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Abstract

To examine global changes in breast heterogeneity across dif-

ferent states, we determined the single-cell transcriptomes of

> 340,000 cells encompassing normal breast, preneoplastic

BRCA1
+/– tissue, the major breast cancer subtypes, and pairs of

tumors and involved lymph nodes. Elucidation of the normal

breast microenvironment revealed striking changes in the stroma

of post-menopausal women. Single-cell profiling of 34 treatment-

naive primary tumors, including estrogen receptor (ER)+, HER2+,

and triple-negative breast cancers, revealed comparable diversity

among cancer cells and a discrete subset of cycling cells. The

transcriptomes of preneoplastic BRCA1
+/– tissue versus tumors

highlighted global changes in the immune microenvironment.

Within the tumor immune landscape, proliferative CD8+ T cells

characterized triple-negative and HER2+ cancers but not ER+

tumors, while all subtypes comprised cycling tumor-associated

macrophages, thus invoking potentially different immunotherapy

targets. Copy number analysis of paired ER+ tumors and lymph

nodes indicated seeding by genetically distinct clones or mass

migration of primary tumor cells into axillary lymph nodes. This

large-scale integration of patient samples provides a high-

resolution map of cell diversity in normal and cancerous human

breast.
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Introduction

The incidence of breast cancer is influenced by multiple factors that

include age, genetics, and reproductive history. An understanding of

normal tissue biology and its inherent heterogeneity is an important

step toward dissecting mechanisms that lead to oncogenesis.

Normal breast tissue comprises a complex epithelial ductal system

embedded in a stromal matrix that is composed of fibroblasts,

adipocytes, endothelial, and immune cells. In human breast,

puberty-induced branching results in a complex branched ductal

system in which the ducts terminate in a cluster of acini termed a

terminal duct lobular unit (TDLU) (Fu et al, 2020). The dynamic

changes occurring in the breast epithelium during puberty, preg-

nancy, and lactation are driven by the concerted action of systemic

hormones and growth factors, among which the ovarian hormones

estrogen and progesterone play a key role (Brisken & O’Malley,
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2010). Over the lifetime of a woman, sustained exposure to ovarian

steroid hormones is a well-established risk factor for breast cancer,

with a clear correlation between the number of menstrual cycles

and breast cancer risk (Clemons & Goss, 2001; Hankinson et al,

2004). Indeed, early ovarian ablation is protective against breast

cancer (Parker et al, 2009a).

Breast cancer comprises a diverse set of diseases characterized

by heterogeneity that influences treatment response and patient

outcome. This heterogeneity cannot be precisely defined through

the classic parameters of histopathology, tumor grade, and nodal

involvement. Expression profiling has proven pivotal in defining the

intrinsic subtypes of breast cancer: luminal A and luminal B, triple-

negative (often used interchangeably with basal-like), HER2-overex-

pressing, and claudin-low (Perou et al, 2000; Sorlie et al, 2001).

These likely reflect distinct “cells of origin”, unique differentiation

blockades, and different repertoires of mutations. More recent

genome sequencing efforts have defined recurrent “driver” genes

and copy number changes among the different breast tumor

subtypes (Cancer Genome Atlas, 2012; Alexandrov et al, 2013; Nik-

Zainal et al, 2016). The advent of single-cell technologies has

enabled an understanding of cellular heterogeneity at an unprece-

dented level. This is particularly relevant to tumors, which exist as

ecosystems composed of malignant cells interspersed with stromal

and immune cells. Emerging data from single-cell genomics indicate

significant tumor heterogeneity, while single-cell transcriptomic pro-

filing of breast tumors indicates diverse immune cell populations

(Chung et al, 2017; Azizi et al, 2018; Karaayvaz et al, 2018; Kim

et al, 2018; Savas et al, 2018; Qian et al, 2020). In addition, recent

evaluation of the proteomes of a large number of tumors for up to

70 proteins (Wagner et al, 2019) yielded insights into the immune

compartments of tumors and potential cellular cross-talk. Cellular

diversity among the different breast cancer subtypes, however, has

not been evaluated systematically. In the context of normal breast

tissue, single-cell profiling of epithelial cells has confirmed the pres-

ence of three primary epithelial populations and predicted cell

trajectories (Nguyen et al, 2018) but the normal milieu of the ductal

network awaits further investigation.

