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There is an urgent need to better understand the pathophysi-
ology of Coronavirus disease 2019 (COVID-19), the global 
pandemic caused by SARS-CoV-2, which has infected more 
than three million people worldwide1. Approximately 20% 
of patients with COVID-19 develop severe disease and 5% 
of patients require intensive care2. Severe disease has been 
associated with changes in peripheral immune activity, includ-
ing increased levels of pro-inflammatory cytokines3,4 that may 
be produced by a subset of inflammatory monocytes5,6, lym-
phopenia7,8 and T cell exhaustion9,10. To elucidate pathways 
in peripheral immune cells that might lead to immunopathol-
ogy or protective immunity in severe COVID-19, we applied 
single-cell RNA sequencing (scRNA-seq) to profile periph-
eral blood mononuclear cells (PBMCs) from seven patients 
hospitalized for COVID-19, four of whom had acute respira-
tory distress syndrome, and six healthy controls. We iden-
tify reconfiguration of peripheral immune cell phenotype in 
COVID-19, including a heterogeneous interferon-stimulated 
gene signature, HLA class II downregulation and a develop-
ing neutrophil population that appears closely related to plas-
mablasts appearing in patients with acute respiratory failure 
requiring mechanical ventilation. Importantly, we found that 
peripheral monocytes and lymphocytes do not express sub-
stantial amounts of pro-inflammatory cytokines. Collectively, 
we provide a cell atlas of the peripheral immune response to 
severe COVID-19.

To profile the peripheral immune response to severe COVID-19, 
we performed Seq-Well-based11,12 massively parallel single-cell RNA 
sequencing (scRNA-seq) on eight peripheral blood samples from 
seven hospitalized patients with polymerase chain reaction with 
reverse transcription (RT-PCR)-confirmed SARS-CoV-2 infection 
and six healthy controls. The demographics and clinical features of 
these patients are listed in Fig. 1a. The seven patients profiled were 
male, aged 20 to >80 years. We collected samples between 2 and 
16 days following symptom onset; healthy controls were asymp-
tomatic, four male and two female, and aged 30–50 years (Fig. 1a 
and Extended Data Fig. 1). Four of eight COVID-19 samples were 
collected from ventilated patients who were diagnosed with acute 
respiratory distress syndrome (ARDS; Fig. 1a). One patient (C1) 
was sampled twice: at nine days post-symptom onset while only 
requiring supplemental oxygen and at 11 days post-symptom onset 
following intubation. Three patients received azithromycin, which 

has potential immunomodulatory effects13, at some point prior to 
sampling (Fig. 1a). Five patients received remdesivir in the hospital, 
four prior to sampling.

We sequenced 44,721 cells with an average of 3,194 cells per sam-
ple (Supplementary Table 1). We created a cells-by-genes expres-
sion matrix and performed dimensionality reduction by uniform 
manifold approximation and projection (UMAP) and graph-based 
clustering, which identified 30 clusters (Fig. 1b,c). We calculated 
each cluster’s most highly differentially expressed (DE) genes to 
manually annotate clusters with their respective cellular identities  
(Fig. 1b,c, Supplementary Table 2 and Methods). Dimensionality 
reduction indicated substantial phenotypic differences between 
patients with COVID-19 and controls, predominantly in mono-
cytes, T cells and natural killer (NK) cells (Fig. 1b,c).

We next quantified COVID-19-driven changes in the cell type 
proportions. Several innate immune cell subsets were depleted in 
patients with COVID-19, including γδ T cells, plasmacytoid den-
dritic cells (pDCs), conventional dendritic cells (DCs), CD16+ 
monocytes and NK cells, with the latter three cell types only signifi-
cantly depleted in samples from patients with ARDS (Fig. 1d). These 
trends were not explained by the time post-fever or post-symptom 
onset (Extended Data Fig. 2). We also noted increased plasmablast 
proportions in patients with COVID-19; these levels were most 
elevated in patients with ARDS (Fig. 1d), suggesting that more 
severe cases may be associated with a more robust humoral immune 
response, similar to previous reports14,15. Peripheral plasmablasts 
from patients with COVID-19 did not appear to share particular 
immunoglobulin V genes (Extended Data Fig. 3a).

Finally, a novel cell population that we annotated as ‘develop-
ing neutrophils’ was significantly increased only in patients with 
ARDS (Fig. 1d). These cells express several genes encoding neu-
trophil granule proteins (for example, ELANE, LTF and MMP8; 
see Fig. 4 and Supplementary Table 2 and 3)16, but do not express 
genes encoding canonical neutrophil markers such as FCGR3B 
and CXCR2 (Supplementary Table 3), and occupy a similar space 
as plasmablasts rather than canonical neutrophils in the UMAP 
embedding (Fig. 1c). In addition, they encompassed cells expressing 
CEACAM8, ELANE and LYZ, similar to recently described neutro-
phil progenitors17,18, suggesting that these cells represent neutrophils 
at various developmental stages.

We next analyzed monocytes with more granularity, as this 
cellular compartment appeared to be most strongly remodeled 
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Fig. 1 | expansion of plasmablasts and depletion of multiple innate immune cell subsets in the periphery of patients with COVID-19. a, Demographics, 

sample characteristics and disease course of patients with COVID-19. b, UMAP dimensionality reduction embedding of peripheral blood mononuclear cells 

(PBMCs) from all profiled samples (n = 44,721 cells) colored by donor of origin. IDs of patients with COVID-19 (n = 7) begin with ‘C’ and are colored in 

shades of orange (patients who were not ventilated at the time of draw) or red (patients with ARDS who were ventilated at the time of draw) and those of 

healthy donors begin with ‘H’ (n = 6) and are colored in blues. c, UMAP embedding of the entire dataset colored by orthogonally generated clusters labeled 

by manual cell type annotation. d, Proportions of each cell type in each sample colored by donor of origin. The x axes correspond to the ventilation or ARDS 

status of each patient. Shown are exact two-sided P values by the Wilcoxon rank-sum test. n = 6, n = 4 and n = 4 biologically independent samples for 

