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A single-cell analysis of breast cancer cell lines to
study tumour heterogeneity and drug response
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Cancer cells within a tumour have heterogeneous phenotypes and exhibit dynamic plasticity.
How to evaluate such heterogeneity and its impact on outcome and drug response is still
unclear. Here, we transcriptionally profile 35,276 individual cells from 32 breast cancer cell
lines to yield a single cell atlas. We find high degree of heterogeneity in the expression of
biomarkers. We then train a deconvolution algorithm on the atlas to determine cell line
composition from bulk gene expression profiles of tumour biopsies, thus enabling cell line-
based patient stratification. Finally, we link results from large-scale in vitro drug screening in
cell lines to the single cell data to computationally predict drug responses starting from
single-cell profiles. We find that transcriptional heterogeneity enables cells with differential
drug sensitivity to co-exist in the same population. Our work provides a framework to
determine tumour heterogeneity in terms of cell line composition and drug response.
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ne of the main roadblocks to personalized medicine of

cancer is the lack of biomarkers to predict outcome and

drug sensitivity from a tumour biopsy. Multigene assays
such as MammaPrint!, Oncotype DX>3 and PAM50* can classify
Breast Cancer (BC) tumour types and risk of relapse® but with
limited clinical value®®. Genomic and transcriptional biomarkers
of drug sensitivity are available only for a restricted number of
drugs”-®. As a consequence, BC patient stratification is still
mainly driven by receptor status and histological grading and
subtyping®, with about twenty percent!? of patients for which
paucity of actionable biomarkers limits personalized therapies.
Moreover, even when a targeted treatment option is available,
drug resistance may arise® partly because of rare drug-tolerant
cells characterized by distinct transcriptional or mutational
states!1-17,

Determining tumour heterogeneity and its impact on drug
response is essential to better stratify patients and aid in the
development of personalized therapies. Expression-based bio-
markers measured from bulk RNA-sequencing of a tumour
biopsy are powerful predictors of drug response in vitro”-%18, but
average out tumour heterogeneity. Single-cell transcriptomics
yields a molecular profile of each cell!20; however, it is still
unclear if and how it can inform clinical decision making.

Here, we transcriptionally profile 35,276 individual cells from
32 breast cancer cell lines. We show that despite being simplistic
models of tumours, cancer cell lines exhibit themselves hetero-
geneous phenotypes, and can serve as cell-state “primitives” to
deconvolve tumour cell composition from patients’ biopsies for
patient stratification and prediction of drug response. By linking
results from large-scale in vitro drug screening in cell lines to the
single-cell data, we devise an algorithm to computationally pre-
dict drug responses starting from single-cell profiles. We find that
non-genetic transcriptional heterogeneity enables cells with dif-
ferential drug sensitivity to co-exist even in the same population.
Our work provides a framework to characterize intra-tumoral
heterogeneity from gene expression profiles in terms of cell-line
composition and differential sensitivity to drug treatment.

Results

Single-cell transcriptome profiling of breast cancer cell lines.
We performed single-cell RNA-sequencing (scRNA-seq) of 31
breast cancer cell lines, 16 of which from metastatic sites (Sup-
plementary Table 01 and Supplementary Table 02), plus one
additional non-cancer cell line (MCF12A21) by means of the
Drop-seq technology??. We chose this set of cell lines as they
cover all the major breast cancer tumour subtypes (LuminalA/
LuminalB/Her2-enriched/Basal Like) and are extensively used in
cancer research and in drug development, while also being fully
characterized both at the genomic and (bulk) transcriptomic level,
as well as in terms of drug response’-822.23,

Following pre-processing (Methods), we retained a total of
35,276 cells, with an average of 1069 cells per cell line and 3248
genes captured per cell (Supplementary Fig. 01 and Supplemen-
tary Table 01).

We next generated an atlas (http://bcatlas.tigem.it) encompass-
ing the 32 cell lines, as shown in Fig. 1A. In the atlas, it is possible
to recognize a luminal-supergroup with intermixing of cells from
different luminal cell lines and Her2-enriched (Her2+) cell lines,
while triple-negative breast cancer (TNBC) cell lines form distinct
clusters, thus suggesting that these represent instances of different
diseases. We investigated if genomic features could explain the
formation of such clusters. To this end, we clustered cell lines
according to either genomic variants or Copy Number Variations
(CNV)?4, Clustering according to genomic variants, shown in
Supplementary Fig. 024, did not yield any meaningful clustering.

On the contrary, clustering according to CNVs yielded eight
distinct clusters, as shown in Supplementary Fig. 02B. We mapped
these CNV-based clusters onto to atlas, as shown in Supplemen-
tary Fig. 02C, to check whether CNVs can explain some of the
features of the single-cell clustering; we found no obvious pattern:
for example, the CNV-based cluster 5 (cyan) contains three cell
lines (AU565, BT474 and T47D) with similar CNVs; however, the
Her2 + AU565 cell line forms a distinct cluster in the single-cell
atlas, while the luminal BT474 and T47D cell lines belong to the
luminal-supergroup; similarly the CNV-based cluster 4 (blue)
contains three cell lines (CAL51, BT549 and HS578T) that,
however, form distinct clusters in the single-cell atlas.

Single-cell expression of clinically relevant biomarkers (Fig. 1B, C)
including oestrogen receptor 1 (ESR1), progesterone receptor (PGR),
Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2 a.k.a. HER2) and the
epithelial growth factor receptor (EGFR) across the different cell
lines are in agreement with their reported status?!2>29,

To gain further insights into each cancer cell line, we analyzed
the expression of 48 literature-based biomarkers of clinical
relevance?’, as reported in Fig. 1D and Supplementary Fig. 03.
Luminal cell lines highly express luminal epithelium genes, but
neither basal epithelial nor stromal markers; on the contrary,
triple-negative BC cell lines show a basal-like phenotype (9 out of
15 as quantified in Supplementary Table 03) with the expression
of at least one of keratin 5, 14 or 172829, with triple-negative
subtype B cell lines also expressing vimentin (VIM) and Collagen
Type VI Alpha Chains (COL6A1, COL6A2, COL6A3)!.
Interestingly, two out of five HER2T cell lines (JIMT1 and
HCC1954) are close to triple-negative cell lines in the atlas and
express keratin 5 (KRT5) (Fig. 1A, D), which has been linked to
poor prognosis and trastuzumab resistance3). Indeed, both cell
lines are resistant to anti-HER2 treatments3!. Finally, the non-
tumorigenic MCF12A cell line lacks expression of ESR1, PGR and
HER?2 and displays a basal-like phenotype characterized by the
expression of all basal-like marker genes including keratin 5, 14,
17 and TP63, in agreement with the literature3?.

Overall, these results show that single-cell transcriptomics can
be successfully used to capture the overall expression of clinically
relevant markers.

The BC single-cell atlas identifies clinically relevant tran-
scriptional signatures. By clustering the 35,276 single cells in the
atlas, we identified 22 clusters, as shown in Fig. 1E. Within the
luminal supergroup, cells did not cluster according to their cell
line of origin, indeed four out of the five luminal clusters contain
cells from distinct cell lines (Fig. 1F and Supplementary Fig. 04).
On the contrary, triple-negative cell lines tend to cluster according
to their cell line of origin, with each cluster containing mostly cells
from the same cell line (Fig. 1F and Supplementary Fig. 04).