Here we sought to further probe cellular heterogeneity within

normal and neoplastic breast tissue (and involved LNs) through

single-cell transcriptome analysis. We posed the following ques-

tions: What is the complexity within the normal breast ductal

microenvironment and does hormonal or BRCA1 mutation status

influence molecular diversity? What is the degree of heterogeneity

within the cancer cell compartment and its microenvironment

across tumor subtypes? What is the relationship between primary

breast tumors and malignant cells that seed lymph nodes? Single-

cell profiling was performed on tissue specimens from normal or

preneoplastic BRCA1+/� tissue (28 specimens), and tumors (34 spec-

imens) representing estrogen receptor (ER)+, HER2+, and triple-

negative (TNBC) breast cancers, including male tumors and seven

matched pairs of ER+ tumors and involved lymph nodes. Not

surprisingly, extensive changes in the immune/stromal landscape

were found between the preneoplastic versus neoplastic states in

BRCA1 mutation carriers. While all tumor subtypes exhibited intra-

tumoral heterogeneity, distinct changes occurred within the

microenvironment of different cancer subtypes. Moreover, we

observed either clonal migration of genomically distinct ER+ breast

cancer cells into the axillary lymph nodes or mass migration of

tumor cells. Together, this large-scale integration of patient samples

encompassing the transcriptomes of > 340,000 cells provides a

framework for deciphering the clinical relevance of heterogeneity

within normal tissue and breast tumors.

Results

Large-scale integration of scRNA-seq profiles from multiple

patients maps cell diversity in tumors and normal breast tissue

at high resolution

We used the droplet-based 10x Genomics Chromium platform to

create single-cell RNA-seq (scRNA-seq) libraries for 69 distinct

surgical tissue specimens from 55 patients, yielding expression pro-

files for nearly 430,000 individual cells (Fig 1A, Tables EV1–EV4).

After quality filtering to ensure cells with good gene coverage, a

consistent range of read counts and low numbers of mitochondrial

reads, nearly 342,000 cells, remained for subsequent analysis. The

number of genes detected in each specimen varied from 13,000 to

20,000 with a median of 17,711 (Fig EV1A, Table EV4). Our down-

stream analyses proceeded from normal and preneoplastic

mammary tissue to characterization of tumor subtypes, including

matched infiltrated lymph nodes. For each tissue type, we used

recently developed integration methods implemented in the Seurat 3

toolkit (Butler et al, 2018) to align the single-cell profiles from dif-

ferent patients and to identify shared cell populations. These inte-

grated analyses allowed us to characterize cellular diversity with

high resolution and precision. Where possible, we also sought to

display patient-to-patient variation in expression profiles for the cell

populations identified, using a pseudo-bulk approach to contrast the

expression profiles for each population between conditions. This in

silico approach mimics bulk RNA-seq for the cell populations, allow-

ing us to assess cell population markers and expression signatures

relative to the biological variation between individual patients or

individual tumors (McCarthy et al, 2012).

Normal breast epithelia comprise three major populations plus

transient intermediates

To explore diversity in normal breast cells, reduction mammoplas-

ties were obtained from 18 women with no family history of breast

cancer (Table EV1). For 11 of these mammoplasties, epithelial cells

were sorted based on CD49f and CD326 (EpCAM) expression

(Figs 1B and EV1B) and then profiled by scRNA-seq. Cell sorting

has previously revealed three definitive epithelial cell clusters that

correspond to basal, luminal progenitor (LP), and mature luminal

(ML) cells (Eirew et al, 2008; Lim et al, 2009). scRNA-seq expres-

sion profiles were obtained for 53,716 epithelial cells after quality

filtering (Table EV4). The single-cell profiles of epithelial cells were

integrated using Seurat to remove baseline differences between

samples. Visualization of the combined profiles by t-distributed

stochastic neighbor embedding (t-SNE) dimension reduction

showed effective alignment of the patient profiles (Fig EV1C). Some

variation in the abundance of cell subpopulations was evident

between individuals, similar to that seen in the FACS profiles

(Fig EV1B), and most likely reflects variation in the anatomical loca-

tions of the tissue specimens.
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Cell clustering confirmed three major epithelial cell populations