Healthy, NonVent and ARDS, respectively. Boxplot features: minimum whisker, 25th percentile − 1.5 × inter-quartile range (IQR) or the lowest value within; 

minimum box, 25th percentile; center, median; maximum box, 75th percentile; maximum whisker, 75th percentile + 1.5 × IQR or greatest value within.
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in patients with COVID-19 (Fig. 1b,c). Dimensionality reduction 
of monocytes alone indicated a strong phenotypic shift in CD14+ 
monocytes and a depletion of CD16+ monocytes (Fig. 2a,b). We first 
examined expression of genes encoding inflammatory cytokines 
previously reported to be produced by circulating monocytes in 
COVID-195,6. Notably, we did not identify substantial expression of 

pro-inflammatory cytokine genes TNF, IL6, IL1B, CCL3, CCL4 or 
CXCL2 by peripheral monocytes (Fig. 2c), suggesting that periph-
eral monocytes do not contribute to the putative cytokine storm  
in COVID-19.

To determine genes driving phenotypic remodeling in COVID-19 
samples, we identified DE genes, pathways and upstream regulators by 
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Fig. 2 | Robust HLA class II downregulation and type I interferon-driven inflammatory signatures in monocytes are characteristics of SARS-CoV-2 

infection. a, UMAP embedding of all monocytes colored by sample of origin. n = 10,339 cells are plotted from n = 14 biologically independent samples.  

b, UMAP embedding of monocytes colored by CD14 and FCGR3A (encoding CD16a, to distinguish between CD14+ and CD16+ monocytes), HLA-DPB1 and 

HLA-DMA (illustrating HLA class II downregulation in patients with COVID-19) and S100A9 and IFI27 (demonstrating canonical inflammatory signatures 

in patients with COVID-19). c, UMAP embedding of monocytes colored by genes encoding pro-inflammatory cytokines previously reported to be produced 

by circulating monocytes in severe COVID-196, namely TNF, IL6, IL1B, CCL3, CCL4 and CXCL2. d,g,h, Heatmaps of DE genes (d), differentially regulated 

canonical pathways (g) and differentially regulated predicted upstream regulators (h) between CD14+ monocytes of each COVID-19 sample compared 

to CD14+ monocytes of all healthy controls. The heatmap in d is colored by average log(fold-change), while heatmaps in g and h are colored by z-score. 

All displayed genes, pathways and regulators are statistically significant at the P < 0.05 confidence level by Seurat’s implementation of the Wilcoxon 

rank-sum test (two-sided, adjusted for multiple comparisons using Bonferroni’s correction, in d) or Ingenuity Pathway Analysis (IPA) implementation of 
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(orange) or ventilated patients with COVID-19 (red). Shown are exact P values by two-sided Wilcoxon rank-sum test. n = 6, n = 4 and n = 4 biologically 

independent samples for Healthy, NonVent and ARDS, respectively. f, Dot plot depicting percent expression and average expression of all detected HLA 

genes in CD14+ monocytes by donor. i, Boxplot showing the IFNA module score of each cell, colored by healthy donors (blue), non-ventilated patients 

with COVID-19 (orange) or ventilated patients with COVID-19 (red). j, Scatter plots depicting the correlation between the mean ISG module score of 

CD14+ monocytes in each sample and the patient age (top) and time–distance from first measured or reported fever (bottom). Shown are Pearson’s r, 

exact two-sided P values and the 95% confidence interval. n = 8 (top) and n = 6 (bottom) independent biological samples. Number of cells for d,f–i: C1 

A, 1,561; C1 B, 1,858; C2, 217; C3, 1,102; C4, 713; C5, 462; C6, 277; C7, 2,095; H1, 680; H2, 325; H3, 215; H4, 166; H5, 444; H6, 224. For d,g–h, cells from 

all healthy controls (n = 2,054 cells) are used to generate comparisons with each COVID-19 sample. For e,i, boxplot features: minimum whisker, 25th 

percentile − 1.5 × IQR or the lowest value within; minimum box, 25th percentile; center, median; maximum box, 75th percentile; maximum whisker, 75th 

percentile + 1.5 × IQR or greatest value within.

NATuRe MeDICINe | VOL 26 | JULy 2020 | 1070–1076 | www.nature.com/naturemedicine1072

http://www.nature.com/naturemedicine


LETTERSNATURE MEDICINE

comparing cells of each COVID-19 sample to cells of all healthy con-
trols (Fig. 2d and Supplementary Tables 4–24). Eight genes encoding 
HLA class II molecules were downregulated in at least six COVID-19 
samples relative to healthy controls (Fig. 2d), concordant with other 
studies19,20. Scoring of individual cells by expression of all HLA class 
II-encoding genes revealed that this downregulation was significant 
in all patients with COVID-19, but potentially more prominent in 
ventilation-dependent patients (Fig. 2e,f and Supplementary Table 25).  
HLA class II downregulation is reflected in differentially regulated 
gene pathways including reduction of crosstalk between dendritic 
cells and natural killer cells (Fig. 2g and Supplementary Table 11). 
HLA class II downregulation was also noted in B cells (Extended Data 
Fig. 3b,c and Supplementary Table 10), and the extent of downregu-
lation tended to be greater in older patients (Extended Data Fig. 4).  
Non-classical HLA class I genes HLA-E and HLA-F were also down-
regulated to a lesser degree and in fewer samples, while canonical 
HLA class I genes HLA-A, HLA-B and HLA-C were not consistently 
up- or downregulated (Fig. 2f).