We identified genes differentially expressed between cells in the
same cluster against all the remaining cells in the atlas. We then
selected one gene for each cluster (i.e. the most differentially
expressed) for a total of 22 cluster-derived biomarkers (Fig. 1G, H
and Supplementary Fig. 05). Neither ESRI nor ERRB2 were part
of this set. Literature mining confirmed the significance of some
of these genes: biomarkers from the luminal supergroup clusters
(Fig. 1G) were associated with cancer progression (BCAS333:34
cluster 2), dissemination (SCGB2A23°3¢ cluster 6), proliferation
(DRAIC3738 cluster 1), migration and invasion (CLCA23940
cluster 8 and PIP#! cluster 18). Interestingly, whereas DRAIC is
correlated with poorer survival of luminal BC patients38, both
CLCA2 and PIP are significantly associated with a favourable
prognosis3%40:42:43,

To examine the clinical relevance of these 22 biomarkers, we
analyzed their expression across 937 breast cancer patients from
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Fig. 1 The breast cancer single-cell atlas. A Representation of single-cell
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expression profiles of 35,276 cells from 32 cell lines color-coded according to

cancer subtype (LA luminal A, LB luminal B, H Her2-enriched, TNA triple-negative type A, TNB triple-negative type B). B Expression levels of the indicated
genes in the atlas, with red indicating expression, together with their C distribution within the cell lines, shown as a violin plot. D Dotplot of literature-based
biomarker genes along the columns, for each of the 32 sequenced cell lines along the rows. Biomarker genes are grouped by type (Basal Epith. basal

epithelial, Luminal Epith. luminal epithelial, L.P. luminal progenitor, EMT Epi

thelial to Mesenchymal Transition). E Graphical representation of 35,276 cells

color-coded according to their cluster of origin. Clusters are numbered from 1to 22. F For the indicated cluster, the corresponding pie chart represents the

cluster composition in terms of cell lines. Cell lines in the same pie chart
shown. In grey cell lines in the cluster contributing less than 5%, while the
heterogeneous cluster mainly composed of 3 cell line while cluster 19 is the
cell line. G Expression levels in the atlas of the five luminal biomarkers ide

are distinguished by colour. Only the top 10 most heterogenous clusters are

other colours represent a specific cell line. For example, Cluster 2 is the most
most homogeneous since in its mainly composed by the cells coming from one
ntified as the most differentially expressed in each of the five luminal clusters

(1,2, 6, 8 and 18). H Expression of 22 atlas-derived biomarkers in the biopsies of 937 breast cancer patient from TCGA. | Accuracy in classifying tumour
subtype for 937 patients from TCGA by using either the PAM50 gene signature or the 22 cluster-derived biomarker genes (scCCL) alone or augmented

with HER2 gene (scCCL 4+ HER2). Two-sided t-test is used to compare the
data file.

the Cancer Genome Atlas (TCGA) collection encompassing all
four BC types. As shown in Fig. 1H, and quantified in
Supplementary Table 04, there is a significant difference in the
expression of the 22 cluster-derived biomarkers across Luminal

performance of the different signatures. Source data are provided in a Source

A, Luminal B, Her2+ and Triple Negative patients. Moreover, it
is possible to distinguish subtypes within each category, which
may lead to additional diagnostic/prognostic biomarkers
(Fig. 1H). For example, two of the biomarkers (MAGE4 and
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XAGE4) are highly expressed only in a subset of triple-negative
breast cancer patients and of HER2 + /ER— patients (Fig. 1H);
interestingly, one of the two (MAGE4) has been previously
reported in the literature as overexpressed in such patients by
proteomic profiling**. The second subset of triple-negative
patients is characterized by actin gamma 2 expression (ACTG2),
which has been previously linked in BC to cell proliferation*> and
platinum-based chemotherapy sensitivity*0-4°. We observed that
two triple-negative cell lines in the atlas (HS578T and MXI1)
showed considerably higher expression of ACTG2 than all the
other cells in the atlas (Supplementary Fig. 06A, B). To confirm
the link with cis-platin sensitivity, we treated both cell lines with
cis-platin and measured cell viability at 72 h at different dosages,
as shown in Supplementary Fig. 06C and Supplementary Table
05. These results confirm cis-platin sensitivity of both cell lines,
albeit higher in HS578T cells than in MX1 cells.

Finally, to further confirm the clinical relevance of these 22
cluster-derived biomarker genes, we compared their performance
in correctly classifying BC subtypes from bulk RNA-seq data of
TGCA patients against the clinically-approved PAMS50 gene
signature (50 genes)®. As shown in Fig. 11, classification
performances were better than random for all the four subtypes
but comparable with the PAMS50 only for the basal subtype,
whereas HER2-overexpressing cancers had the worst perfor-
mance. As expected, when adding ERBB2 to the list of 22 cluster-
based biomarkers, the classification of this subtype improved
(Fig. 11). It is important to observe that, unlike the PAM50, the 22
biomarkers were automatically derived from the single-cell atlas
without using any prior knowledge of breast cancer subtypes.

Altogether, these analyses confirm that the single-cell BC cell-
line atlas can be used for automatic identification of clinically
relevant genes that can be useful for patient stratification and
tumour type classification.

The BC atlas as a reference for automated cancer diagnosis.
The BC atlas can be used as a reference against which to compare
single-cell transcriptomics data from a patient’s tissue biopsy and
to perform cancer subtype classification and assessment of
tumour heterogeneity. To this end, we developed an algorithm
able to map single-cell transcriptional profiles from a patient onto
the BC atlas and to assign a specific cell line to each of the
patient’s cells (Methods and Supplementary Fig. 07). We tested
the ability of the algorithm in correctly mapping the very cells in
the atlas from their single-cell transcriptional profile by first
dividing single-cell transcriptional profiles in the atlas in a
training set (75% of the cells in each cell line), and a test set (25%
of cells in each cell line). As shown in Supplementary Fig. 08, the
accuracy of the mapping algorithm on the test set was greater
than 75% of correctly mapped cells for most of the cell lines (28
out of 32). We then mapped onto the BC atlas the publicly
available®® single-cell transcriptional profiles obtained from five
triple-negative breast cancer patients enrolled in a clinical trial for
neoadjuvant chemotherapy treatment with a pathological eva-
luation of haematoxylin and eosin-stained tissue sections,
immunohistochemistry analysis of oestrogen receptor (<1%) and
progesterone receptor (<1%) and fluorescence in situ hybridiza-
tion analysis of HER2 amplification (ratio of HER2 to CEP-
17 <2.2). As shown in Fig. 2A, B, most patients’ cells mapped to
the triple-negative clusters as expected, except for the TNBC5
patient’s sample, for which most cells mapped to the luminal
supergroup. Interestingly, TNBC5 was the only patient highly
expressing both the androgen receptor AR and the transcription
factor FOXA1 (Supplementary Fig. 09). Co-expression of these
two genes has been reported in the literature to occur in about
15% of triple-negative breast patients, and it is considered a

distinct class of basal-like tumour inducing a luminal-like gene
signature®1>2, This observation suggests that patient TNBC5 cells
were mapped to luminal cell lines, as the algorithm found those
cell lines to be the most similar in the atlas. To further investigate
TNBC5 unusual expression profile, we applied the
PAMS50 signature to the pseudo-bulk expression profiles of the
five TNBC patients. Pseudo-bulk refers to the use of single-cell
expression profiles to compute the average gene expression and
thus simulate a bulk gene expression measurement. The results of
the PAM50 classification are reported in Supplementary Table 06
and show that whereas patients TNBC1, 2, 3 and 4 were correctly
classified as basal-like with about 99% probability, on the contrary
TNBCS5 has only a 4% probability of being basal-like, compared
to a 47% probability of being HER2-enriched, and 48% prob-
ability of being luminal, in agreement with our mapping algo-
rithm predictions and further confirming the peculiarity of this
patient. These results demonstrate that heterogeneity varies
across patients but is present in all the samples, as no patient’s
biopsy mapped to a single cell line. Moreover, information on the
drug sensitivity of the individual cell lines composing the tumour
may prove useful in guiding therapeutic choices.