and one small stromal cluster (Fig EV1C). Lineage identity was

determined by using bulk RNA-seq signatures for sorted epithelial

and stromal subpopulations (see Methods) to compute quantitative

expression scores for each cell in each cluster (Fig EV1D). We next

removed the stromal subset and reintegrated the remaining cells

from the 11 patients (Fig 1C). Comparison of premenopausal

(n = 8) versus post-menopausal (n = 3) women showed a similar

cluster distribution according to hormonal status (Fig 1D). Reclus-

tering confirmed three major cell clusters plus a very small interme-

diate cluster (Fig 1E). Lineage identity of the major clusters was

established using an expression signature method that we have

demonstrated previously (Pal et al, 2017). Expression signatures

were identified for the basal, LP, and ML cell populations using cell

sorting and bulk RNA-seq, and then, each single cell was positioned

on a ternary plot according to the proportion of basal, LP, or ML

signature genes expressed by that cell. The cluster colors from the t-

SNE plot were then overlaid onto the ternary plot, identifying the

basal, LP, and ML populations (Fig 1F). A diffusion map of potential

lineage trajectories placed the basal cells as potential precursors for

the luminal lineages in diffusion pseudo-time (Fig 1G). Expression

of typical mammary lineage marker genes (Lim et al, 2010) for basal

(e.g., KRT5, ACTA2, MYLK, SNAI2), luminal progenitor

(TNFRSF11A (RANK), KIT), and mature luminal cells (ESR1, PGR,

FOXA1) corroborated the identity of the three major cell clusters

(Fig 1H). The top differentially expressed (DE) genes in each of the

major clusters are shown in Fig EV1E. The cluster expression pro-

files were consistent across hormonal status, with no genes found to

be DE between post- vs pre-menopause for any of the clusters

(pseudo-bulk quasi F-tests, FDR > 0.4).

Interestingly, the basal cell cluster on the t-SNE plot shows an

apparent “tail” consisting of cells that are visibly distinct from the

rest of the cluster (Fig 1I). These “tail” cells can be seen to express

LP and ML marker genes as well as basal genes and therefore may

be lineage-primed (Fig 1H). The diffusion map places the “tail” cells

downstream of the other basal cells in pseudo-time and between the

basal and luminal lineages, suggesting that they represent transient

intermediates prior to luminal lineage commitment (Fig 1I). These

data are compatible with studies of X chromosome inactivation as

well as clonal tracking of cells deficient in Cytochrome C oxidase,

both of which have indicated the presence of bipotent precursor

cells (Tsai et al, 1996; Cereser et al, 2018).

Elucidation of the normal breast microenvironment and changes

accompanying hormonal status

We next investigated the immune and stromal microenvironment of

normal breast tissue by profiling total tissue cells isolated from the

reduction mammoplasties of pre- (n = 8) and post-menopausal

(n = 5) women. scRNA-seq analysis produced expression profiles

for 54,332 cells after quality filtering (Table EV4). Integration and

clustering of the single-cell expression profiles yielded eight major

cell clusters (Fig 2A and B). A ternary epithelial signature map

revealed the green, blue, and red epithelial clusters to be basal, LP,

and MP cells, respectively (Fig 2C). EPCAM expression showed

three of the clusters to be epithelial (Fig 2D). These identities were

confirmed by coloring cells according to their basal, LP, and MP

expression signatures, respectively (Fig EV1F). Expression of the

epithelial-mesenchymal transition (EMT) transcription factors,

SNAI1, ZEB1, and ZEB2 was by contrast dramatically higher in stro-

mal cells (Fig EV1G).

To further probe the identity of cells within the ductal microenvi-

ronment, the EPCAM+ epithelial cell clusters were removed and the

remaining cells reclustered, thus yielding seven non-epithelial clus-

ters (Fig 2D). For identification of cellular constituents, we aggre-

gated cells from the same individual and same cluster to form

pseudo-bulk sample expression profiles. Displaying transcriptional

distances between the samples showed clusters 4 (red) and 5 (pur-

ple) to be well-separated from the other clusters in terms of expres-

sion profiles (Fig 2E). Clusters 2 and 7 formed a subgroup as did

clusters 1, 3, and 6 (Fig 2E). Unlike the t-SNE plot, distances on the

MDS plot are linear in terms of log-expression changes. Differential

expression analysis of the pseudo-bulk samples selected marker

genes for each cluster, identifying the non-epithelial clusters as

fibroblasts, endothelial cells (vascular and lymphatic), pericytes

(perivascular cells), myeloid, and lymphoid cells (Fig 2F). Consis-

tent with the fibrous and vascular nature of human breast, fibrob-

lasts (cluster 1), endothelial cells (clusters 2 and 7), and pericytes

(cluster 3) constituted major fractions (Fig 2D). Cluster 5 (lym-

phoid) showed expression of canonical markers of B, T, and Natural

Killer (NK) cells, while cluster 4 (myeloid) was composed of mono-

cytes/macrophages and likely dendritic cells (Fig 2F). Hierarchical

clustering based on previously published gene expression profiles

for immune and stromal cell lineages (Jeffrey et al, 2006; Nover-

shtern et al, 2011) confirmed the cellular annotations (Fig EV1H).

◀
Figure 1. Workflow for the breast atlas and scRNA-seq profiling of normal breast epithelium.

A Schematic diagram showing workflow for scRNA-seq of human specimens: normal and preneoplastic breast tissue, breast tumors (TNBC, ER+, HER2+, male breast

tumors), and matching pairs of tumor and lymph node (LN) samples.

