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A single-cell atlas of the human substantia nigra
reveals cell-specific pathways associated with
neurological disorders
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Rory Bowden 4, Javier Alegre-Abarrategui 2,5,7, Richard Wade-Martins 2 & Caleb Webber 2,3✉

We describe a human single-nuclei transcriptomic atlas for the substantia nigra (SN), gen-

erated by sequencing approximately 17,000 nuclei from matched cortical and SN samples.

We show that the common genetic risk for Parkinson’s disease (PD) is associated with

dopaminergic neuron (DaN)-specific gene expression, including mitochondrial functioning,

protein folding and ubiquitination pathways. We identify a distinct cell type association

between PD risk and oligodendrocyte-specific gene expression. Unlike Alzheimer’s disease

(AD), we find no association between PD risk and microglia or astrocytes, suggesting that

neuroinflammation plays a less causal role in PD than AD. Beyond PD, we find associations

between SN DaNs and GABAergic neuron gene expression and multiple neuropsychiatric

disorders. Conditional analysis reveals that distinct neuropsychiatric disorders associate with

distinct sets of neuron-specific genes but converge onto shared loci within oligodendrocytes

and oligodendrocyte precursors. This atlas guides our aetiological understanding by asso-

ciating SN cell type expression profiles with specific disease risk.
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T
he identification of the cell types relevant to a given disease
is key to understanding the causal processes underlying the
molecular aetiology. Many disorders, including neurolo-

gical and psychiatric, are strongly influenced by genetic variation
altering gene function. Therefore, by associating genetic variation
with particular genes, those genes’ spatial expression patterns can
then implicate specific cell types with that disorder. The cell type
(s) associated with the genetic risk for a disease are not necessarily
those cell types most directly associated with the defining
symptoms. For Alzheimer’s disease (AD), intersecting risk-
associated common genetic variation with cell-type-specific
gene expression proposed that the genetic risk for AD most sig-
nificantly influences microglia, moving the research focus away
from the neurons whose loss underlies symptoms, towards a role
for neuroinflammation in this neuronal loss1. It is thus critical to
re-examine our aetiological assumptions when the data to do so
are available.

The main hallmark of Parkinson’s disease (PD), the most
common progressive neurodegenerative movement disorder, is
the selective loss of dopaminergic neurons (DaNs) in the sub-
stantia nigra (SN). Midbrain DaNs from the SN have a key role in
the regulation of movement, cognition, motivation and reward,
and their loss underlies deficits in fine motor control observed in
PD2. However, while the loss of DaNs underlies key PD pathol-
ogy, roles for other cell types such as astrocytes and microglia
have been proposed that contribute to this loss3,4. Unfortunately,
the human SN is sorely understudied compared with the neo-
cortex, for which single-cell/nuclei studies5,6 have comprehen-
sively mapped and characterised the diverse cell-type populations
and identified cell-type-specific disease associations6,7. A com-
parable systematic and unbiased survey of cell-type-specific gene
expression across the human SN will help us to identify the role
of neuroglia in the selective vulnerability of the DaNs in PD, and
provide significant insight into the potential contributions of the
SN cell types to other neurological disorders.

In this study, single-nuclei RNA sequencing was performed on
the human SN and cortex regions from the same individuals to
resolve their regional cellular diversity and to identify region-
specific neuronal and non-neuronal cell-type differences. From
this cellular atlas, we mapped common risk variants for a range of
brain-related disorders/traits to specific cell types. We performed
a cell-type-specific gene network analysis of PD and other psy-
chiatric risk genes in the SN. Among many multiple disease-risk/
cell-type association, we show that genetic risk in PD is indeed
associated with DaNs, but also with oligodendrocytes (ODCs),
giving new insights into the causes of PD and other disorders. By
contrast, we find no association between PD risk and microglia,
suggesting that neuroinflammation is not a key causal
process in PD.