We next tested the algorithm on publicly available>3 spatial
transcriptomics dataset obtained from tissue biopsies of two
patients, one diagnosed with ESR11/ERBB2+ lobular oestrogen-
positive carcinoma (Fig. 2C and Supplementary Fig. 10A) and the
other with ESRI1T/ERBB2+ ductal carcinoma (Supplementary
Fig. 10B,C). The publicly available dataset includes 3808
transcriptional profiles for patient 1 (Fig. 2C) and 3615 profiles
for patient 2 (Supplementary Fig. 10B,C), each obtained from a
different tissue “tile” of size 50 x 50 x 50 um. The IHC and HER2
FISH data used for the diagnosis were not publicly available. The
algorithm projected each of the spatial tiles onto the BC atlas and
assigned a cell line to each tile. We coloured the tiles according
either to the mapped cell line or to the BC subtype of the mapped
cell line (Fig. 2C) to yield an automatic cancer subtype
classification of tiles. Most of the tiles for both patients were
assigned to just two cell lines and correctly classified as luminal
(A or B); the remaining 13% of the tiles for patient 1 and 20% for
patient 2 were instead classified either as HER2-overexpressing or
triple-negative, which could be important information to guide
therapeutic choice and to predict the occurrence of drug
resistance. Since spatial data do not have a single-cell resolution,
each spatial tile could also be itself a mixture of heterogeneous
profiles. Thus an alternative approach is to use bioinformatics
tools, such as Cell2Location®*, which can be trained on the BC
single-cell atlas and used to estimate the cell-line composition of
each spatial tile, rather than attempting to assign the entire tile to
just one cell line. The results of applying Cell2Location on the
tissue biopsies of the two patients are reported in Supplementary
Fig. 11 and Supplementary Fig. 12.

As bulk gene expression profiles are more clinically relevant
than single-cell gene expression profiles, we next trained a recently
published bioinformatics tool named Bisque>> (Methods) on our
single-cell atlas to predict the cell-line composition of a tumour
sample. Bisque was originally devised to estimate cell type
proportions from bulk RNA-seq data of complex tissues. To test
the effectiveness of Bisque in our settings, we first applied it to
bulk RNA-seq transcriptomic data of breast cancer cell lines that
are publicly available in the CCLE?# database and that were also
present in our atlas (i.e. 29 out of 32 cell lines). We then used
Bisque to predict from the bulk gene expression profile of each cell
line, its composition using the single-cell transcriptional profiles in
the atlas. As shown in Supplementary Fig. 13, for each of the 29
bulk gene expression profiles, Bisque correctly predicted that the
largest fraction of cells composing it came from the corresponding
cell line in the atlas with a range between 40% and 80%.
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Fig. 2 Automatic classification of patients' tumour cells. A Cancer cells from triple-negative breast cancer (TNBC) biopsies of five patients were

embedded in the BC atlas by means of the mapping algorithm in order to predict their tumour subtype. B For each patient, the pie chart shows cell-line
composition obtained by mapping patient’s cells onto the atlas. € Tissue-slide of an oestrogen-positive breast tumour biopsy sequenced by means of the
10x Genomics Visium spatial transcriptomics (top-left) and the position of the mapped tissue tiles onto the atlas (top-left). Tiles are colour-coded

according to the cell line (bottom-left) and to tumour subtype (bottom-right) as predicted by the mapping algorithm. D Cell-line composition of 937 BC
patients from the TGCA database as estimated by the Bisque algorithm from their bulk RNA-seq data. For ease of interpretation, in the heatmap patients
are clustered according to their cell-line composition. The bottom row reports the annotated cancer subtype in TGCA. E Predicted cell-line composition by
the Bisque algorithm for four representative patients. F The distribution of the 937 BC patients across the 32 cell lines. For each cell line, the stacked bars
report the percentage of patients of a given cancer subtype assigned by Bisque to that cell line. Since each patient is usually predicted by Bisque to be
composed by multiple cell lines, the patient is associated to the cell line making up the largest fraction of the patient's cell-line composition. G Performance
of Bisque in classifying the tumour subtype of the 937 BC patients in TGCA from bulk gene expression profiles. Since each patient is usually predicted by
Bisque to be composed by multiple cell lines, the patient is associated to the tumour type of the cell line making up the largest fraction of the cell-line

composition. (PPV positive predictive value, AUC area under the curve). Source data are provided in a Source data file.

We then applied Bisque to 937 bulk gene expression profiles
from breast cancer patients in TGCA whose BC subtypes were
annotated, and then assigned to each patient the corresponding
cell-line composition as shown in Fig. 2D, E. Reassuringly,
patients diagnosed with a specific breast cancer subtype tend to
have a tumour cell-line composition consisting of cell lines of the
same subtype. We quantified this observation in Fig. 2F and
observed some interesting exceptions: JIMT-1 is a HER2-
overexpressing cell line with an amplified ERBB2 locus, but for
no HER2" patient Bisque predicted the JIMT-1 cell line as the
one making up the largest fraction of the patient’s cell-line
composition. Interestingly, JIMT-1 cells are resistant to anti-
HER2 treatments®®; another example is the HS578T cell line,
which is reported to be triple-negative; however, the majority of
patients who map to it are luminal; interestingly, this cell line has
been reported to be sensitive to fulvestrant’”-8, an anti-ESR1 drug.
We finally quantified the performance of the Bisque algorithm
trained on the single-cell atlas in correctly classifying the tumour
subtype of the 937 TGCA patients from bulk RNA-seq. To this
end, we assigned to each patient the tumour subtype of the cell
line making up the largest fraction of the patient’s cell-line
composition. Figure 2G reports the classification performance in
terms of precision-recall curve, achieving an Area Under the

Curve of 0.71. Altogether, these results show that the BC single-
cell atlas can be used to automatically assign cell-line composition
and cancer subtypes both from single-cell expression profiles and
bulk gene expression profiles.