B Flow cytometry based on CD49f and EpCAM staining separates lineage-negative breast tissue cells into stromal (CD49f–EpCAM–) and epithelial cells, which includes

basal (CD49f+EpCAMlo/–), luminal progenitor (LP) (CD49f+EpCAM+), and mature luminal (ML) (CD49f–EpCAM+) cells.

C t-SNE plot of the integrated scRNA-seq profiles of epithelial cells from 11 reduction mammoplasties. Cell colors correspond to tissue specimens.

D Same t-SNE plot as (C) but separated by hormonal status of the donor (8 premenopausal and 3 post-menopausal).

E Same t-SNE plot as (C) but colored by cell clusters (with Seurat cluster resolution set to 0.015).

F Ternary plot positioning each cell according to the proportion of basal, LP, or ML signature genes expressed by that cell. The three vertices of the plot correspond to

cells expressing basal genes only, LP genes only, or ML genes only. Cells expressing equal numbers of basal, LP, and ML genes are in the center of the plot. The plot

shows the same cells and cell colors as for (E), thus identifying green as basal, blue as LP, and orange as ML populations, respectively.

G Diffusion map of the epithelial cells.

H t-SNE plot as in (E) colored by the expression level of a selection of basal, LP, and ML marker genes. Red=high expression, gray=not-detected.

I The basal cell cluster shows a “tail” of atypical cells (highlighted in pink). These tail cells are in the center of the diffusion plot, downstream of the other basal cells in

pseudo-time and intermediate between the basal and two luminal lineages.

4 of 23 The EMBO Journal 40: e107333 | 2021 ª 2021 The Authors

The EMBO Journal Bhupinder Pal et al



A

F G

B

EPCAM (total cells)

Basal
LP

ML V

LogFC dimension 1

L
o

g
F

C
 d

im
e

n
s
io

n
 2

Pseudo-bulk samples

H

Microenvironment

Pericytes 

Myeloid
Lymphoid 

Epi

Lymph. 
endothelial

Vasc. endothelial

D E

Samples

N-0019-total 

N-0233-total

N-0092-total

N-0230.17-total

N-0169-total

N-0093-total

N-0123-total

N-0064-total

N-0342-total

N-0372-total

N-0021-total

N-0275-total

N-0288-total

MMP2, APOD, CLMP, 
PDGFRA, MMP3, TWIST2, 
DPT, IGFBP6, DCN, LUM

COL5A1, SNAI1, SPARC, 
ENG, FLT1, CD93, PLVAP, 
SOX17

IL6, AGTR1, SOD3, AXL, 
ADAMTS1, MYL9, MCAM, 
PLN, NTRK2

CD74, HLADRA, FCERIG, 
CREG1, ACSL1, TLR2, 
NPC2, CIQB, C5AR1

FKBP5, CD37, CXCR4, 
RUNX3, NKG7, PDCD4, 
FYN, KLRD1

TFF3, CYLD, MMRN1, 
CLIC2, TFP, SOX4, GJA1, 
PTPRB, CDH5, ERG, 
TSPAN12, HEY1, PRRG4

Clusters

Clusters Basal

LP ML

1. 13010 cells

2. 11125 cells

3. 8969 cells 

4. 7602 cells

5. 7323 cells

6. 4255 cells

7. 1136 cells 

8. 912 cells 

C

Color Key

Relative expression

Log expression

Highest 0 

tSNE-1

tS
N

E
-2

V

V

tSNE-1

tS
N

E
-2

V

V

Pre-men
Post-men

Pre-men Post-men
Samples
Clusters

Myeloid

Lymphoid

Pericytes

Endothelial

Fibroblasts

Endothelial

1

3

4

5

6

2

7

Samples

N-0019-total 

N-0233-total

N-0092-total

N-0230.17-total

N-0169-total

N-0093-total

N-0123-total

N-0064-total

N-0342-total

N-0372-total

N-0021-total

N-0275-total

N-0288-total

Fibroblasts 

Clusters

1

3

4

5

6

2

7

V

1 2 3 4 5 6 7

PTPRC CD79A CD4

CD8A HAVCR2 ITGAM

VWFITGAX

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Cell numbers (%)
C

lu
s
te

rs
 (

P
re

m
e

n
 I

 P
o

s
tm

e
n

)

V

V

10

30

0

20

10

30

0

20

20

80

0

40

60

10

40

0

30

50

20

2

0

4

6

5

0

20

15

10

4

0

12

8

CD68

1 2 3 4 5 6 7

20

60

0

40

5

0

35

25

15

1 2 3 4 5 6 7

CD14

10

0

20

30

RGS5

10

0

20

30

40

CD36

10

0

20

30

40

1 Fibroblasts 

3 Pericytes 

4 Myeloid 

5 Lymphoid 

6 Epithelial 

7 Lymph. endothelial 

2 Vasc. endothelial 

20 600 8040 100

P
re

-m
e

n
o

p
a

u
s
e

P
o

s
t-

m
e

n
o

p
a

u
s
e

N-0019-total 

N-0233-total

N-0092-total

N-0230.17-total

N-0169-total

N-0093-total

N-0123-total

N-0064-total

N-0342-total

N-0372-total

N-0021-total

N-0275-total

N-0288-total

Clusters

Normal (microenvironment)

Clusters (%)

I

10 30 0 

7 

5 

4 

3 

2 

1 

6 

20 40 50 

D
e
te

c
ti
o
n
 (

%
)

Clusters (Pre I Post-menopause)V

V

*

*

Figure 2.