Additionally, 32 interferon (IFN)-stimulated genes (ISGs) were 
upregulated by CD14+ monocytes in at least one COVID-19 sam-
ple, but this IFN signature was not uniform across all COVID-19 
samples (Fig. 2d and Supplementary Table 4). Analysis of upstream 
regulators in CD14+ monocytes revealed an absence of predicted 
IFN and IFN regulatory factor (IRF) activities in donors C2, C3 and 
C7 relative to the remaining COVID-19 donors (Fig. 2h). Similar 
patterns were observed in other cellular compartments (Extended 
Data Figs. 5 and 6 and Supplementary Tables 18–24). To analyze 
this orthogonally, we scored individual CD14+ monocytes in the 
dataset by their expression of known ISGs and again saw minimal 
appreciable ISG signatures in donors C2, C3 and C7 (Fig. 2i and 
Supplementary Table 25). The differential ISG signature was not 
explained by ventilation or ARDS (Fig. 2h,i), but a higher ISG score 
trended towards a positive correlation with age and a negative cor-
relation with time–distance from fever onset (Fig. 2j).

We next analyzed T and NK lymphocytes in COVID-19 sam-
ples. UMAP embedding of T and NK cells identified substantial 
differences in cellular phenotypes of CD4+ T, CD8+ T and NK cells  
(Fig. 3a,b). We found that CD56dim NK cells, generally thought to 
contribute to antiviral host defense through cell-mediated cytotox-
icity21,22, were depleted primarily in ventilator-dependent patients, 

whereas CD56bright NK cells, which are considered robust producers 
of IFN-γ and tumor necrosis factor α23, were significantly depleted in 
all COVID-19 samples (Fig. 3c). Additionally, we identified a clus-
ter of proliferative lymphocytes cells that appeared to be increased 
in most patients with COVID-19 (Fig. 3c). As SARS-CoV-2 infec-
tion has been associated with cytotoxic lymphocyte exhaustion10, 
we profiled the expression of genes encoding canonical exhaus-
tion markers by T and NK cells. However, there was no significant 
evidence of CD8+ T cell exhaustion in patients with COVID-19 
and, although exhaustion markers appeared elevated among CD4+ 
T cells, these changes were not significant (Extended Data Fig. 7 and 
Supplementary Table 25). NK cells from most patients with COVID-
19 appeared exhausted based on expression of LAG3, PDCD1 and 
HAVCR2 (Fig. 3d). Similar to our observations in peripheral mono-
cytes, we did not detect substantial expression of pro-inflammatory 
cytokine genes by T or NK cells (Fig. 3e and Extended Data Figs. 5 
and 8); this again indicates that transcription of pro-inflammatory 
cytokines by peripheral leukocytes is unlikely to be a major  
contributor to the putative cytokine storm in COVID-19.

We next calculated T and NK cell DE genes from each sample 
from a patient with COVID-19 relative to healthy controls, and 
used these genes to identify enriched gene pathways and upstream 
regulators. NK cells displayed a remarkably heterogeneous response 
between patients with COVID-19 (Fig. 3f and Supplementary Table 
7). The most frequently downregulated genes included FCGR3A, 
AHNAK and FGFBP2, which are associated with peripheral NK cell 
maturity24. The most commonly upregulated genes included ISGs 
and NK cell activation genes like PLEK and CD3825,26. We observed 
similar heterogeneity of DE genes in CD4+ and CD8+ T cells, where 
the most commonly upregulated genes were ISGs (Extended Data 
Fig. 5 and Supplementary Tables 8 and 9).

Analysis of predicted upstream regulators indicated a strong 
IFN-driven response that was starkly absent from half of the profiled 
COVID-19 samples in both NK cells, CD4+ and CD8+ T cells (Fig. 3g,  
Extended Data Figs. 5 and 6 and Supplementary Tables 21–23).  
Given the importance of the IFN response and recent reports 
that this response is diminished during COVID-1927,28, we evalu-
ated ISG upregulation in each cell type to determine if ISGs were 
coordinately expressed across all cell types or between individuals  
(Fig. 3h). Although some ISGs were upregulated by most donors in 

Fig. 3 | Heterogeneous patterns of NK cell exhaustion and IFN response in COVID-19. a, UMAP embedding of CD4+ T cells, CD8+ T cells and NK cells 

colored by sample of origin. b, UMAP embedding colored by lineage genes (CD3D, CD3G, CD4, CD8A, FCGR3A and NCAM1) and selected functional/

phenotypic markers (GZMB and MKI67). For a,b, n = 22,016 cells are plotted from n = 14 biologically independent samples. c, Boxplots depicting proportions 

of CD56dim NK cells, CD56bright NK cells and proliferating lymphocytes among total T and NK cells by sample of origin. The cells used to calculate each 

proportion are highlighted in bold black in the adjacent UMAP embeddings and were identified by manually labeling clusters generated by clustering CD4+ 

T cells, CD8+ T cells and NK cells alone. Shown are exact two-sided P values from the Wilcoxon rank-sum test. n = 386 (top), n = 4,899 (middle), n = 781 

(bottom) total from n = 6, n = 4 and n = 4 biologically independent samples for Healthy, NonVent and ARDS, respectively. d, Boxplot showing the mean 

expression score by only NK cells of three canonical markers of NK cell exhaustion: LAG3, PDCD1 (encoding PD-1) and HAVCR2 (encoding TIM-3). Shown 

are exact two-sided P values by Wilcoxon rank-sum test. e, Boxplot showing the mean expression score by only NK cells of four canonical NK cell cytokine 

genes (CCL3, CCL4, IFNG and TNF). Shown are exact P values by Wilcoxon rank-sum test. For d,e, n = 6, n = 4 and n = 4 biologically independent samples for 

Healthy, NonVent and ARDS, respectively. In c–e, boxplot features: minimum whisker, 25th percentile − 1.5 × IQR or the lowest value within; minimum box, 

25th percentile; center, median; maximum box, 75th percentile; maximum whisker, 75th percentile + 1.5 × IQR or greatest value within. f,g, Heatmaps of DE 

genes (f) and differentially regulated predicted upstream regulators (g) between NK cells of each COVID-19 sample compared to NK cells of all healthy 

controls. As in Fig. 2, f is colored by average log(fold-change), while g is colored by z-score. All displayed genes and regulators are statistically significant at 

the P < 0.05 confidence level by Seurat’s implementation of the Wilcoxon rank-sum test (two-sided, adjusted for multiple comparisons using Bonferroni’s 

correction, f) or IPA’s implementation of Fisher exact test (right-tailed, g). The 50 genes or regulators with the highest absolute average log(fold-change) 

or z-score across all donors are labeled. Genes with a net positive average log(fold-change) or z-score are labeled in red; genes with a net negative average 

log(fold-change) or z-score are labeled in blue. DPS, days post-symptom onset; DTF, days from first reported or measured fever. Number of cells for f,g: C1 