Clinically relevant biomarkers exhibit heterogenous and
dynamic expression in BC cell lines. Clinically relevant receptors
are heterogeneously expressed across cells belonging to the same
cell line, as assessed by computing the percentage of cells in a cell
line expressing the receptor as in Fig. 3A. Consider the seven
Luminal B and HER2™ cell lines present in the BC atlas, which by
definition overexpress HER2: whereas more than 90% of cells in
AU565, BT574 and HCC1954 cell lines express ERBB2, in the
remaining four cell lines ERBB2 expression ranged from 31% of
EVSAT cells to 46% of JIMT1 cells and up to 64% of MDA-MB-
361 cells. This happens despite both JIMT1 and MDA-MB-361
harbouring a copy number gain of the locus containing the
ERBB2 gene>’. We first excluded the possibility that these results
were artifacts of single-cell RNA-sequencing technology by
showing that estimated BC receptor heterogeneity is not corre-
lated to sequencing depth (Supplementary Fig. 14), and by a
simulation approach assuming a Poisson sampling of sequencing
data>859 as reported in Supplementary Table 07 (Methods). More
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Fig. 3 Transcriptional heterogeneity in breast cancer cell lines and its impact on drug response. A Percentage of cells expressing the indicated genes
in each of the 32 cell lines. B Fluorescence cytometry of HCC38, MDA-MB-361 and AU565 cell lines stained with a fluorescent antibody against HER2.
C Expression of HER2 protein in MDA-MB-361 cells is dynamic and re-established in less than 3 weeks. D Cell cycle phase for the HER2+ and HER2—
subpopulations of MDA-MB-361 cells. p-value refers to the Fisher's exact test. E Enriched pathways (GSEA, FDR <10%) across differentially expressed
genes between the HER2T (orange) and HER2~ (blue) MDA-MB-361 cells. F Gene expression versus drug potency for four anti-HER2 drugs. Each dot
corresponds to a cell line with percentage of cells expressing ERBB2 or EGFR [y-axis] versus the experimental drug potency® as Area Under the Curve
(AUC) [x-axis]. PCC (Pearson correlation coefficient) and its p-value are also shown. G PCC values computed as in F for 66 drugs for which the cognate
drug targets is known. The PCC distribution when choosing a random gene is also shown. Boxplots containing PCC distribution between a random gene
and drug n=1000, while n= 66 for boxplot containing PCC distribution between a drug and its cognate target gene. H Bioinformatics pipeline for the
identification of drug sensitivity biomarkers for 450 drugs. I The top 250 most expressed genes in a single cell are used as input for a GSEA against the
ranked list of genes correlated with drug potency for each one of the 450 drugs to predict its drug sensitivity. J Performance of DREEP in predicting drug
sensitivity of 32 cell lines in the atlas to 450 drugs in terms of PPV (Positive Predicted Value) versus Recall. K Dose-response curve in terms of cell viability
following treatment with either afatinib or etoposide at the indicated concentrations on sorted MDA-MB-361 cells (triplicate experiment). L Percentage of
HER2+ cells in MDA-MB-361 after 72 h treatment with either afatinib or etoposide. (two-sided t-test), and M cell viability. N Percentage of HER2T cells in
MDA-MB-361 cell line at the indicated time-points either following 48 h of afatinib pre-treatment (red bars) or without any afatinib pre-treatment (black
bars) and O the relative number of cells rescaled for the number of cells at the beginning of the experiment. Source data are provided in a Source data file.
For K, L n=3.
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specifically, we computed for each cell line, the expected pro-
portion of zero counts across cells for each of the four clinical
biomarkers in Fig. 3A. We then tested whether the actual zero
proportion was higher than expected under the Poisson model, as
zero inflation indicates the presence of cell heterogeneity®. We
thus found that heterogeneity in the expression of the clinical
biomarkers is significant (p-values < 0.05) for at least one of the
four biomarkers in all the cell lines but two (ZR751 and BT549).
Moreover, for the MDA-MB-361 cell lines, ESRI, PGR and
ERBB2 were all found to be significantly heterogeneously
expressed (Supplementary Table 07). We also assessed HER2
protein levels by flow cytometry in three representative cell lines:
AU565 (high HER2 expression), MDA-MB-361 (heterogeneous
HER?2 expression) and HCC38 cell lines (low HER2 expression).
As shown in Fig. 3B, single-cell transcriptional data agree with the
cytometric analyses; however, the origin of this heterogeneity is
unclear. To exclude hereditable genetic differences as a source of
heterogeneity, we sorted MDA-MB-361 cells into HER2" and
HER2™ subpopulations (Methods) and checked whether these
homogenous subpopulations were stable over time, or rather
spontaneously gave rise to heterogeneous populations. As shown
in Fig. 3C, after 18 days in culture, both subpopulations re-
established the original heterogeneity, demonstrating that HER2
expression in these cells is dynamic and driven by a yet undis-
covered mechanism.

Interestingly, HER2™ circulating tumour cells (CTCs) isolated
from an ERT/HER2™ breast cancer patient were previously
shown to spontaneously interconvert from HER2~ and HER2T,
with cells harbouring a phenotype producing daughters of the
opposite one®. To check if the cell cycle phase could explain the
observed heterogeneity in the MDA-MB-361 cell line, we
computationally predicted (Methods) the cell cycle phase of each
cell in both the HER2™ and HER2T subpopulations from single-
cell transcriptomics data®l. As shown in Fig. 3D, a higher
proportion of HER2™ cells was predicted to be in the S and G2/M
phases when compared to HER2 + cells, with a concomitant
lower proportion in the G1 phase. This result is consistent with
previous observations that report cell cycle arrest in the G2/M
phase following HER?2 inhibition®2.

We next set to identify biological processes differing between
the two subpopulations by computing differentially expressed
genes (DEGs) from the single-cell transcriptional profiles of
HER27 cells against HER2~ cells (Supplementary Data 01). Gene
Set Enrichment Analyses (GSEA)® against the ranked list of
DEGs, reported in Fig. 3E, revealed just seven significantly
enriched pathways (FDR < 10%): four of which were upregulated
in HER27 cells, but downregulated in HER2~ cells, and included
adipogenesis, myogenesis and OXPHOS, all indicative of
epithelial-to-mesenchymal transition (EMT) engagement, which
has been previously observed in HER2F cells®4-%; the remaining
three pathways were upregulated in HER2™ cells and related to
cell cycle and specifically to G2/M phase, in agreement with our
previous analysis, suggesting that cell cycle may play a role in
HER2 expression in this cell line.

These results show that heterogeneity in the expression of
clinically relevant biomarkers is present even in cancer cell lines
and that it can also be dynamic and of a non-genetic nature.

Heterogeneity in gene expression affects drug response. To
investigate the role of heterogeneity in gene expression on drug
response, we collected large-scale in vitro drug screening data’-
reporting the effect of 450 drugs on 658 cancer cell lines from
solid tumours. As shown in Fig. 3F, Supplementary Fig. 15 and
Supplementary Table 08, the sensitivity of the BC cell lines to
HER?2 inhibitors was significantly correlated with the percentage

of cells in the cell line expressing ERBB2. This result holds true
even when using bulk gene expression of the cell lines (available
in the CTRPv2 dataset from the Cancer Cell Line Encyclopaedia
—CCLE?%), in place of the percentage of cells (Supplementary
Fig. 16). Interestingly, at the single-cell level receptor expression is
substantially the same across cells expressing it, irrespective of the
cell line they belong to (Supplementary Fig. 17), except for cell
lines harbouring CNVs of the ERBB2 locus. Furthermore, by
analyzing all the drugs in the CCLE?* database for which the
cognate target is known, we found that the correlation between
drug target expression and drug sensitivity holds true also for 66
drugs out of 302 targeted drugs across CTRPv2 and GDSC
datasets (Fig. 3G and Supplementary Data 02). These results
suggest that variability in gene expression within cells of the same
tumour caused by cellular heterogeneity may cause some cells to
respond poorly to the drug treatment.