ª 2021 The Authors The EMBO Journal 40: e107333 | 2021 5 of 23

Bhupinder Pal et al The EMBO Journal



Tissue-resident cells in the microenvironment of pre- versus post-

menopausal tissue showed some differences. Lower and higher

proportions of fibroblasts (cluster 1) and vascular endothelial cells

(cluster 2), respectively, were evident in post-menopausal tissue

(Fig 2G). Differences in cell type composition between pre- and post-

menopausal microenvironments were statistically significant despite

inter-patient variability (Fig 2H). The expression of multiple cell-

specific genes for either pre- or post-menopausal patients was exam-

ined: pan-hematopoietic (PTPRC/CD45), B cells (CD79A), T cells

(CD4, CD8a), NK cells (HAVR2C), myeloid/macrophages (ITGAX/

CD11c, ITGAM/CD11b, CD68, CD14), pericytes (RGS5), and endothe-

lial cells (VWF, CD36) (Fig 2I). The expression of several definitive

cell markers was similar between pre- and post-menopausal tissue for

the majority of immune subsets, apart for certain myeloid markers.

Moreover, close inspection of the fibroblast population (cluster 1)

indicated that a lower proportion of cells expressed key marker genes

such as PDGFRA, PDGFRB, CD34, and the matrix-associated genes

POSTN and COL3A1 (also SPARC, COL5A2, COL14A1) in post-meno-

pausal tissue (Fig 3A). High-resolution confocal imaging of breast

tissue to address expression and spatial distribution indicated a

marked decrease in PDGFRb+ fibroblasts in post-menopausal tissue

(Fig 3B), including the interlobular fibroblasts (Morsing et al, 2020).

Some variation between post-menopausal tissue sections was appar-

ent, in part reflecting the regression of TDLUs. Nonetheless, reduced

PDGFRb+ staining was apparent in eight out of 10 post-menopausal

specimens, in contrast to intense staining seen across premenopausal

samples (n = 13). Furthermore, 3D imaging revealed that PDGFRb+

fibroblasts were in close proximity to the epithelium, exemplified by

the TDLU in Fig 3B(v). Although some pericytes that line the blood

vasculature may express less PDGFRb in post-menopausal tissue,

capillaries appeared intact. The apparent diminution in expression of

several extracellular matrix-associated genes in resident fibroblasts of

post-menopausal tissue would be predicted to alter the extracellular

matrix (ECM) that juxtaposes the ductal network.

Given the predominance of the fibroblast population, we reclus-

tered these cells from pre- and post-menopausal women to further

probe cellular heterogeneity. Of the five clusters, three (1, 2, and 4)

were common to all specimens in both hormonal milieu, the first

two of which were substantial clusters (Fig 3C and D). Interestingly,

KEGG pathway analysis revealed that cluster 1 was enriched for

immunomodulatory signaling pathways including TNF, IL-17, NOD-

like receptor, and NF-jB as well as cytokine-cytokine receptor inter-

actions (Fig 3E). Analysis of top marker gene expression indicated

abundant expression of matrix metalloproteinases (MMP3, MMP10,

MMP12) and chemokines such as CXCL1 and CXCL8 in cluster 1

(Fig 3F). Cluster 2 was characterized by the expression of transcrip-

tion factors associated with the immediate-early response (FOS,

JUN, EGR, KLF4, ATF3) and DNA damage genes (GADD45, HSP1A1,

DNAJB). The precise roles of these two molecular groups of fibrob-

lasts are yet to be elucidated.

◀
Figure 2. Transcriptional changes in the microenvironment of post-menopausal breast tissue.

A t-SNE map of combined scRNA-seq transcriptomes of total tissue cells from 13 reduction mammoplasties. Cell colors correspond to tissue specimens.

B Same t-SNE map as (A) but colored by cell cluster (with cluster resolution 0.05).

C Ternary plot positioning each cell according to the proportion of basal, LP, or ML signature genes expressed by that cell. The plot shows the same cells and cell colors

as for (B).

D Reclustered EPCAM-negative non-epithelial cells revealed seven clusters (resolution 0.05) representing immune and stromal cell lineages.