Results
Single-nuclei sequencing of the human SN and cortex. We
sequenced the transcriptomic profiles of 10,706 nuclei and 5943
nuclei from the cortex (middle frontal gyrus) and SN, respec-
tively, of 12 matched samples (including two SN replicates)
from five human postmortem brains using the 10x Genomics
Chromium platform (Supplementary Table 1, Supplementary
Data 1, “Methods”). We identified ten distinct cell populations
across all samples within the SN (Fig. 1a, Supplementary Fig. 1,
Supplementary Note 1), which included (i) astrocytes (GFAP)
with two subtypes: astrocyte-1 population expressing neuro-
inflammatory genes (OLR1) and an astrocyte-2 (GINS3)
population expressing genes associated with growth and
reparative functions (Supplementary Table 2 and Supplemen-
tary Fig. 2)8, (ii) oligodendrocytes (ODCs) (MOG, MOBP) with

three subtypes discriminated by oligodendrocyte marker genes
PALM2, LGALS1 & PPM1G, (iii) endothelial cells (RGS5),
(iv) microglia cells (CSF1R), (v) oligodendrocyte precursor cells
(OPCs) (VCAN), (vi) DaNs (TH and SLC6A3), neuronal
population of the SN pars compacta (Supplementary Fig. 2) and
(vii) GABAergic neurons, neuronal population of the SN pars
reticulata expressing gamma-aminobutyric acid (GABA)
receptors GABRA1 and GABRB2 and the enzymes GAD1 and
GAD2 required for GABA neurotransmitter synthesis (Fig. 1a,
c, Supplementary Data 2 and 3, Supplementary Fig. 2). In the
cortex, we identified six distinct cell populations including:
astrocytes, excitatory neurons (Ex), inhibitory neurons (In),
ODCs, OPCs and microglia, but no distinct cluster for endo-
thelial cells (Fig. 1b, Supplementary Figs. 3 and 4, Supple-
mentary Data 2 and 3, Supplementary Note 1). A joint
clustering of both SN and cortex regions revealed that the
cortex and SN form distinct clusters by cell types (neuronal
cells; ODC; astrocyte, microglia, OPC and endothelial cells)
rather than by region (Fig. 1d, e, Supplementary Note 1).

We captured a higher proportion of nuclei from glia in the SN
(95.5% glia) represented mainly by ODCs (72%) (Supplementary
Table 3a) than that obtained from the cortex (12% glia)
(Supplementary Table 3b). As our cortex and SN atlases have
been generated from the same individuals through the same
process, this difference in glial proportion likely reflects genuine
variation in the cellular composition of different brain regions.
The observed proportions of different cell populations in our SN
atlas were consistent with histopathological studies, reporting
ODCs as the most frequent glial cell population (45–75% across
all brain regions, 62% for SN)9 and recent bioinformatics
predictions of tissue cell-type composition10. Despite significant
variation in the numbers of cell types captured between inter- and
intra-individual samples (Supplementary Table 3b), we observed
consistent clustering by cell type between replicates, across
samples and regions (Supplementary Fig. 5), suggesting we have
repeatedly captured the same resident cell populations.

Complex trait genetics highlights distinct brain cell types. We
used the cell-type-specific gene expression patterns from the
human SN transcriptomic cellular atlas to identify specific SN cell
types through which genetic variants contributing to each of 30
human complex traits (Supplementary Table 4) might be acting,
employing two distinct methods (LD score regression (LDSC)11

and multi-marker analysis of genomic annotation (MAGMA)12)
(Supplementary Table 5). We observed for the first time in
human a significant association between PD genetic risk and
genes with DaN-specific expression patterns (qMAGMA= 4.6 ×
10−3, Fig. 2a), supported by recent observations made using
mouse expression patterns of predicted PD GWA-risk genes13,14