Starting from these observations, we developed DREEP (DRug
Estimation from single-cell Expression Profiles), a bioinformatics
tool that, starting from single-cell transcriptional profiles, allows
to predict drug response at the single-cell level. To this end, we
first detected expression-based biomarkers of drug sensitivity for
450 drugs®, as schematized in Fig. 3H, I (Methods). Briefly, we
crossed data from the CTRPv2 dataset from the CCLE?* on the
response to 450 drugs across 658 cancer cell lines from solid
tumours with the cell line gene expression profiles from bulk
RNA-seq. In the CCLE, drug potency is evaluated as the inverse
of the Area Under the Curve (AUC) of the dose-response graph,
with low values of the AUC indicating drug sensitivity, while high
values implying drug resistance (Fig. 3H). For each gene and for
each drug, we computed the correlation between the expression
of the gene across the 658 cell lines with the drug potency in the
same cell lines. Hence, genes positively correlated with the AUC
are potential markers of resistance, vice-versa, negatively
correlated genes are markers of sensitivity (Fig. 3H). In this
way, we generated a ranked list of expression-based biomarkers of
drug sensitivity and resistance for each of the 450 drugs. We then
used these biomarkers to predict drug sensitivity at the single-cell
level for the 32 cell lines in the atlas, as depicted in Fig. 31. To this
end, for each cell in the atlas, we compared the 250 genes most
expressed by the cell to the ranked list of biomarkers for each one
of 450 drugs by means of Gene Set Enrichment Analysis
(GSEA)%3, resulting in 450 Enrichment Scores (ES) with
corresponding p-values. Finally, the cell was deemed to be
sensitive to the drug associated with the most negative ES. If no
significant and negative ES score was found then the cell was
annotated as unclassified. To convert predictions from the single-
cell level to the cell-line level, we chose the drug that was
predicted to work in the largest fraction of cells in the cell line.
We tested DREEP’s performance in predicting the drug
sensitivity of the 32 cell lines in the atlas starting from their
single-cell transcriptomics data. We chose two independent
“golden standards”, one derived from the experimental drug
potency data of 450 drugs across 658 cancer cell lines in the
CTRPv2 dataset, and the other derived from Genomics of Drug
Sensitivity in Cancer (GDSC) study’, which includes drug
potency data measured as Inhibitory Concentration at 50%
(IC50) for about 250 small molecules (of which only 86 in
common with the CTRPv2 dataset). The overall performance
across the 32 cell lines in the atlas is reported for the CTRPv2
golden standard in Fig. 3] and for each of the 450 drugs separately
in Supplementary Data 03, while Supplementary Fig. 18 reports
the performance for the GDSC golden standard. In all cases
DREEP performance was better than random.

To experimentally validate DREEP, we turned to the MDA-
MB-361 cell line for which we found the coexistence of two
distinct and dynamic cell subpopulations (HER2+ and HER2™).
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We applied DREEP to each subpopulation to identify drugs able
to selectively inhibit the growth of either the HER2™~ subpopula-
tion or the HER2T subpopulation: 42 drugs (FDR< 1%,
Supplementary Table 04) were predicted to preferentially inhibit
the growth of HER2™ cells; the most overrepresented class among
these drugs was that of inhibitors of DNA topoisomerases
(TOP1/TOP2A) (Supplementary Figs. 19, 20) such as Etoposide.
Surprisingly, no drug was found to specifically inhibit the growth
of HER™ cells, whereas 44 drugs (FDR < 1%) were predicted to be
equally effective on both subpopulations and unexpectedly
included HER?2 inhibitors, such as afatinib (Supplementary Data
04).

We selected etoposide and afatinib for further experimental
validation. MDA-MB-361 cells were first sorted by FACS into
HER2" and HER2~ subpopulations and then cell viability was
measured following 72h drug treatment at five different
concentrations, as shown in Fig. 3K and Supplementary Table
09. In agreement with DREEP predictions, HER2~ cells were
much more sensitive to etoposide than HER2T cells, while
afatinib was equally effective on both subpopulations. This
counterintuitive result was similar to that observed by Jordan
et al® using circulating tumour cells from a BC patient sorted
into HER2™ and HER?2 + subpopulations, which were found to
be equally sensitive to Lapatinib (another HER2 inhibitor), but no
mechanism of action was put forward.

We hypothesize that the dynamic interconversion of MDA-
MB-361 cells between the HER2™ and the HER2T state may
explain this surprising result: when the starting population
consists of HER2™ cells only, some of these cells will nevertheless
interconvert to HER2™ cells during afatinib treatment, and they
will thus become sensitive to HER2 inhibition, explaining the
observed results. We mathematically formalized this hypothesis
with a simple mathematical model (Supplementary Figs. 21-23
and in the Supplementary Note 01) where two species (HER2F
and HER2™ cells) can replicate and interconvert, but only one
(HER27) is affected by afatinib treatment. The model shows that
if the interconversion time between the two cell states is
comparable to that of the cell cycle, then afatinib treatment will
have the same effect on both subpopulations. If instead the
interconversion time is much longer than the cell cycle, then
afatinib will have little effect on HER2™ sorted cells, but maximal
effects on HER2™T sorted cells, and vice-versa, if the interconver-
sion time is much shorter than the cell cycle, then afatinib’s effect
would be minimal on both HER2™ and HER2™ sorted cells.

Comparison of the modelling results with the experimental
results thus suggests that the interconversion rate should be of the
same order of the cell cycle (about 72 h for MDAM361 cells). The
model further predicts that treating the unsorted population of
MDA-MB-361 cells with afatinib reduces the percentage of
HER2™T cells, since only HER2" will be affected, but that this
percentage quickly recovers once Afatinib treatment is interrupted
(Supplementary Figs. 22 and 23 and Supplementary Note 01).

To test modelling predictions, we treated the MDAM361 cell
line (without sorting) with afatinib and etoposide and then
assessed by cytofluorimetry the percentage of HER2+ and
HER2™ cells before and after the treatment. As shown in Fig. 3L,
M, and Supplementary Table 10 and Supplementary Table 11,
etoposide increased the percentage of HER2V cells, in agreement
with the increased sensitivity of HER2™ cells to this treatment,
whereas afatinib strongly decreased the percentage of HER2T
cells, confirming that its effect is specific for HER2T cells only.
We next measured the percentage of HER2T cells following
removal of Afatinib from the medium; as shown in Fig. 3N, O the
percentage of HER2 + cells quickly increased confirming the
modelling results. We next investigated the effect of Afatinib and
Etoposide in combination in MDA-MB-361 cells. Specifically, we

tested 20 different combinations in triplicate experiments and
measured cell viability in response to the treatments, as
summarized in Supplementary Fig. 24A and Supplementary Data
05. We then used this dataset to estimate whether these two drugs
had an additive, synergistic or antagonistic effect (Supplementary
Fig. 24B). Overall, the average synergy score across all the
combinations, measured using the Excess over Bliss model®’, is
compatible with an additive effect (synergy score of —12.0 with a
confidence interval of +4.07 thus falling in the interval from —10
to 410 considered as additive®8); however, for low concentrations
of afatinib and high concentrations of etoposide, we did observe
an unexpected tendency for the drugs to be antagonistic
(indicated as yellow/red squares in Supplementary Fig. 22B).
This inhibitory effect may be partly explained by the fact that
anti-HER2 treatment in HER2T cancer cells has been shown to
downregulate the expression of TOP2A as well as of other genes
involved in the G2-M cell cycle phase®®. This may cause
desensitization to Etoposide treatment, as it acts primarily on
TOP2A during the S and G2 phases of the cell cycle”?,

Altogether our results show that DREEP can predict drug
sensitivity from single-cell transcriptional profiles and that
dynamic heterogeneity in gene expression does play a significant
role in how the cell population will respond to the drug
treatment.

Discussion

In this study we provide a transcriptional characterization at
single-cell level of a panel of 32 breast cell lines. We show that
single-cell transcriptomics can be used to capture the expression
of clinically relevant markers. Our approach could be very useful
for automatically identifying gene signatures for less studied
tumours for which no signature is currently available, and no
clear clinical subtypes have been identified. We also show that
breast cancer cell lines express clinically relevant BC receptors
heterogeneously among cells within the same cell line. Moreover,
we observed dynamic plasticity in the regulation of HER2
expression in the MDA-MB-361 cell line with striking con-
sequences on drug response. This phenomenon has been recently
observed also in circulating tumour cells of a BC patient®® and in
other cell lines!”>71.

We determined the cell line composition of patients’ biopsies
both from both single-cell and bulk gene expression profiles.
Estimation of cancer cell-line composition provides an alternative
and more information-rich framework to link bulk gene expres-
sion measurement of patient’s biopsies to preclinical cancer
models. Knowledge of drugs to which cancer cell lines are sen-
sitive may also inform drug treatment for patients for which bulk
gene expression profiles have been measured. However, further
work is needed to assess the clinical relevance of these findings.