E Multidimensional scaling plot showing expression profile distances between the pseudo-bulk samples. Each dot corresponds to aggregated expression for a cell

cluster for one patient. Cluster colors are overlaid from (D, right panel). Distances on the plot correspond to leading log2-fold change, defined as the average log2-fold

change for the 500 most differential genes between each pair of profiles.

F Heat map of pseudo-bulk samples showing marker genes for each non-epithelial cluster. The top 20 marker genes were identified for each cluster by differential

expression analysis of the pseudo-bulk read counts. Color bars at the top of the plot indicate the cluster and menopausal status (blue/yellow for pre/post-

menopause) of each sample.

G Same t-SNE map of non-epithelial cells as in (D) but colored by menopausal status. Barplot shows relative cluster sizes (percentage of total cells) for each status

condition. Clusters 1 and 2 have significantly different sizes in post-menopause samples after allowing for inter-patient variability (P = 0.040 and P = 0.032 by quasi-

binomial F-test). Sizes are not significantly different for other clusters (P > 0.15).

H Relative cluster sizes as for (G) but by individual patients. Cluster colors correspond to (D) by cluster. A quasi-multinomial F-test was used to test for differences in

cluster frequencies between pre- and post-menopausal samples (P = 0.007).

I Bar plots showing percentage of cells expressing selected immune and endothelial cell markers for pre- and post-menopausal samples and the cell clusters identified

in Fig 2D.

▸
Figure 3. Changes in epithelial-associated fibroblasts in post-menopausal breast tissue.

A Microenvironment t-SNE map as in Fig 2D and G but separated by menopausal status and colored by expression (red=high expression, gray=undetectable) of

selected fibroblast markers (upper panel). The dotted lines indicate the pericyte subsets. Bottom panel of bar plots shows percentage of cells expressing the markers

for the cell clusters identified in Fig 2D.

B Co-immunofluorescence staining of pre- versus post-menopausal tissue for E-cadherin (cyan), PDGFRb (yellow), and F-actin (pink). DAPI is shown in gray. The

arrowheads in (v) depict fibroblasts in direct contact with the myoepithelial layer. For 2D and 3D confocal imaging: n = 13 premenopausal and n = 10 post-

menopausal specimens. Scale bars: wholemount and optical sections: 100 lm (panels i-iv); enlargements, 30 lm (panel v).

C t-SNE plot of the integrated scRNA-seq profiles of fibroblasts from pre- and post-menopausal tissue (reclustered cells from cluster 1 in Fig 2D). Cell colors correspond

to tissue specimens.

D Same t-SNE plot as in (C) showing 5 distinct clusters (clusters 3 and 5 were specific to one patient).

E KEGG pathways enriched in cluster 1 versus 2 from (D) above (Fisher’s exact test).

F Heat map of same cells as in (D) showing expression of the top 20 marker genes in each cluster. Color bars at the top of the plot show cluster membership (colors as

in (D)) and pre- or post-menopausal status (blue and yellow, respectively).
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Analysis of precancerous tissue from BRCA1 mutation carriers

To examine cellular changes in precancerous tissue, tissue was

obtained from prophylactic mastectomies (pathologically normal) of

four BRCA1 mutation carriers (Table EV1). scRNA-seq profiling of

total cells from these specimens produced expression profiles for

23,240 cells after quality filtering (Table EV4). These profiles were

integrated with the eight normal (WT) premenopausal profiles from

Fig 2A to produce a combined t-SNE map of 59,766 breast cells

(Fig 4A and B). No new clusters were detected in BRCA1 mutation

carriers (Appendix Fig S1A), nor was expansion of the LP popula-

tion detected, contrasting with flow cytometric data (Lim et al,

2009). This finding likely reflects the less quantitative nature of cell

capture. Overall, the proportions of the different clusters were simi-

lar between normal and precancerous tissue (P = 0.14), with the

expected patient-wise variability also indicated (Appendix Fig S1A

and B). Reclustering of stromal and immune cells was then

performed to probe these cell populations in more depth (Fig 4C).

Differential expression analysis of the pseudo-bulk samples against

the top genes expressed in each cluster did not reveal striking dif-

ferences between the stromal and immune subsets in WT vs

BRCA1+/– preneoplastic tissue (Appendix Fig S1C). Hierarchical

clustering highlighted the molecular relationships among the fibrob-

last clusters and between pericytes and the two endothelial clusters.

Although no profound differences were found between these

tissues, gene expression changes may be uncovered through higher

resolution methods.