and contrasting studies proposing that PD risk is not associated
with neurons15. We also identified a second association between
PD genetic risk and genes with ODC-specific expression patterns
(qMAGMA= 0.035; Fig. 2a). To evaluate whether the fraction of
PD genetic risk associated with the DaN or OPC cell types was
overlapping or distinct, we performed conditional analyses by
running LDSC with either the ODC or the DaN gene set as the
control: we found that the fraction of PD genetic risk contributing
to the ODC association was distinct to that fraction associated
with DaNs (Supplementary Table 6, p value associated with an
LDSC coefficient <0.05 (here, p= 7 × 10−3)), proposing distinct
PD-associated cell etiologies within the SN. In the cortex map, we
found a significant Ex neuron cell association with PD genetic
risk variants (qMAGMA= 6.1 × 10−3, Fig. 2b, Supplementary
Table 7). Our cortex/SN paired tissue sample study design
enabled conditional analyses without effects due to individual/
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study variation to be performed for cell types across these two
brain regions (Supplementary Note 3). We examined the effects
of the differing neuron/glial cell proportions between the SN and
cortex upon genetic risk/cell associations by creating artificially
matched SN/cortex cellular atlases possessing the same propor-
tion of glial cells by randomly sampling the original cellular
populations (“Methods”). We observed a large agreement in the
genetic risk/cell associations between the original and the

homogenous cell atlas (Supplementary Fig. 6) (SN R= 0.83 (p <
10−16) and cortex R= 0.72 (p < 10−16)), showing that the cellular
proportions do not obscure the cell-type associations within the
same tissue. Nevertheless, only the cross-tissue cell-type condi-
tional analysis conducted within the homogeneous cell atlas
revealed that the PD genetic risk associated with the SN DaNs and
cortex Ex gene expression profiles was indistinguishable (Supple-
mentary Table 8, p= 0.15 (homogenous cell atlas)/p= 0.049
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Substantia nigra (n = 5943)

SN & cortex (n = 16,649) Cell_class
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Cortex (n = 10,706)

Fig. 1 Single-nuclei transcriptomic cell atlas of the adult human cortex and substantia nigra (SN). T-distributed stochastic neighbour embedding (t-SNE)

plot of gene expression relationships amongst the single-nuclei cells from five individuals in the (a) substantia nigra (SN) (n= 5943) and (b) cortex (n=

10,706). c Violin plots of expression values (log10 TPM values) of enriched cell-type-specific markers for the cell types in the SN (Supplementary Data 3).

d Uniform manifold approximation and projection (UMAP) plot of both the cortex and substantia nigra cell types (n= 16,649 cells) showing distinct

clustering by cell type. e Correlation heatmaps showing hierarchical clustering of Pearson correlation scores calculated between averaged cell-type

subclusters in both regions. The transcriptional correlation is largely explained by cell type and not by the region of origin. DaNs dopaminergic neurons, Ex

excitatory neurons, GABA GABAergic neurons, In inhibitory neurons, ODC oligodendrocytes, OPC oligo-precursor cells.
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(original cell atlas)). Concordantly, we observed that known PD-
risk genes16 are generally more highly expressed in neuronal cell
types across the SN (Supplementary Fig. 7).

Our SN atlas associates the genetic risk of neuropsychiatric
disorders with DaN gene expression but also with GABAergic
gene expression, e.g. schizophrenia (SCZ) (DaN and GABA)
(Fig. 2a). However, the conditional analyses between cell types of
the SN demonstrated that where DaN and GABAergic neurons
are both associated to a neuropsychiatric disorder, the association
with DaNs is lost once conditioned upon GABA neuronal
expression but not vice versa (Supplementary Table 6). Thus, the
genetic risk of these psychiatric disorders is more broadly
associated with genes expressed in the GABAergic neurons of
the pars reticulata than the DaNs of the pars compacta. As
previously reported17, we found in the cortex significant
neuropsychiatric disorder cell-type associations with both Ex
and In neurons (e.g. SCZ) (Supplementary Table 7) and that these
associations are most often distinct from SN neurons (conditional