A, 354; C1 B, 387; C2, 271; C3, 328; C4, 104; C5, 518; C6, 58; C7, 130; cells from all healthy controls (n = 4,707 cells) were used to generate comparisons 

with each COVID-19 sample. h,i, Heatmaps of differentially upregulated ISGs (h; Supplementary Table 25) and cytokines (i; Supplementary Table 25) in 

donors with COVID-19, colored by the number of COVID-19 samples in which the gene was differentially expressed relative to all healthy controls. DE 

genes used to construct these heatmaps are provided in Supplementary Tables 4–10. An ISG or cytokine was counted as differentially expressed if it had 

an average log(fold-change) > 0.25 and an adjusted two-sided P value < 0.05 by Seurat’s implementation of the Wilcoxon rank-sum test. n = 8 biologically 

independent COVID-19 samples compared to n = 6 biologically independent healthy controls.
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a given cell type (for example, IFI27 in CD14+ monocytes), generally 
ISG upregulation was not uniform within cell types or between sub-
jects (Fig. 3h). In addition, we identified very few cytokines whose 
upregulation was consistent between most patients with COVID-19 
(Fig. 3i). These results collectively indicate heterogeneous periph-
eral immune activation in COVID-19.

We next analyzed the phenotypes of plasmablasts and devel-
oping neutrophils, which appeared to be phenotypically related 
by dimensionality reduction (Fig. 1c). Indeed, when embedding 
only these cell types, developing neutrophils appeared to project 
linearly from plasmablasts, suggestive of a continuum of cellular 
phenotype between the two cell types (Fig. 4a). Cellular complex-
ity (the number of genes sequenced per cell divided by the unique 
molecular identifiers (UMIs) per cell) was not higher in develop-
ing neutrophils, making it unlikely that these cells were multiplets 
(Extended Data Fig. 9). These cells are also unlikely to represent 
granulocytes that have phagocytosed B cells, a feature of hemo-
phagocytic lymphohistiocytosis (HLH), which can be triggered by 

severe acute infections, because these patients did not have clinical 
characteristics of HLH.

To analyze if there was any transition between the two cell types, 
we performed a cellular trajectory analysis by RNA velocity29,30. 
Surprisingly, this analysis demonstrated that the linear continuum 
of cellular phenotype represented a differentiation bridge from 
plasmablasts to developing neutrophils (Fig. 4a); this spectrum of 
plasmablast-to-neutrophil phenotype was observed in all patients 
with ARDS and appeared unrelated to the transcriptional dynamics 
of canonical neutrophils (Extended Data Fig. 10). The cells along 
this differentiation bridge had lost expression of genes encoding 
canonical plasmablast markers CD27, CD38 and TNFRSF17 and 
instead sequentially acquired expression of genes encoding pri-
mary (DEF3A, ELANE and MPO), secondary (CHI3DL1, LCN2 
and LTF) and tertiary (MMP8, MMP9 and CAMP) neutrophil 
granule proteins, similar to canonical neutrophil development  
(Fig. 4b). Recovery of inferred latent time, which is based solely on a  
cell’s transcriptional dynamics, also suggested a continuum from 
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plasmablasts to developing neutrophils (Fig. 4c). Although cells 
at the beginning of this continuum are defined by expression of 
Ig genes, neutrophil markers like CSF3R and MNDA (encoding 
myeloid nuclear differentiation antigen) are upregulated as latent 
time progresses (Fig. 4d).

A lymphocyte-to-granulocyte differentiation process is not with-
out precedent. Similar transitions have been described from B cells 

to macrophages or granulocytes, and the C/enhancer binding pro-
tein (EBP) transcription factor family has been implicated in con-
trolling this transdifferentiation31,32. Two C/EBP family members, 
CEBPE and CEBPD, both known drivers of myeloid and granu-
locyte cell fates33,34, are selectively expressed by the two clusters of 
cells along the differentiation bridge (Fig. 4e,f); the transition from 
CEBPE to CEBPD recapitulates neutrophil development in mice35. 
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Fig. 4 | Developing neutrophils are characteristic of patients with severe COVID-19 and may differentiate from plasmablasts. a, UMAP embedding 

of plasmablasts and developing neutrophils, colored by annotated cell type and overlaid with the RNA velocity stream. b, UMAP embedding colored by 

canonical plasmablast marker genes (CD27, CD38 and TNFRSF17) and genes encoding primary (DEF3A, ELANE and MPO), secondary (CHI3DL1, LCN2 and 

LTF) and tertiary (MMP8, MMP9 and CAMP) neutrophil granule proteins35,39,40. c, UMAP embedding colored by inferred latent time. d, Scatter plots showing 

expression of a selection of cluster-defining genes across inferred latent time. e, UMAP embedding colored by orthogonally generated clusters. f, Dot plot 

depicting expression of CEBP family members in each identified cluster. For all panels, n = 3,187 cells from n = 8 biologically independent COVID-19 samples 

and n = 6 biologically independent healthy controls.
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Collectively, we observe a developing neutrophil population that 
may be characteristic of ARDS in severe COVID-19 infection;  
our data suggest that these cells may derive from plasmablasts,  
but they may also represent developing neutrophils derived from 
emergency granulopoiesis36.