Marked changes in the immune compartment of preneoplastic

tissue versus tumors from BRCA1 mutation carriers

To define global molecular changes accompanying the transition

from preneoplasia to malignancy in BRCA1 mutation carriers, we

determined the single-cell transcriptomes of total cells from four

patients with BRCA1-mutated TNBC tumors and then integrated the

expression profiles of these 34,388 cells (Tables EV2 and EV4) with

the previously determined preneoplastic profiles (Fig 4D). Cluster-

ing found 13 subsets (Fig 4E). The large epithelial cell compartment

marked by EPCAM, KRT5, KRT8, ESR1, and/or EGFR comprised four

clusters (1, 6, 9, 10) (Fig 4F and G). Coloring the t-SNE plots accord-

ing to patient type, either preneoplastic or tumor-bearing (Fig 4H),

together with interrogation of the different clusters with the known

signatures of the human basal, LP, ML, and stromal populations

revealed that clusters 6, 9, and 10 corresponded to normal epithelial

populations within preneoplastic tissue, while cluster 1 encom-

passed malignant epithelial cells (Fig 4I). The expression profile of

EPCAM+ TNBC cells in cluster 1 was most closely aligned with that

of LP cells in cluster 6, concordant with previous findings (Lim

et al, 2009).

Following removal of normal and tumor epithelial clusters, cells

within the microenvironment were reclustered, yielding nine cellu-

lar clusters (Fig 5A). Substantive changes were apparent in the

microenvironment of tumors versus preneoplastic tissue, with the

clusters unequally distributed between the two patient groups

(Fig 5B). Cell types were annotated based on expression analysis

of the top marker genes in each cluster and published gene signa-

tures, with expression of cardinal genes of T and B lymphoid cells,

monocytes/macrophages, and fibroblasts overlaid on t-SNE maps

as well as quantified in bar plots (Fig 5C and D). Lymphoid (clus-

ters 2, 5, 7) and myeloid (clusters 4, 8) cells formed a much larger

proportion of the tumor microenvironment (Fig 5E), consistent

with prior observations (Azizi et al, 2018). By contrast, stromal

and vascular cells formed a smaller proportion (Figs 4H and 5A,

B, E), likely reflecting the shift toward tumor-infiltrating immune

cells. The considerable variation in cluster proportions between

individual patients is shown in Fig 5F. The large TIL population

evident in BRCA1-associated tumors is in agreement with findings

for TNBCs (Savas et al, 2016). CD4+FOXP3+ T regulatory (Treg)

cells (Josefowicz et al, 2012) were prominent in tumors, while

undetectable in preneoplastic tissue. These cells expressed inhibi-

tory markers and genes associated with functional exhaustion

(e.g., CTLA4, TIGIT, HAVCR2/TIM-3) (Fig 5D). Other immune

populations readily identified in tumors included NK, B, and

plasma cells (discussed further below).

Interestingly, CX3CR1-expressing cells that resembled tumor-

associated macrophages (TAMs) were restricted to BRCA1-associ-

ated tumors (Fig 5G). This chemokine receptor has been previously

reported on breast tumor-associated immune cells (Broz et al,

2014). Co-immunofluorescence staining of preneoplastic BRCA1

tissue and tumors for CX3CR1 confirmed expression of this marker

on tumor-resident immune cells, where they were intermingled with

cytokeratin (CK)19+ malignant epithelial cells. In contrast, exceed-

ingly rare expression of this receptor was noted in preneoplastic

tissue (Fig 5G).

Further examination of cancer-associated fibroblasts (CAFs) in

BRCA1-mutant tumors indicated increased levels of the collagen

▸
Figure 4. Comparison of the single-cell transcriptomes of normal tissue, BRCA1+/- preneoplastic tissue, and BRCA1-associated tumors.

A t-SNE map of combined scRNA-seq profiles of total cells isolated from pathologically normal preneoplastic tissue from BRCA1 mutation carriers (BRCA1; n = 4) and

non-BRCA premenopausal women (n = 8) with no family history of breast cancer. Cell colors represent individual samples.

B Same t-SNE map as in (A) but colored by cluster (cluster resolution 0.12).

C Epithelial clusters were identified by EPCAM expression, and the non-epithelial cells were reclustered to reveal immune and stromal cell populations (cluster

resolution 0.08). Lineage identity was determined by hierarchical clustering according to top marker genes (Appendix Fig S1C).

D t-SNE plot showing the combined single-cell transcriptomes of total tissue cells from BRCA1 preneoplastic tissue and TNBCs (n = 4 for each), colored according to

individual patients (B1 = preneoplastic BRCA1+/- tissue; TN-B1= BRCA1-associated TNBCs).

E Same t-SNE map as (D) but colored by cluster (cluster resolution 0.15).

F Expression of epithelial markers indicated on the combined t-SNE plot as in (D, E) for BRCA1 preneoplastic and BRCA1-associated tumor cells.

G Epithelial clusters were identified by EPCAM expression, and non-epithelial cells are indicated by the dotted line.