Single-cell transcriptomics is still not clinically ready because of
the costs and time required. This work, however, shows the
importance of performing single-cell sequencing on the available
cancer models, including cell lines and organoids, to build a set of
cell cancer states with a known phenotype and drug response to
which patients’ tumour can be mapped to make a leap in per-
sonalized diagnosis, prognosis and treatment of cancer patients.

Methods

Cell culture. The 32 cell lines used in this study were obtained from commercial
providers and cultured in ATCC recommended complete media at 37 °C and 5%
CO,. Cell-line identity was assessed through STR profiling by means of the
AmpFISTR Identifier Plus PCR Amplification kit (Applied Biosystems) with
purified genomic DNA (1 ng) following the manufacturer protocol. KPL-1 cell line
used in this study is indeed the same as the MCF7 cell line as previously reported
(https://iclac.org/databases/cross-contaminations/).
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DROP-seq platform set-up. Single-cell transcriptomic of the 32 cell lines was
performed by implementing in-house the DROP-seq technology?’. The microfluidics
device for the generation of the droplet was fabricated using a bio-compatible,
silicon-based polymer, polydimethylsiloxane (PDMS) that was rendered hydrophobic
with Aquapel® treatment as per protocol?’. In each sequencing experiment, cell
suspension, bead suspension and carrier oil (QX200 droplet generation oil, Bio-Rad)
were first loaded in syringes and then placed in syringe pumps (Leafluid). Flow rates
of syringe pumps were set at 4,000 uL/h for both cell and barcoded bead suspensions
while carrier oil syringe pump was set at 15,000 pL/h. In each sequencing experiment,
cells and barcoded beads were, respectively, diluted at the concentration of 200 cell/
pL in PBS with BSA 0.01% (Merck) and 120 bead/uL in lysis buffer. A self-built
magnetic stirrer system was used to keep in suspension barcoded beads. To count the
occurrence of a single cell together with a barcoded bead several tests were performed
without lyses buffer in the bead suspension. In these tests, we observed about 5% of
generated droplets filled with just one bead and one cell.

Single-cell RNA library preparation and sequencing. For each sequencing
experiment, the targeted number of cells to sequence was set to 2000. Droplets were
collected in a 50 mL falcon and broke by adding 1 mL of Perfluoro-1-octanol.
Captured RNA was reverse transcribed in a single reaction following the original
protocol?0 and then digested with exonuclease 1 to degrade unbound primers.
Next, cDNA was first amplified with a total of 12 PCR cycles and then purified
using AMPure XP beads at 0.6x ratio. Finally, the quality of the resulting cDNA
library was quantified with the BioAnalyzer High Sensitivity DNA Chip and its
concentration measured using the Qubit Fluorometer. The Illumina Nextera XT v2
kit was used to produce the next-generation sequencing (NGS) libraries using four
aliquots of 600 pg of each cDNA library. Quality and concentration of NGS
libraries were respectively quantified on the BioAnalyzer High Sensitivity DNA
Chip and Qubit Fluorometer. Finally, either Illumina NextSeq 500/550 or NovaSeq
6000 machines were used to sequence the produced NGS libraries (Supplementary
Table 01). Samples processed with NextSeq500/550 NGS library were diluted at the
final concentration of 3 nM and sequenced using the 75-cycle high output flow cell
while samples processed with NovaSeq 6000 machine were diluted at the final
concentration of 250 pM and sequenced using the S1 100 cycles flow cell.

Read alignment and gene expression quantification. Raw data processing was
performed using the Drop-seq tools package version 1.13 and following the
Dropseq Core Computational Protocol (http://mccarrolllab.org/dropseq). Briefly,
raw sequence data were filtered to remove all read pairs with at least one base in
their cell barcode or UMI with a quality score less than 10. Then read 2 was
trimmed at the 5’ end to remove any TSO adapter sequence, and at the 3’ end to
remove polyA tails. Reads were then aligned using STAR’? on hg38 human gen-
ome (primary assembly, version 28) downloaded from GENCODE”3. After reads
alignment, UMI tool’# was used to perform UMI deduplication and quantify the
number of gene transcripts in each cell. The initial number of sequenced cells was
identified using a simple (knee-like) filtering rule as implemented by CellRanger
2.2.x. After this, only high depth cells with at least 2500 UMI, more than 1000
captured genes and with less than 50% of reads aligned on mitochondrial gene were
retained. Putative multiples among the sequenced cells of each BC cell line were
simply discarded identifying outliers in the count depth distribution by using
Tukey’s method based on lower and upper quartiles with k equal to 3. To check for
the possibility of batch effects in the sequencing data, the counts of each gene in
every single cell were summed overall the cells in the same cell line to obtain one
pseudo-bulk sample per cell line, for a total of 32 pseudo-bulk samples. These
samples were then normalized with EdgeR normalization”® and a Principal
Component Analysis (PCA) plot was performed and reported in Supplementary
Fig. 1B. Visual inspection of the PCA plot confirmed the absence of major batch
effects in the data.

BC atlas construction. Single-cells expression profiles were normalized using GF-ICF
(Gene Frequency—Inverse Cell Frequency) normalization using the gficf package’®7
for R statistical environment (https://github.com/dibbelab/gficf). GF-ICF is based on a
data transformation model called the term frequency-inverse document frequency
(TE-IDF) that has been extensively used in the field of text mining. GF-ICF trans-
formation was applied on CPM (count per million) after EdgeR normalization’> and
discarding genes expressed in less than 5% of the total number of sequenced cells.
Finally, each cell was summarized with its first 10 Principal Components (PCs) and
projected with UMAP’8 into a two-dimensional embedded space. The number of
principal components was chosen as the “elbow” point on the plot of the first 50 PCs.
UMAP projection was performed by using the uwot package in the R statistical
environment 3.6.

Quantification of basal-like transcriptional profiles of triple-negative BC cell
lines. Genes known to be specifically expressed in basal epithelial cells were
retrieved from the literature?!-79-84 and used to perform Gene Set Enrichment
Analysis (GSEA) against the pseudo-bulk profiles of the 15 triple-negative BC cell
lines in the atlas. Pseudo-bulk profiles for each cell line were obtained by summing
the counts of each gene in every single cell overall the cells in the same cell line. The
Enrichment Score from GSEA and its associated p-value are then used to assess the

extent to which each cell line expresses basal-like biomarkers. The results of this
analysis are reported in Supplementary Table 03 and show that 11 out 15 triple-
negative cell lines significantly (p < 0.05) express the basal biomarkers.

Cell clustering and identification of marker genes. Transcriptionally similar
subpopulations of cells were found using a Phenograph like approach®” as
implemented in the clustcells function of gficf package’°. Briefly, we initially built a
graph of cells by using the K-Nearest Neighbours (KNN) algorithm applied to the
PC-reduced space where each cell was connected to its 50 most similar cells using
the manhattan distance. Then, to build the final graph of cells, the edge weight
between any two cells was computed as the Jaccard similarity, i.e. the proportion of
neighbours they share. The Louvain algorithm with a resolution parameter equal to
0.25 was used to find communities of cells in this graph. Differentially expressed
genes in each cluster were identified by the findClusterMarkers function of gficf
package, which compares the expression of a gene in each cluster versus all the
other by using the Wilcoxon rank-sum test’°.