There are several limitations of our study. Our sample size is 
small, only peripheral blood was evaluated and patients varied in 
the timing of their clinical presentation, which could influence their 
transcriptional landscapes. A subset of the patients were treated with 
the antibiotic azithromycin, which has known immunomodulatory 
activity13, while another subset were treated with the antiviral rem-
desivir, which targets the viral RNA-dependent RNA polymerase37,38 
and is not known to have direct immunomodulatory effects. Future 
studies are needed to further define the origins and phenotypes of 
the developing neutrophil population observed in the setting of 
ARDS at both the transcriptional and phenotypic level. Such stud-
ies will optimally require freshly isolated whole-blood samples from 
patients who are severely ill with COVID-19 as granulocytes typi-
cally fail to survive cryopreservation.

Overall, we used single-cell transcriptomics to characterize 
peripheral immune responses in severe COVID-19. We observed 
marked changes in the immune cell composition and phenotype 
in SARS-CoV-2 infection and immunological features of severe 
COVID-19 in patients with ARDS. This work represents a resource 
for understanding peripheral immunity in severe COVID-19 and 
presents new directions for the study of COVID-19 immunology 
and therapeutic development.
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Methods
Subjects and specimen collection. We collected blood from seven patients 
enrolled in the Stanford University ICU Biobank study from March–April 2020 
a�er written informed consent from patients or their surrogates (Stanford IRB 
approval #28205). Eligibility criteria included age ≥18 years and admission to 
Stanford Hospital with a positive SARS-CoV-2 nasopharyngeal swab by RT-PCR. 
Patients admitted to the wards or ICU were included, and the majority were 
co-enrolled in ongoing COVID-19 treatment trials at Stanford. Screening of new 
admissions via an electronic medical records review of all subjects was performed 
by the study coordinator (J.R.), research fellow (A.R.), COVID-19 clinical 
consultants (P.G. and A.S.) and the study principal investigator (A.J.R.), and was 
done every day with a goal enrollment within less than 48 h of admission to the 
hospital. Patients were phenotyped for ARDS using the Berlin criteria (acute onset 
of hypoxemic respiratory failure with a PaO2/FIO2 ratio (i.e., the ratio of the partial 
pressure of arterial oxygen to the percentage of inspired oxygen) of <300 on at 
least 5 cm of positive end-expiratory pressure, bilateral in�ltrates on chest X-ray)41. 
To protect the identity of the COVID-19 subjects, ages are reported as ranges. For 
controls, blood was collected from six asymptomatic adult donors as part of the 
Pro�ling Healthy Immunity study a�er written informed consent (Stanford IRB 
approval #26571). All donors were asked for consent for genetic research.

Blood draws from patients occurred in concert with usual care to avoid 
unnecessary personal protective equipment usage. For both patients with COVID-
19 and healthy controls, blood was collected into heparin tubes (Becton, Dickinson 
and Co.) and PBMCs were isolated by density gradient centrifugation using 
Ficoll-Paque Plus medium (GE Healthcare) and washed with Ca/Mg-free PBS. 
Blood was processed within 4 h of collection for all samples, and within 1 h for 
most. Samples from patients with COVID-19 and healthy controls were processed 
side by side to avoid variation from processing.

scRNA sequencing by Seq-Well. The Seq-Well platform for scRNA-seq was 
utilized as described previously11,12,42. Immediately after Ficoll separation, 50,000 
PBMCs were resuspended in RPMI + 10% FCS at a concentration of 75,000 cells 
per ml. A 200-μl volume of this cell suspension (15,000 cells) was then loaded onto 
Seq-Well arrays pre-loaded with mRNA capture beads (ChemGenes). Following 
four washes with Dulbecco’s phosphate-buffered saline (DPBS) to remove serum, 
the arrays were sealed with a polycarbonate membrane (pore size of 0.01 µm) for 
30 min at 37 °C and then frozen at −80 °C for no less than 24 h and no more than 
14 days to allow batching of samples processed at irregular hours. Next, arrays 
were thawed, cells lysed, transcripts hybridized to the mRNA capture beads, 
and beads recovered from the arrays and pooled for downstream processing. 
Immediately after bead recovery, mRNA transcripts were reverse-transcribed 
using Maxima H-RT (Thermo Fisher EPO0753) in a template-switching-based 
rapid amplification of cDNA ends (RACE) reaction, excess unhybridized 
bead-conjugated oligonucleotides were removed with exonuclease I (NEB 
M0293L) and second-strand synthesis was performed with Klenow fragment 
(NEB M0212L) to enhance transcript recovery in the event of failed template 
switching42. Whole transcriptome amplification (WTA) was performed with 
KAPA HiFi PCR Mastermix (Kapa Biosystems KK2602) using ~6,000 beads per 
50-μl reaction volume. Resulting libraries were then pooled in sets of six (~36,000 
beads per pool) and products purified by Agencourt AMPure XP beads (Beckman 
Coulter, A63881) with a 0.6× volume wash followed by a 0.8× volume wash. The 
quality and concentration of WTA products were determined using an Agilent 
Fragment Analyzer (Stanford Functional Genomics Facility), with a mean product 
size of >800 bp and a non-existent primer peak indicating successful preparation. 
Library preparation was performed with a Nextera XT DNA library preparation 
kit (Illumina FC-131-1096) with 1 ng of pooled library using dual-index primers. 
Tagmented and amplified libraries were again purified by Agencourt AMPure 
XP beads with a 0.6× volume wash followed by a 1.0× volume wash, and quality 
and concentration were determined by fragment analysis. Libraries between 400 
and 1,000 bp with no primer peaks were considered successful and pooled for 
sequencing. Sequencing was performed on a NovaSeq S2 instrument (Illumina; 
Chan Zuckerberg Biohub). The read structure was paired-end with read 1 
beginning from a custom read 1 primer11 containing a 12-bp cell barcode and an 
8-bp UMI, and with read 2 containing 50 bp of mRNA sequence.