analysis; see Supplementary Table 8) proposing a distinct role of
the SN in the aetiology of neuropsychiatric disorders, especially
SCZ. Furthermore, we found a significant oligo-type association
for different neuropsychiatric disorders (e.g. SCZ risk with two
SN glial cell populations, namely OPC (qLDSC= 4.27 × 10−3,
qMAGMA= 1.32 × 10−4) and ODC (qMAGMA= 1.36 × 10−5))
(Fig. 2a). These associations support the hypothesis that for
many brain disorders, glia may causally contribute to the
neuronal alterations. This is well illustrated by the association
of AD risk variants with microglia-expressed genes, found here
for microglia in both the SN (qMAGMA= 9.81 × 10−4) and the
cortex (qLDSC= 0.01, qMAGMA= 7.2 × 10−4) (Fig. 2, Supplemen-
tary Tables 5 and 7) and indistinguishable between microglia
populations from the two brain regions (Supplementary Table 8,
p= 0.84).

There are significant overlaps in the genetic risk between
different neuropsychiatric disorders18. We examined whether a
common cell-type association between two neuropsychiatric
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Fig. 2 Identification of brain cell types associated with diverse human complex traits. We used two approaches to identify the associations between

genetic risk variants of different complex trait and cell types from (a) substantia nigra and (b) cortex: stratified LD score regression (LDSC) (p value

associated with an LDSC Coefficient (“Methods”)) and the MAGMA gene set analysis (one-sided positive two-sample t-test). The heatmap colours give

different degrees of significance with both methods or either method, an asterisk (*) and double asterisks (**) indicate nominally significant p value

(<0.05) and q value (Bonferroni correction for the number of cell types tested). The different traits were clustered by category: cognitive phenotypes

(Cog.), autoimmune diseases (Immune), metabolic, cardiovascular and anthropometric traits (Metabolic/Cardio/Anthropometric), Neurological disorders,

Psychiatric disorders.
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disorders was associated with a shared genetic risk between those
disorders by re-performing the cell-association analysis using the
genetic risk of one disorder after conditioning on the genetic risk
effect of the other disorder. In general, these conditional analyses
suggest that an overlapping component of risk between these
disorders is associated with OPCs while distinct non-overlapping
fractions of genetic risk act through the same neuronal types
(Fig. 3). In some cases, we noted that a cell-specific association
disappeared non-reciprocally when conditioning the risk on other
disorders (e.g. GABAergic neurons and ADHD or Ex neurons
and anxiety; Fig. 3), reflecting a more restricted and subsumed
cell-specific genetic risk association for that disorder.

Finally, we also found genes specifically expressed in SN cell
types to be associated with traits not specific to the brain. We
identified a unique cell-type-specific signal between microglia and
genetic variants associated with high-density lipoprotein (HDL)
cholesterol level (qMAGMA= 0.046) (Fig. 2a). Given the role of
lipids in AD19,20, we asked whether the HDL cholesterol
association was related to the association between AD risk and
microglia gene expression (Fig. 2a). However, conditional analysis
suggests distinct genetics underlie the associations of AD and
HDL cholesterol levels with microglia (Supplementary Fig. 8).