TGCA bulk expression dataset and cell-line deconvolution. Raw bulk expres-
sion data and relative patient clinical information were collected from the Genomic
Data Commons (GDC) portal®® by using the TCGAbiolinks package®’. Then, raw
counts were normalized using the EdgeR package’® into R statistical environment
3.6. Bisque tool* (available at https://github.com/cozygene/bisque) was used to
estimate the cell-line composition from the patient’s bulk gene expression profile.
Specifically, we applied the ReferenceBasedDecomposition function with para-
meters: bulk.eset set to the bulk gene expression dataset in log2 scale; sc.eset set to
our single-cell BC atlas with normalized raw counts rescaled in log2; use.overlap set
to FALSE and markers set to the marker genes across the 32 BC cell lines estimated
by using the function findClusterMarkers of gficf package. As in the original
manuscript describing the Bisque tool®>, only marker genes with an FDR < 0.5 and
Log2 fold change greaten then 0.25 were used for deconvolution purpose.

Spatial sequencing data. Spatial transcriptomic data of two BC patients were
download from 10x Genomic website (https://www.10xgenomics.com/resources/
datasets). Only tiles reported to be “in tissue” according to the related metadata of
each patient slide were used.

Single-cell data of TNBC patients. Pre-treatment single-cell data of the five
TNBC patients® described in Fig. 02A, B were downloaded from GEO repository
(accession number GSE148673). Then genes expressed in less than 5% of total cells
across the five patients were filtered out. Finally, the raw UMI count matrix was
normalized with edgeR package in R environment.

Mapping new cells into the BC atlas and estimation of the cancer subtype.
New points were mapped to the UMAP space via embedNewCells function of gficf
package’® as depicted in Supplementary Fig. 07. Briefly, scRNA-seq profiles (or
tiles from 10x spatial transcriptomics dataset) were normalized with gficf package
using the ICF weight estimated on the BC atlas. Then scRNA-seq profiles were
projected to the existing PC space using gene loadings from the BC atlas, via the
umap_transform function of uwot package, which uses the UMAP estimated model
to map the new cells into the existing UMAP space. Finally, the cancer subtype of
each mapped cell was predicted with the function classify.cells of the package gficf
with the k-nearest-neighbour parameter set to 100. The number of k-nearest-
neighbours to use was chosen by computing the average classification of the
method accuracy as a function of the number of neighbourhoods used using the
cells of our breast cancer atlas. Specifically, 75% of cells in each cell line were
collected and used as the training set (i.e. 26,455 cells) while the remaining 25% was
used as test set (i.e. 8821 cells). Then, the 26,455 cells of the training set were used
to reconstruct the breast cancer atlas from scratch. While the 8821 cells of the test
set were mapped into the atlas as “new cells” with our mapping algorithm. Finally,
the cell line type of each cell in the test set was predicted by using k-nearest-
neighbours ranging from 1 to 300 (Supplementary Fig. 09B). Visual inspection of
the plot shows the best performance of the method is obtained around k equal
to 100.

Estimation of heterogeneity in biomarker expression. When determining
whether a gene is truly heterogeneously expressed in single-cell RNA-seq data it is
necessary to account for the probability of detection given the Poisson sampling of
sequencing data8. To this end, for each cell line, we first calculated the expected
proportion of zeros across cells for each of the four clinical biomarkers assuming a
Poisson distribution of counts, by considering the heterogeneity in sequencing
depth, according to this equation:

Pg’i = Poisson(O, A,) (1)
where: P{; is the probability for gene x of not being detected in cell , i.e. to have a

zero UMI count; A;is the expected number of counts for gene x in cell i. To
compute A; in each cell we used the following equation:

A, = (UML) - UMI'/(UMI) )
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where (UMI,,) the average UMI count of gene x across the single cells, UMI' is the
total UMI counts in cell i and (UMI) is the average number of total UMI across
cells. Using this model, we tested whether the measured zero proportion was higher
than the expected rate under the Poisson model, as zero inflation indicates the
presence of cell heterogeneity*. For each cell line, we computed an empirical
p-value for each of the four biomarkers, by randomly sampling from N (number of
cells in the cell line) Poisson distributions using the estimated ;. We thus obtained
a “simulated” vector of counts, from which we computed the proportion of zero
counts. This process was repeated 10,000 times to obtain an empirical distribution
of the proportion of zero counts, which we then used to compute the empirical
p-value. The results are reported in Supplementary Table 04.

Correlation between drug targets expression and drug potency. By using
CTRPv2 and GDSC dataset we built a list of 302 drugs for which the target genes
are known. Then, for each drug we correlated its reported potency with the per-
centage of cells expressing its target genes across our 32 cell lines (Supplementary
Data 02). A gene was considered expressed if and only if at least one UMI was
detected. In Fig. 3G only significant correlation values (P < 0.05) are plotted.

Description and validation of the DREEP method for single-cell drug sensi-
tivity prediction. The naive gene expression profiles (RNA-seq) of about 1000
cancer cell lines and the drug potency of each drug in each cell line, quantified by
the Area Under the Curve (AUC) of the dose-response curve, are part of the
CTRPv2 dataset publicly available from the Cancer Cell Line Encyclopaedia
(CCLE) portal?%. One hundred sixty-six cell lines belonging to liquid tumours were
discarded and only 658 cell lines belonging to solid tumours were retained and
used for further analysis. The raw counts of each gene were normalized with edgeR
package’” and transformed in logl0(CPM + 1). Poorly expressed genes and genes
whose entropy was in the fifth percentile were excluded from the analysis.
Expression profiles of the 658 CCLs were then crossed with drug sensitivity data®.
This dataset was originally composed of 481 small molecules, but, after removing
drugs for which the in vitro response was available for less than 25 CCLs, only
450 small molecules were retained for further analysis. As schematized in Fig. 3H,
for each gene and for each of the 450 drugs, we computed the Pearson correlation
coefficient (PCC) between the expression of the gene across the 658 cell lines and
the effect of the drug expressed in terms of AUC. Since the AUC reflects the

in vitro response of a cell line to different concertation of a drug in a timeframe of
72 h, lower values of AUC are associated with sensitivity whereas higher values
with resistance to the drug. Hence, genes positively correlated with the AUC are
potential markers of resistance (the more expressed the gene, the higher the
concentration needed to inhibit growth), vice-versa, negatively correlated genes are
markers of sensitivity. We this approach, we generated a ranked list of expression-
based biomarkers of drug sensitivity and resistance for each of the 450 drugs where
genes positively correlated with the AUC are at the top, and those negatively
correlated at the bottom. Finally, to predict drug sensitivity at the single-cell level,
we used the top 250 expressed genes of each cell as input of Gene Set Enrichment
Analysis (GSEA)®? against the ranked list of biomarkers for each one of 450 drugs
built as described above (Fig. 3I). Hence, while a negative enrichment score implies
that genes associated with drug sensitivity are highly expressed by the cell, a
positive one indicates the cell express genes conferring drug resistance. GSEA and
associated p-values were estimating using the fgsea package in the R statistical
environment version 3.6. To assess the precision and sensitivity of DREEP in
predicting drug response from single-cell transcriptional profiles, we evaluated its
performance on two publicly available drug screening dataset: one derived from the
CTRPv2 dataset?* and the other derived from Genomics of Drug Sensitivity in
Cancer (GDSC) study by the Sanger Institute?, which includes drug potency data
measured as IC50 for about 250 small molecules (of which only 86 in common
with the CTRPv2 dataset). To build the “CTRPv2 golden standard” for 450 drugs,
we first computed the z-score percentiles from the AUC of each drug across all the
824 cancer cell lines. We then defined a cell line sensitive to the drug if and only if
its Z-score was in the 5% percentile. The “CTRPv2 golden standard” for the 32 cell
lines in the atlas was built by assigning to each of 32 x 450 (=14,400) cell line/drug
pair the value 1 if the cell line was sensitive to the drug and 0 otherwise. To build
the “GDSC golden standard” of 32 x 86 drugs (=2752), we set a specific threshold
for IC50 to call a cell line sensitive to a drug as previously described” and assigned
to each cell line/drug pair the value 1 if the cell line was sensitive to the drug and 0
otherwise. We then applied DREEP to the single-cell profiles of the 32 BC cell lines
to predict the percentage of sensitive cells in each cell line for the 450 drugs. Finally,
Positive Predicted Values (PPV) were defined as TP/(TP + FP) where TP repre-
sents the number of true positives and FP the number of false positives predicted
cell lines/drug pairs.