Alignment and quality control of sequencing data. Sequencing reads were 
aligned and count matrices assembled using STAR43 and dropEst44, respectively. 
Briefly, the mRNA reads in read 2 demultiplexed FASTQ files were tagged with 
the cell barcode and UMI for the corresponding read in the read 1 FASTQ file 
using the dropTag function of dropEst. Next, reads were aligned with STAR using 
the GRCh37 (hg19) human reference genome, which included the complete 
genome sequences for all SARS-CoV-2 strains sequenced from California before 
24 March 2020 (10 SARS-CoV-2 sequences). No SARS-CoV-2 reads were aligned 
from these samples using this strategy, even when the outFilterMultimapNmax 
behavioral option of STAR was increased from 10 (default) to 20 to accommodate 
potential multiple-mapping SARS-CoV-2 reads. Count matrices were built from 
the resulting BAM files using dropEst44. Count matrices for intron-aligned reads 
were also generated to computationally analyze cellular trajectory. Cells that had 
fewer than 1,000 UMIs or greater than 15,000 UMIs, as well as cells that contained 

greater than 20% of reads from mitochondrial genes or rRNA genes (RNA18S5 
or RNA28S5), were considered low quality and removed from further analysis. To 
remove putative multiplets (where more than one cell may have loaded into a given 
well on an array), cells that expressed more than 75 genes per 100 UMIs were also 
filtered out. Genes that were expressed in fewer than 10 cells were removed from 
the final count matrix.

scRNA-seq computational pipelines and analyses. The R package Seurat was 
used for data scaling, transformation, clustering, dimensionality reduction, 
differential expression analysis and most visualization45. Data were scaled and 
transformed and variable genes identified using the SCTransform() function, 
and linear regression was performed to remove unwanted variation due to 
cellular complexity (no. of genes per cell, no. of UMIs per cell) or cell quality 
(% mitochondrial reads, % rRNA reads). Principal component analysis was 
performed using variable genes, and the first 50 principal components (PCs) 
were used to perform UMAP to embed the dataset into two dimensions. Next, 
the first 50 PCs were used to construct a shared nearest-neighbor graph (SNN; 
FindNeighbors()) and this SNN was used to cluster the dataset (FindClusters()) 
using a graph-based modularity-optimization algorithm of the Louvain method 
for community detection46. Despite upstream filtering for high-quality cells and 
regression on genes reflective of cell quality, two clusters were identified where 
65% or 100% of the positively enriched genes were of mitochrondrial or ribosomal 
origin, and these clusters were removed from further analysis47,48.

Cellular identity was determined by finding DE genes for each cluster using 
Seurat’s implementation of the Wilcoxon rank-sum test (FindMarkers()) and 
comparing those markers to known cell type-specific genes from previous 
datasets49–54. Cluster annotation was confirmed using the R package SingleR55, 
which compares the transcriptome of each single cell to reference datasets to 
determine cellular identity. Although clustering is often insufficient to separate 
cytotoxic T cells from NK cells12,49, SingleR identified the majority of cells in 
clusters 0 and 11 (94% and 76%, respectively) as NK cells. Indeed, these two 
clusters were the only clusters in the dataset to be significantly enriched for both 
NCAM1 and FCGR3A (Supplementary Table 2) and we thus annotated them as 
NK cells. We also observed that cluster 22, where 89% of cells were annotated 
as T cells by SingleR, was significantly enriched for genes encoding γδ TCR 
constant chains TRGC1, TRGC2 and TRDC, and we thus annotated them as γδ 
T cells (Supplementary Table 2). The majority of cells in cluster 24 were labeled 
as common myeloid progenitors by SingleR, but this cluster also contained cells 
annotated as seven different lineages of hematopoietic stem cells and progenitors. 
Closer examination revealed that this cluster consisted of two groups of cells, one 
expressing CLC and the other expressing CD34, and we therefore labeled them as 
stem cells (SCs) and eosinophils for downstream analysis. A total of 98% of cells in 
cluster 27 were annotated by SingleR as myelocytes (46%), pro-myelocytes (22%), 
CD34− pre-B cells (14%) or <q>HSC G-CSF (17%). Although these cells expressed 
several genes encoding for primary, secondary and tertiary neutrophil granule 
proteins (for example, ELANE, MPO, LTF, CTSG, LCN2 and MMP8), they were 
distinct from cluster 25 (labeled manually and by SingleR as neutrophils) and did 
not express canonical neutrophil markers like FCGR3B and CXCR2. As these cells 
demonstrated features similar to immature neutrophils and progenitors at various 
developmental stages17,18, we annotated these cells as ‘developing neutrophils’.

Gene pathway and upstream regulator analysis was performed with Ingenuity 
Pathway Analysis (IPA; Qiagen). The parent Seurat object was divided into 
individual objects consisting of cells from a particular cellular compartment 
(for example, CD4+ T cells, NK cells, CD16+ monocytes and so on). Next, DE 
genes between the cells from each sample from a patient with COVID-19 and 
the cells from all healthy controls were calculated by FindMarkers() and cell 
quality-associated markers were removed. The average log(fold-change) of each 
DE gene calculated by FindMarkers() was supplied to IPA. To construct heatmaps 
of DE genes, genes were filtered to have a two-sided P value < 0.05 by Seurat’s 
implementation of the Wilcoxon rank-sum test, and the average log(fold-change) 
of each DE gene plotted. To construct heatmaps of canonical pathways and 
predicted upstream regulators, genes were filtered to have a right-sided P 
value < 0.05 by IPA’s implementation of Fisher’s exact test, and the z-score of each 
pathway or regulator was plotted. Analysis of cellular trajectory by RNA velocity 
was performed using the package scVelo using dynamical modeling30. For all 
dot plots, average expression was calculated as the mean of ex − 1, where x is the 
SCT-transformed count of each gene in cells of a given identity class. Dot plots 
with hierarchical clustering were generated using FlexDotPlot56.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
Processed count matrices with de-identified metadata and embeddings 
are available for download from the COVID-19 Cell Atlas (https://www.
covid19cellatlas.org/#wilk20) hosted by the Wellcome Sanger Institute. Processed 
data are also available for viewing and exploration on the publicly accessible 
cellxgene platform by the Chan Zuckerberg Initiative at https://cellxgene.
cziscience.com/d/Single_cell_atlas_of_peripheral_immune_response_to_SARS_
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CoV_2_infection-25.cxg/. Raw sequencing data are available at the NCBI Gene 
Expression Omnibus (accession no. GSE150728). Requests for additional materials 
can be made via email to the corresponding authors.