Genetic risk highlights cell-type-specific networks and path-
ways. Cell-type-specific gene expression patterns within the SN
and cortex may help identify cellular circuitry that underlies
disease-associated cell-type-specific vulnerabilities. We used
protein–protein interactions (PPI) as evidence for functional
relationships between genes, and built cell-type-specific PPI
networks within which we identified a number of modules of
highly interconnected genes (“Methods” and Supplementary
Note 4). For each significant cell-type/disease-risk association
discovered above (Fig. 2), we looked to refine the disease-risk
association to a relevant cell-type-specific gene module using
MAGMA gene set analysis (Fig. 4). PD risk showed association
to nigral DaN modules (M1 and M2) (Fig. 4b, Supplementary
Fig. 9 and Fig. 5) enacting processes previously associated with
PD such as mitochondrial organisation and functioning,
endocytosis, protein ubiquitination and macroautophagy21.
PD-risk association to ODCs (M5) was related to genes enri-
ched in metabolic processes, gene regulation, kinase activity,
protein phosphorylation and neurogenesis, while the OPC risk-
associated module (M1) was enriched in metabolic processes,
gene regulation and cell differentiation. The SCZ-risk associa-
tion to cortical neuronal populations was mainly related to
synaptic signalling and neuronal developmental processes (Ex
neuron module M1/In neuron M1 and Ex neuron module M4/
In neuron M4, respectively; Fig. 4a and Supplementary Fig. 9).
In the nigral neuronal population, genes within DaN module
M4 and GABA module M3, both associated with synaptic sig-
nalling/neuron development, were also enriched in SCZ risk
(Fig. 4b and Supplementary Fig. 9). A further SCZ association
to DaN (M1) was found related to mitochondria (Fig. 4b),
supporting the role of mitochondrial dysfunction in SCZ22.
Lipid metabolism and neuron development were found enri-
ched in both cortical ODCs (M2) and OPCs (M4) modules
associated to SCZ risk. Furthermore, nigral OPC modules (M3
and M5), related to nervous system development and synaptic
signalling, were found associated with SCZ risk (Fig. 4b and
Supplementary Fig. 9). The nigral OPC M3 module also showed
a significant association with other traits such as neuroticism
(corrected p value= 0.004). As predicted by the genetic risk, a
BP association was found to the nigral DaN module (M4)
associated with synaptic signalling and neuronal development
(Fig. 4b and Supplementary Fig. 9).

We then evaluated whether a common module association
within the same cell-type between two disorders was associated
with a shared genetic risk between those disorders. For this, we
re-performed the cell-specific module-association analysis using
the genetic risk of one disorder after conditioning on the genetic
risk effect of the other disorder and vice versa. For the three nigral
modules associated with two disorders (Fig. 4), we found the
associations of PD and SCZ to DaN module M1 were
independent (p value= 0.0002 for PD conditioned on SCZ and
p value= 0.0009 for SCZ conditioned on PD) with PD-associated
M1 genes mainly enriched in endocytosis processes (regulation of
endocytosis, GO:0030100 p value= 0.0003) and SCZ-associated
M1 genes mainly enriched in neuronal migration and development
(neuron migration, GO:0001764 p value= 0.0004). Similarly, we
found the associations between BP and SCZ to DaN M4 to be
independent (p value= 0.0003 for BP conditioned on SCZ and p
value= 0.002 for SCZ conditioned on BP) with BP-associated M4
genes mainly enriched in synaptic transmission processes (synaptic
signalling, GO:0099536 p value= 3.9e−05) and SCZ-associated
M4 genes mainly enriched in neuronal development (nervous
system development, GO:0007399 p value= 6.3e−06). By con-
trast, we found that association of the nigral ODC M5 module
with PD risk was lost when conditioned on SCZ risk (p value=
0.23) but that the SCZ association remained when conditioned on
PD risk (p value= 0.002) revealing convergence, specifically that
the SCZ-risk loci overlapped and subsumed the loci underlying
the ODC M5 PD association.

Discussion
Here, we report a comprehensive human single-nuclei tran-
scriptomic atlas for SN by sequencing ~17,000 nuclei from
matched cortical and SN tissue enabling the identification and
comparison of brain region-specific cell types. In this study, (i) we
re-identify all the major cell types previously reported indicating
sufficient genes/cells coverage, (ii) we find a large difference in the
neuronal-glial cell composition between cortex and SN that
confounds bulk tissue disease associations (Fig. 1, Supplementary
Fig. 10 and Supplementary Table 9), (iii) we identify multiple
associations between the genetic risk of particular diseases and
specific cell types in the nigra and cortex (Fig. 2), (iv) we find that
where there are multiple neuropsychiatric disease associations for
a given neuron type, the loci associated for each disorder are
distinct and do not appear to converge on the same set of genes
within that cell type, while for glia we do observe convergence
(Fig. 3) and (v) we determine the different cell-specific gene-
networks and their functions perturbed by disease-risk variants
(Figs. 4 and 5).