Estimation of classification accuracy of PAM50, scCCL or

scCCL + HER2 signatures on TCGA patients. We divided the set of 937 patients
from TGCA, for whom cancer subtype was annotated, into a training set of 625
patients (two-thirds of the patients) and a test set of 312 patients (one third of the
patients). The training set was used to train the classifier algorithm (XGBoost) with
the chosen gene signature (PAM50, scCCL or scCCL+HER?2) while the test set was
used to compute the classification accuracy (the percentage of patients correctly

classified) for each tumour subtype. We repeated this process three times (i.e.,
3-fold cross-validation), each time randomly assigning patients to the training set
and to the test set and then computing the classification accuracy.

PAMS50 signature was downloaded from the original publication and converted in
ensemble id before being used. While XGBoost model was trained by using xgboost
function of xgboost R library.

Cell2location analysis. Cell to location tool was run with default parameters and
following the tutorial at https://cell2location.readthedocs.io/en/latest.

Drug sensitivity of the HER2+ and HER2— subpopulations in the MDA-MB-
361 cell line. For each sequenced cell of the MDA-MB-361 cell line, the enrich-
ment score of 450 anticancer drugs was predicted as described above. Then, to
identify drugs exhibiting differential sensitivity for the two subpopulations, we used
the Mann-Whitney test was to assess if there was a difference between the
enrichment scores of HER2+ and HER2— subpopulations. P-values were corrected
for false discovery rate using Benjamini-Hochberg correction. A drug was con-
sidered specific for HER2— cell population if and only if its FDR was less than 0.05
and the median enrichment score across HER2— cells less than zero while its
median enrichment score across HER2 +- cells greater than zero. Conversely, a drug
was considered specific for the HER2+ cell population if and only if FDR was less
than 0.05 and the median enrichment score across HER2+ cells less than zero
while its median enrichment score across HER2— cells greater than zero.

Prediction of cell cycle phase from scRNA-seq. The cell cycle phase of each
sequenced cell was predicted using the function CellCycleScoring of the Seurat tool
with default parameter and following what was suggested in the corresponding
vignette (https://satijalab.org/seurat).

HER2 antibody staining procedure for flow cytometry analysis. Cells were first
washed with phosphate-buffered saline (PBS) 1x, detached with 0.05% trypsin-
EDTA, resuspended and harvested with the appropriate medium in single-cell
suspension. Then, cells were counted, washed with PBS-FBS 1%, and finally
incubated for 15 min at 4° in the dark at the concentration of 1.0 x 10° cell/uL with
staining buffer. The staining buffer was prepared to dilute the mouse anti-human
HER2 antibody (BD BB700) at the final concentration of 0.00114 ng/uL. Then, to
remove the unbound antibodies, cells were washed three times with PBS-FBS 1%.
Flow cytometry measurements were performed on either BD Accuri C6 or BD
FACSAria III instruments. To define antibody positive and negative cells, the
unstained samples were used to set the gate. To record data, at least 1.0 x 10 events
were collected for each sample. Data analysis was performed using either BD
FACSDiva 8.0.1 or BD Accuri C6 software.

HER2 expression dynamics experiment. Sorting of MDA-MB-361 HER2-
positive and HER2-negative cells was performed following the antibody staining
procedure described above with the only exception that before sorting, each sample
was resuspended in sorting buffer (PBS 1x, FBS 1%, trypsin 0.1%, EDTA 2 mM).
Then, 4.0 x 10> cells were collected for each cell subpopulation (i.e. HER2-positive
and HER2-negative), plated in their appropriate medium, and incubated at 37 °C.
After 18 days, the percentage of cells expressing HER2 protein was checked by
performing the antibody staining procedure described above.

Drug sensitivity assay. Cells were seeded in 96-well microplates (PerkinElmer);
the seeding cell confluency was specifically optimized for each cancer cell line to
have cells in a growth phase at the end of the assay. After overnight incubation at
37 °C, cells were treated with DMSO (Merck) for the negative control and with five
concentrations of selected drugs in triplicate. Cells were then incubated at 37 °C for
72 h. Cell viability was assessed by measuring either luminescence with GloMax®
Discover instrument from Promega or by nuclei count using the Operetta
instrument from PerkinElmer. Luminescence measurements were normalized
using background wells as manufacturer protocol. For luminescence measurement,
cells were treated with Promega CellTiter-Glo® Luminescent Cell Viability Assay
according to the manufacturer protocol. For nuclei count, cells were washed with
PBS 1x, fixed with paraformaldehyde (PFA) 4% for 10 min at room temperature,
washed with PBS 1x, incubated at room temperature in the dark with HOECHST
33342 (Thermo Fisher Scientific) diluted 1:1000 in PBS 1x for 10 min and finally
washed with PBS 1x. Nuclei count was performed using Columbus image analysis
software (PerkinElmer). All drugs used in this study were purchased from
Selleckchem.

Drug combination assay. To perform the drug combination assay, afatinib and
etoposide were first prepared in five dilutions as a single agent. Then, from the
single-agent dilutions, afatinib and etoposide were combined in all possible dose
combinations, generating a 4 x 5 (i.e. afatinib x etoposide) drug pair matrix. MDA-
MB-361 cells were seeded in 96-well plate and incubated as described above. Then,
cells were treated in triplicate with single-agent afatinib and etoposide and with the
drug pairs of the 4 x 5 matrix. In addition, DMSO was used in triplicate as a
negative control of the drug treatment. Following 72 h of drug incubation, cell
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viability was measured with the Promega CellTiter-Glo®Luminescent Cell Viability
Assay, as described above. A total of three independent drug combination assays
were performed, and in each assay the luminescence data of replicates were
averaged. The expected drug combination responses were calculated using Syner-
gyFinder version 2.0, based on the Bliss model. The input file for SynergyFinder
was generated including the viability data of each independent assay.

Data availability

The single-cell BC data generated in this study have been deposited in the Gene
Expression Omnibus (GEO) database under accession code GSE173634. Raw counts
matrix stored as R object or matrix market format of the 35,276 cells from which the BC
atlas was built are also available on figshare at following https://doi.org/10.6084/
m9.figshare.15022698 [https:/figshare.com/articles/dataset/Single_Cell_Breast_Cancer_
cell-line_Atlas/15022698]. Bulk cancer cell line gene expression, mutation and copy
number alteration dataset used in this study are publicly available through depmap portal
at [https://depmap.org/portal]. Breast spatial transcriptomic data are available from 10x
data portal at [https://www.10xgenomics.com/resources/datasets]. Cell-line drug
screening datasets used in this study are publicly available from cancerrxgene portal at
[https://www.cancerrxgene.org/] and the cancer therapeutics response portal at [https://
portals.broadinstitute.org/ctrp.v2.1/]. All other relevant data supporting the key findings
of this study are available within the article and its Supplementary Information

files. Source data are provided with this paper.

Code availability

The code® to reproduce the BC atlas from raw counts is available on GitHub dibbelab/
singlecell_bcatlas [https://github.com/dibbelab/singlecell_bcatlas]. Moreover, the single-
cell atlas can be explored at http://bcatlas.tigem.it.
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