Code availability
All scripts used for data analysis are available from GitHub (https://github.com/
ajwilk/2020_Wilk_COVID).
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Extended Data Fig. 1 | Demographic characteristics of all analyzed donors. a, Age, sex, and race of n = 6 profiled healthy donors. b, Races represented by 

n = 7 patients with COVID-19 in this study.
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Extended Data Fig. 2 | Proportions of PBMC cell subsets do not correlate with days post-symptom onset or days to fever onset. Proportions of each cell 

type in each sample colored by donor of origin. The x-axis corresponds to a, the days post-symptom onset (n = 8 COVID-19 samples) or b, the days from 

first reported or measured fever (n = 6 COVID-19 samples from patients who had experienced fever). Shown are the Pearson correlation coefficient and 

exact two-sided p-values for each scatter plot.
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Extended Data Fig. 3 | Heterogeneity of Ig V gene usage and HLA class II downregulation in B cells of COVID-19 patients. a, Dot plot depicting average 

and percent expression of all detected Ig genes by n = 8 COVID-19 samples. Number of cells: C1 A – 182, C1 B – 618, C2 – 123, C3 – 351, C4 – 1,577, C5 – 

196, C6 – 32, C7 – 29. b, Boxplot depicting the mean HLA class II expression score for all B cells of each sample in the dataset, colored by ventilation/ARDS 

status (healthy controls are colored in blue, n = 6; non-ventilated COVID-19 patients in orange, n = 4; ventilated COVID-19 patients in red, n = 4). Shown 

are exact two-sided p values by the Wilcoxon rank-sum test. Boxplot features correspond to: minimum whisker = 25th percentile - 1.5 * inter-quartile 

range (IQR) or the lowest value within; minimum box = 25th percentile; center = median; maximum box = 75th percentile; maximum whisker = 75th 

percentile + 1.5 * IQR or greatest value within. c, Dot plot showing percent and average expression of all detected HLA genes by B cells for n = 8 COVID-19 

samples and n = 6 healthy controls. Number of cells: C1 A – 351, C1 B – 1,020, C2 – 495, C3 – 883, C4 – 1,835, C5 – 246, C6 – 77, C7 – 298, H1 – 190, H2 – 

299, H3 – 298, H4 – 588, H5 – 511, H6 – 200.
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Extended Data Fig. 4 | Trends between ISG or HLA class II expression scores and clinical parameters in total PBMCs. a, b, Scatter plots depicting the 

correlation between (a) the mean ISG expression score or (b) the mean HLA class II expression score and patient age, days from fever onset, or days 

post-symptom onset (Supplementary Table 25). For all plots, only n = 8 COVID-19 patient samples are included. For plots depicting correlations with days 

from fever onset, n = 6 as the two COVID-19 patients who never reported fever (C6 and C7) are excluded. Pearson correlation coefficients, exact two-sided 

p-values, and the 95% confidence interval are shown for each comparison.
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Extended Data Fig. 5 | Consensus of De genes in each major cell type. Each bar plot represents genes differentially expressed in at least half (4) of n = 8 

COVID-19 samples relative to all healthy controls. DE genes were considered those with an average |log(fold-change)| > ± 0.25 and a two-sided p value 

< 0.05 as determined by Seurat’s implementation of the Wilcoxon rank-sum test. Each bar represents the cumulative log(fold-change) of each DE gene, 

colored by the contributions of individual COVID-19 samples. DE genes are shown for a, NK cells, b, CD4+ T cells, c, CD8+ T cells, d, CD16+ monocytes, 

e, Dendritic cells, f, CD14+ monocytes, and g, B cells. There were no DE genes in at least four COVID-19 samples for γδ T cells. Total number of cells per 

donor: C1 A – 3,222, C1 B – 4,889, C2 – 1,695, C3 – 6,206, C4 – 3,559, C5 – 2,391, C6 – 794, C7 – 3,145; cells from all healthy controls (n = 16,231 cells) 

were used to generate comparisons with each COVID-19 sample.
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Extended Data Fig. 6 | Differentially regulated genes, canonical pathways, and upstream regulators in CD8+ T cells. a, Heatmap of DE genes for each 

COVID-19 sample colored by average log(fold-change). DE genes were calculated by comparing gene expression of individual COVID-19 samples with 

gene expression of all healthy controls using Seurat’s implementation of the Wilcoxon rank-sum test. Only DE genes with a two-sided p value<0.05 

adjusted for multiple comparisons by Bonferroni’s correction are shown. These DE genes were used to identify b, enriched canonical pathways and  

c, upstream regulators, both colored by z-score, using Ingenuity Pathway Analysis (IPA). The (a) 50 genes, (b) 14 pathways, or (c) 50 regulators with 

the highest absolute average log(fold-change) or z-score across all donors are labeled. Genes with a net positive average log(fold-change) or z-score 

are labeled in red; genes with a net negative average log(fold-change) or z-score are labeled in blue. All (b) pathways and (c) upstream regulators are 

statistically significant by IPA’s implementation of Fisher’s exact test at a right-sided p < 0.05. Number of cells: C1 A – 563, C1 B – 904, C2 – 176, C3 – 1,437, 

C4 – 432, C5 – 183, C6 – 80, C7 – 102; cells from all healthy controls (n = 2,885 cells) were used to generate comparisons with each COVID-19 sample.
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Extended Data Fig. 7 | CD8+ and CD4+ T cells from COVID-19 patients do not consistently express higher levels of exhaustion markers. a, b, Dot plot 

depicting the percent and average expression of canonical genes associated with T cell exhaustion by (a) CD8+ and (b) CD4+ T cells from n = 8 COVID-19 

samples and n = 6 healthy controls. c-d, Boxplot showing the mean T cell exhaustion of module score57 (see Supplementary Table 25) of CD8+ T cells (c) 

or CD4+ T cells (d) from each sample, colored by healthy donors (n = 6, blue), non-ventilated COVID-19 patients (n = 4, orange), or ventilated COVID-19 

patients (n = 4, red). Shown are exact two-sided p values by Wilcoxon rank-sum test. Boxplot features correspond to: minimum whisker = 25th percentile 

- 1.5 * inter-quartile range (IQR) or the lowest value within; minimum box = 25th percentile; center = median; maximum box = 75th percentile; maximum 

whisker = 75th percentile + 1.5 * IQR or greatest value within.

