 46 

cells that responded to Spike peptide pool after 6h stimulation. (C) Paired comparison of the 47 

magnitude of the AIM+ Spike-specific CD4+ and CD8+ T cell responses. (D-E) Paired comparisons 48 

of the magnitude of the Spike-specific T cell responses measured by ICS and AIM assays for (D) 49 

CD4+ T cell and (E) CD8+ T cell responses. (F) Correlation between magnitude of Spike-specific 50 

CD4+ T cell responses measured by AIM and ICS. (C-F) include merged data from the two cohorts 51 
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and both time points. Statistical comparisons were made in C-E by Wilcoxon paired tests. In F, 52 

statistical comparison was made by Spearman test. 53 

 54 

Supplemental Figure 4.  Correlations between serological measurements for induced 55 

vaccine responses. 56 

Summary of pairwise correlations of humoral parameters between the time point before 57 

vaccination against the same responses three weeks post vaccination, both for the naïve (A) and 58 

prior infection group (B). In the correlograms, circles are sized and color-coded according to the 59 

magnitude of the correlation coefficient (r). The color code of r values is shown to the right (red 60 

colors represent positive, blue colors negative correlations between two parameters). Asterisks 61 

indicate statistically significant correlations (*P < 0.05, **P < 0.01, ***P < 0.005). Correlation 62 

analysis was done using nonparametric Spearman rank tests. 63 

 64 

Supplemental Figure 5. Correlations between longitudinal serological measurements for 65 

induced vaccine responses in previously infected SARS-CoV-2 individuals. 66 

Summary of pairwise correlations of humoral parameters between longitudinal time points after 67 

natural SARS-CoV-2 infection and before vaccination against the same responses post 68 

vaccination. In the correlograms, circles are sized and color-coded according to the magnitude of 69 

the correlation coefficient (r). The color code of r values is shown to the right (red colors represent 70 

positive, blue colors negative correlations between two parameters). Asterisks indicate 71 

statistically significant correlations (*P < 0.05, **P < 0.01, ***P < 0.005). Correlation analysis was 72 

done using nonparametric Spearman rank tests. Details about the studied time points are 73 

provided in the legend to the left. 74 

 75 

  76 
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Supplemental Table 1. Humoral responses before and three weeks after vaccination.  77 

(Mean +/- SD are shown).  78 

 79 

Supplemental Table 2. Flow cytometry antibody staining panel for intracellular detection. 80 

 81 

Supplemental Table 3. Flow cytometry antibody staining panel for activation-induced 82 

marker assay. 83 

 84 

 85 
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Supplemental Table 1. Humoral responses before and three weeks after vaccination (Mean +/- SD are shown)

SARS-CoV-2 Naïve SARS-CoV-2 Prior infection

Before Vaccination After Vaccination Before Vaccination After Vaccination

anti-RBD total Iga 2.130 ± 0 29.823 ± 19.917 21.888 ± 17.687 113.122 ± 28.754 

anti-RBD IgMa 3.119 ± 0 4.634 ± 4.668 4.404 ± 3.385 10.331 ± 14.868

anti-RBD IgAa 1.227 ± 0 2.177 ± 1.644 2.103 ± 1.947 23.459 ± 16.592

anti-RBD IgGa 3.470 ± 0 72.180 ± 49.139 47.966 ± 38.090 236. 156 ± 32.851

anti-Spike total Iga 0.043 ± 0 1.177 ± 0.787 0.974 ± 0.626 4.104 ± 0.773

anti-Spike IgMa 0.044 ± 0.028 0.379 ± 0.666 0.089 ± 0.077 0.088 ± 0.081

anti-Spike IgAa 0.050 ± 0.015 0.359 ± 0.356 0.287 ± 0.305 3.027 ± 2.051

anti-Spike IgGa 0.132 ± 0 2.811 ± 1.767 2.262 ± 1.415 9.288 ± 1.777

Neutralization (D614G) (ID50) 53.744 ± 12.823 52.495 ± 9.728 156.235 ± 172.244 2416.848 ± 1752.593

ADCC (%) 2.451 ± 1.176 28.355 ± 12.307 23.323 ± 9.699 66.629 ± 6.161

aRLU normalized to CR3022, as described in the material and methods section. 
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Target Fluorochrome Clone Supplier Detection

CD3 BUV395 UCHT1 BD Surface

CD4 BV711 L200 BD Surface

CD8 BV570 RPA-T8 Biolegend Surface

CD14 BUV805 M5E2 BD Surface

CD16 BV650 3G8 Biolegend Surface

CD19 APC-eFluor780 HIB19 Thermo Fisher Scientific Surface

CD40L BV421 TRQP1 BD Surface

CD56 BUV737 NCAM16.2 BD Surface

CD69 PerCP-eFluor710 FN50 Thermo Fisher Scientific Surface

CD107A BV786 H4A3 BD Staining during culture

Granzym B Alexa Fluor 700 GB11 BD Intracellular

IFN-g PECy7 B27 BD Intracellular

IL-2 PE-Dazzle 594 MQ1-17H12 Biolegend Intracellular

IL-10 PE JES3-9D7 BD Intracellular

IL-17A eFluor660 eBio64CAP17 Thermo Fisher Scientific Intracellular

TNF-α Alexa Fluor 488 Mab11 Thermo Fisher Scientific Intracellular

Supplemental Table 2. Flow cytometry antibody staining panel for intracellular detection
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Target Fluorochrome Clone Supplier Detection

CD3 BUV496 UCHT1 BD Surface

CD4 BB630 SK3 BD Surface

CD8 BV570 RPA-T8 Biolegend Surface

CD14 BV480 M5E2 BD Surface

CD19 BV480 HIB19 BD Surface

CD40L PE TRAP1 BD Surface

CD45RA PerCP Cy5.5 HI100 BD Surface

CD69 BV650 FN50 Biolegend Surface

CXCR5 BV421 J25D4 Biolegend Staining during culture

4-1BB PE-Dazzle 594 4B4-1 Biolegend Surface

OX40 APC ACT35 BD Surface

Supplemental Table 3. Flow cytometry antibody staining panel for activation-induced marker assay
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