This SN/cortex paired-sample atlas is a valuable resource to
interpret the genetic architecture of many disorders, especially for
PD and other disorders with particular vulnerabilities in the SN
as compared to the cortex. However, the fraction of PD genetic
risk that mapped to cortical Ex neurons was indistinguishable
from that mapping to SN DaNs, and thus our atlas alone is
unable to propose why SN DaNs is lost earlier in PD pathology.
Our cellular atlas suggests similar cellular functions associated
with PD genetic risk across neuronal cell types in PD nigral and
cortical degeneration2. Thus, different metabolic demands and
different local environments of these neurons from different brain
regions likely contribute to their distinct vulnerabilities23. PD
genetic risk also appears to manifest through ODCs and OPCs
(Fig. 2), which implicate gene regulation in metabolic processes
and in cell development and support the growing evidence of the
role of glia in neurodegenerative disorders24. Notably, we observe
expression of the known PD gene LRRK2 to be significantly
higher in OPCs than other SN cell types (Supplementary Fig. 7).
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A role for ODCs in PD is surprising given the light myelination of
SN DaN axons25, but our relatively unbiased approach allows for
unexpected associations that require further understanding.
Indeed, multiple studies have identified white matter impair-
ments, which correlate with progression and appear to precede

grey matter atrophy, and our results may provide a missing
molecular link to PD genetic risk26. The association we discover
between PD genetic risk variants and human ODC-specific gene
expression has very recently been proposed in an independent
study13 using mouse transcriptomic data. Unlike AD, we do not
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find an association between PD genetic risk and microglia, sug-
gesting neuroinflammation may play a lesser role in PD risk than
in AD risk.

The midbrain encompassing the SN is a key brain region of
interest after the cortex for several neuropsychiatric disorders27.
For SCZ we found distinct associations with both nigral neurons
and cortical neurons. However, it may be that this SCZ-DaN
association relates to DaNs within the adjacent ventral tegmental
area (VTA) region previously implicated in several neu-
ropsychiatric disorders28. Without corresponding VTA atlases
from these brains, we are unable to perform the relevant condi-
tional tests, which highlights the value of larger future studies
capturing more regions from the same brains. Due to the key role
of DaNs in PD, the role of GABAergic neurons of the pars reti-
culata in other diseases is relatively understudied. Nonetheless,
the GABAergic neurons project to the prefrontal cortex and
nucleus through mesolimbic pathway and control mainly the
reward system (learning about motivationally relevant stimuli in
the environment), which is affected in patients with neu-
ropsychiatric disorders29 and our novel associations suggest these
neurons have the potential to be influenced by the genetic risk of
several neuropsychiatric disorders. Across several neuropsychia-
tric and neurodegenerative disorders, we found multiple glia
association, especially to OPC processes related to synaptic
signalling30.

We describe here the first comprehensive human SN cell-type
atlas. Together with a matching cortical atlas, these atlases allow
the systematic characterisation of SN cell types and the identifi-
cation of cell-type-specific processes influenced by multiple
complex disorders.

Methods
Samples. Five controls were selected on the basis of the absence of neurological
clinical disease and by midbrain RNA integrity number yielding scores over eight
from the Oxford Brain Bank (Supplementary Table 1). However, the histopatho-
logical examination revealed cerebral amyloid angiopathy (CAA) in the brain of
one individual (Sample 3, Supplementary Table 1). CAA is one of the morphologic
hallmarks of AD31, but it is also, very common in the brains of elderly patients who
are neurologically healthy32. To ensure that this individual did not affect the results
and conclusions of this study, we repeated all further analyses with and without the
samples from this individual and found a very high correlation between results
with highly concordant cell clustering and thus retained this sample for greater
power. Informed consent had been collected from all cases fulfilling the require-
ments of the Human Tissue Act 2004. Blocks of ~3 mm2 were dissected from snap-
frozen slices by a qualified neuropathologist (J.A.-A.) from the central portion of
the SN at the level of the third nerve encompassing both ventral and dorsal tiers
and from the middle frontal gyrus encompassing the cortex but macroscopically
excluding the subcortical white matter. Replicate blocks obtained on a different day
were obtained in two out of the five individuals.