 57. Miller, B. C. et al. Subsets of exhausted CD8+ T cells di�erentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).
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Extended Data Fig. 8 | expression of pro-inflammatory cytokines is not a feature of circulating cytotoxic lymphocytes in COVID-19. a, UMAP embedding 

of CD4+ T, CD8+ T, and NK cells colored by expression of canonical pro-inflammatory cytokines IFNG, TNF, CCL3, and CCL4. n = 22,016 cells are plotted from 

n = 14 biologically independent samples. Dotted lines correspond to the cell type boundaries identified in Fig. 3b. b, Dot plot depicting average and percent 

expression of canonical cytotoxic lymphocyte pro-inflammatory cytokines by CD8+ T cells from n = 8 COVID-19 samples and n = 6 healthy controls.
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Extended Data Fig. 9 | Developing neutrophils likely do not represent multiplets. Complexity, defined as the number of genes detected per cell divided by 

the number of UMIs in that cell, for each cell in the dataset grouped by annotated cell type. Complexity of all n = 44,721 cells from n = 8 COVID-19 samples 

and n = 6 healthy controls is depicted. Each violin plot is trimmed at the maximum and minimum value for each cell type.
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Extended Data Fig. 10 | The spectrum of plasmablast-to-granulocyte phenotype is present in patients experiencing ARDS and this putative 

transdifferentiation is likely unrelated to transcriptional dynamics of canonical neutrophils. a, UMAP embedding of plasmablasts and activated 

granulocytes faceted by COVID-19 sample. n = 3,187 cells are plotted from n = 14 biologically independent samples. b-c, UMAP embeddings of 

plasmablasts, activated granulocytes, and canonical neutrophils overlaid with RNA velocity stream (b) or velocity grid (c). n = 3,911 cells are plotted from 

n = 14 biologically independent samples.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Sequencing data was collected using a NovaSeq S4. 

Data analysis Reads were aligned against hg19 (Ensembl: Homo_sapiens.GRch37.74; which included the complete genome sequences for all SARS-

CoV-2 strains sequenced from California before March 24, 2020) using Drop-seq Tools (v.1.13) using STAR_2.5.4. Count matrices were 

assembled with dropEst_0.6.8.  

R version 3.6.1 was used for downstream analysis with the following packages: Seurat_3.1.1, sctransform_0.2.0, ggplot2_3.2.1, 

Matrix_1.2-17, reshape2_1.4.3, tidyverse_1.3.0, nichenetr_0.1.0, pheatmap_1.0.12, scater_1.13.27, SingleR_0.99.13, ggpubr_0.2.3, 

FlexDotPlot_0.1.1, ggrepel_0.8.1, Hmisc_4.2-0, factoextra_1.0.5, circlize_0.4.8, Matrix.utils_0.9.7, SummarizedExperiment_1.15.9, 

SingleCellExperiment_1.7.11, dplyr_0.8.3, plyr_1.8.4. 

Python version 3.7.4 was used with packages: scvelo_0.1.23, scanpy_1.4.4, anndata_0.6.22, pandas_0.25.1, matplotlib_3.1.1 

Ingenuity Pathway Analysis (Qiagen) was used for gene pathway enrichment analysis and upstream regulator discovery.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Processed count matrices with de-identified metadata and embeddings are available for download from the Covid-19 Cell Atlas (https://www.covid19cellatlas.org/

#wilk20) hosted by the Wellcome Sanger Institute. Processed data is also available for viewing and exploration on the publicly accessible cellxgene platform by the 
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Chan Zuckerberg Initiative at https://cellxgene.cziscience.com/d/Single_cell_atlas_of_peripheral_immune_response_to_SARS_CoV_2_infection-25.cxg/. Raw 

sequencing data are available at the NCBI Gene Expression Omnibus (accession number GSE150728). Requests for additional materials can be made via email to the 

corresponding authors. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 7 patients with confirmed COVID-19 (1 patient sampled twice); 6 healthy controls. Sample size was not pre-determined; all available 

specimens were processed for sequencing.

Data exclusions Cells with fewer than 1,000 or more than 15,000 unique transcript reads were removed from analysis as low quality cells or potential 

doublets. Any cell that contained more than 75 genes per 100 sequenced UMIs were removed as potential doublets. These cells would add 

unwanted noise to downstream analysis. Any cell from which >20% of sequencing reads aligned to either mitochondrial genes or ribosomal 

RNA (RNA18S5 and RNA28S5) were also removed from analysis, as these have been shown to be low quality cells. All exclusion criteria were 

pre-established for this data analysis.

Replication Given the small number of available specimens, we were unable to perform technical replicates on individual samples. 

Randomization Samples were not allocated into experimental groups.

Blinding Blinding to COVID-19 status was not possible as the patient-derived vs. control-derived samples were acquired from different locations. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics All available demographic characteristics for COVID-19 patients and healthy controls are listed in Table 1 and Extended Data 

Table 1. The seven patients profiled were male, aged 20 to >80 years of age. We collected samples between two and sixteen 

days following symptom onset; healthy controls were asymptomatic, four male and two female, and aged 30–50 years. 

Recruitment Eligible participants were adults (age >18 yo) admitted to Stanford Hospital (wards or ICU) with RT-PCR-confirmed SARS-CoV-2. 

All patients with documented COVID-19 in Stanford hospital were offered enrollment.

Ethics oversight This study was approved by the Stanford Institutional Review Board IRB-28205 and IRB-26571.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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