10x sequencing data. 10x chromium single-nuclei sequencing was performed on
the cortex and SN regions from five individuals. In total 12 samples (including 2
SN replicates), with a total of 12,015 and 6105 nuclei, were sequenced for the cortex
and SN over 2 days (Supplementary Table 1). Reads were processed and mapped to
the Human Genome (GRCh38.84-premrna) with Cell Ranger 2.1.1 (Supplementary
Note 5). We recovered a median number of 2455 and 690 nuclei after sequencing
for the cortex and SN. The multiple sample libraries were sequenced with mean
reads ranging from 46,598 to 59,513 and 18,377 to 44,710 for the cortex and SN,
respectively. Overall we detected median genes per nuclei ranging from 607 to 3364
for the multiple individuals across both regions (Supplementary Data 1). Similar in
range as other human brain single-nuclei studies6,33, the mean read depth per
nuclei was 43,150 (95% CI: 34,488–51,821) and the median number of genes
detected per nucleus was 1886 (95% CI: 1228–2544) (Supplementary Data 1). For
the SN single-nuclei atlas, we generated biological replicates and showed that cell
profiles from the same individual were comparable to each other (Supplementary
Fig. 11).

Data processing. The filtered unique molecular identifiers (UMI) feature-barcode
matrices generated with CellRanger 2.1.1, were processed with Seurat R package
(v2.3.4)34, separately for the SN and the Cortex. As quality control steps, we
retained genes with a count of 1 in at least three nuclei and removed nuclei with
<500 genes per sample, high thresholds of nUMI (range of >5000–12000, sample

dependent), mitochondrial percentage >0.05 and ribosomal percentage > 0.05. The
distributions of number of genes, number of UMIs and percentage of reads
mapped to mitochondrial and ribosomal genome were further inspected for quality
assurance. Each normalised sample was linearly regressed to remove any inter-
cellular gene expression variation because of technical effects associated with UMI
coverage, ribosomal and mitochondrial percentage, followed by gene level scaling
of the data by using the “ScaleData” function in Seurat. Cell cycle phase scores were
predicted for each cell per sample and determined to not be an important source of
variation and bias in the SN and cortex (Supplementary Figs. 1 and 3).

Cell clustering analysis. After merging the samples, identifying common sources
of variation based on the highly variable genes (Supplementary Note 6), per-
forming a canonical correlation analysis (CCA)34, and discarding rare non-
overlapping cells between samples, 5943 nuclei and 22,736 genes (15,568 protein-
coding genes) remained for the SN and 10,706 nuclei and 26,145 genes (16,423
protein-coding genes) remained for the cortex. The CCA analysis identified the top
numbers of CCA vectors to align for the SN and cortex as 25 and 42 dimensions.
The shared-nearest neighbour graph was constructed on a cell-to-cell distance
matrix from the top aligned CCA vectors followed by Louvain clustering35 to
identify cell-type clusters, which were visualised with t-distributed stochastic
neighbour embedding and uniform manifold approximation and projection plots.

On the basis of previous knowledge, consistency and validity of the different
resolutions, we selected the final number of clusters based on the clustering
resolution for the Louvain algorithm in the range of 0.4–0.8, which included all the
major cell types and subtypes (Supplementary Notes 6 and 7). Cell clusters with
fewer than 30 cells were omitted from further analysis.

Cell-type annotation for cortex and SN. We characterised the cellular identities
of clusters in the SN (Supplementary Notes 1 and 7, Fig. 1a, c) and the cortex
(Supplementary Notes 1 and 7, Fig. 1b) nuclei by identifying known marker genes
enriched in each of the clusters (Supplementary Notes 1 and 7)6,36. For each of the
subclusters, the enriched marker genes were identified by differential expression of
the cells grouped in each sub-cluster against the remaining cells within the cor-
responding broad cell-type cluster. This process resulted in the annotation of 23
and 10 different neuronal and non-neuronal cell types for the cortex and SN,
respectively (Fig. 1a, b).

Differential expression. Differentially expressed genes between cell types and
subtypes were identified within Seurat34 by using the negative binomial test (false
discovery rate (FDR)-corrected p value < 0.05) to identify 0.25 log fold enriched
genes detected in at least 25% of cells in the cluster of interest. Differential
expression analyses were performed for all clusters separately in the SN and cortex,
for SN astrocyte and DaN subtypes and for cortical Ex and In neuronal subtypes
(Supplementary Data 3).

Comparison of 10x data sn-RNAseq data with published data. Comparison of
the cortex and SN nuclei averaged cell-type populations with previously published
single-cell human temporal cortex6, single nuclei5 and bulk SN laser-capture
microscopy (LCM) DaNs7 and glial cell types8 data further confirmed the broad
cell-type annotations and, in the case of cortex, neuronal subtype classification
consistency (Supplementary Fig. 12, Supplementary Note 8). In particular, SN
DaNs identified in our 10x study cluster with external LCM postmortem DaNs
(Supplementary Fig. 12) and astrocyte-1 or reactive astrocyte population cluster
with the external LCM astrocyte and microglia samples (Supplementary Fig. 12). In
addition, cell types are comparable between single-nuclei and single-cell data
(Supplementary Fig. 12). A correlation > 0.85 was observed between all the major
cortical cell types and layer-specific neuronal subtypes between single-nuclei cell
atlas interrogated in this study and the human visual cortex and frontal cortex
single-nuclei-drop seq data5 (Supplementary Fig. 12). The data processing and
method of comparison for each of the external datasets are described in Supple-
mentary Information.

Cell-type-association analysis. We intersected cell-type-specific expression pat-
terns with genetic risk of specified disease to identify disease-relevant cell types in
SN and cortex for 30 diseases and traits (Fig. 2, Supplementary Table 4, Supple-
mentary Note 4). We performed these cell-type association analyses with two
commonly used approaches: LDSC11 and MAGMA12. While these methods are
complementary, we confirmed that their findings were well aligned (Supplementary
Fig. 13, Supplementary Note 4). Where we identified multiple cell types associated
with the same trait, we performed conditional analyses to evaluate whether it was
the same set of genetic variants acting in different cell types or distinct sets of
genetic variants in each cell-type suggesting multiple cellular aetiologies. Where
traits/disorders were associated with both SN and cortical cell types, we considered
that the different proportions of glial versus neurons for these two brain regions
could bias the identification of cell-type-specific genes. To test this potential bias,
we repeated the conditional analysis with artificially homogeneous SN/cortex cel-
lular atlas, which included the same proportion of glial cells (Supplementary
Note 4). To evaluate the genetic overlap between two traits, each showing an
association with the same cell type, we performed GWA conditional analysis with
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multi-trait-based conditional and joint analysis37 (Fig. 3). We then repeated LDSC
analyses with the GWA summary statistic of one trait adjusted for the second trait
and vice versa.

Functional analysis. Cell-type-specific PPI network and identification of gene
modules: A cell-type-specific PPI network is built by extracting PPIs from PPI
network between cell-type-specific genes (Supplementary Data 4 and Supple-
mentary Note 4). To identify modules of highly interconnected genes in a cell-type-
specific PPI network, we employed “cluster_louvain” function in “igraph” R
package38. This function implements the multi-level modularity optimisation
algorithm, where at each step genes are re-assigned to modules in a greedy way and
the process stops when the modularity does not increase in a successive step.
Modules with >30 genes are used for further analysis as smaller modules have low
informativity. MAGMA gene set analysis was used to test enrichment in disease-
risks across all identified modules.

Gene Ontology (GO) pathway enrichment analysis: We performed GO
enrichment analysis with topGO R package by testing the overrepresentation of
GO biological processes (GO BP) terms within the input gene sets using Fisher test.
Revigo39 was used to summarise the top 100 enriched GO BP terms in a smaller
number of categories.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The processed 10x 3′ Chromium single-nuclei RNAseq UMI-barcode matrices for each

sample are available from the Gene Expression Omnibus under the accession code

GSE140231.
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