H Same t-SNE map as in (D, E) but colored according to cancerous state: preneoplastic tissue (blue) and BRCA1-associated TNBCs (yellow).

I Box plots of signature expression scores for the 13 cell clusters in (D, E) according to human breast epithelial and stromal gene signatures. Cluster 1 corresponds to

tumor cells, while clusters 6, 9, and 10 represent adjacent normal LP, basal, and ML cells, respectively. Box plots show quartiles, minimum, and maximum.
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genes COL1A2 and COL3A1, the WNT inhibitor SFRP2, and the

calmodulin- and actin-binding protein CALD1, which mediates the

contractile function of myofibroblasts (Fig 5H). The substantial vari-

ation observed in the stromal and immune composition of different

patient samples not only reflects inherent tissue diversity but other

parameters including the location of the pathology specimen within

the whole tumor/tissue, the timing between tissue collection and

processing, and the precise digestion protocol used to isolate the

diverse cell types (Lim et al, 2020).

Intra-tumoral heterogeneity across different tumor subtypes

To further explore molecular heterogeneity within the tumor popu-

lations of the major subtypes of breast cancer and their microenvi-

ronment, we profiled total cells extracted from tumors representing

8 TN (including four BRCA1 tumors from Fig 4D), 6 HER2-amplified

(HER2+), and 13 ER+ cancers (Tables EV2–EV4), with representative

tumor histopathology indicated (Fig EV2A). All tumors were

obtained from treatment-na€ıve patients. Integration of the single-cell
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transcriptomes of tumors of the same subtype revealed extensive

inter-patient heterogeneity across all cancer subtypes (Fig EV2B–D).

EPCAM (and other markers) identified a number of epithelial clus-

ters for each cancer subtype (Fig 6A–C). Moreover, lineage-specific

expression signatures were used to compute quantitative expression

scores for each cell in each cluster, identifying two LP-like clusters

in TNBCs and multiple clusters in the other subtypes (Fig EV3A).

Inferred DNA copy number analysis (Patel et al, 2014), which was

used to distinguish normal from malignant epithelial cells, led to the

detection of normal epithelial clusters in HER2+ and ER+ specimens

(Fig 6D). Each tumor subtype was found to comprise two prominent

EPCAM+ carcinoma clusters.

To further examine cancer cell heterogeneity, the tumor epithe-

lial subsets were separated and reclustered (Figs 6E and EV3B).

Gene expression analysis showed that malignant cells in TNBCs

expressed abundant KRT5 but not ESR1, PGR, or ERBB2, thus reca-

pitulating the basal-like subtype of TNBC (Fig EV3C). Both cancer

cell clusters displayed a strong expression signature characteristic of

normal LP cells, while HER2+ tumors showed a broad distribution of

cancer cells with substantial molecular homology to normal breast

ML cells, in parallel with earlier findings (Lim et al, 2009)

(Fig EV3A). Cancer cells within ER+ tumors also formed a broad

cluster plus two satellites (Fig 6E). As anticipated, all cell clusters

expressed ESR1, PGR, luminal keratin genes, and the ER target

BCL2, with close concordance to the ML gene expression signature

(Fig EV3A and C).

Variable expression of canonical EMT genes was evident across

the different cancer subtypes. Moreover, discrete subclusters of

EMT-expressing tumor cells were not observed but instead cells

were interspersed throughout the broad cancer clusters. TNBC

expressed abundant VIM and SNAI12, while ER+ tumor cells

predominantly displayed VIM and SNAI1 expression, and HER2+

tumor cells expressed low levels of these EMT genes (Fig EV3C).

Other EMT genes such as ZEB1, ZEB2, and TWIST were expressed

at relatively low levels across all subtypes.

Presence of a discrete population of cycling tumor cells in

all subtypes

All subtypes contained a discrete cluster of cycling MKI67+ tumor

cells (Fig 6A–C), but this was most prevalent in TNBCs. Notably,

copy number changes were comparable between the cycling cell

cluster and the larger tumor cluster in all three subtypes (Fig 6D).

As expected, the MKI67+ subset in TNBCs was negative for ESR1

and PGR, and in HER2+ tumors, both clusters expressed ERBB2+ and

ESR1 (Fig EV3C). Further interrogation of the ER+ tumor population

only (Fig 6E) using the PAM50 classifier of molecular subtype

(Parker et al, 2009b) with pseudo-bulk signatures confirmed that

cluster 2 expressed higher levels of multiple genes associated with

proliferation, whereas cluster 1 showed high expression of ML genes

including the ER network (FOXA1, BCL2, PGR) (Fig 6F). In accor-

dance, KEGG pathway analysis of ER+ tumors revealed enrichment

of the estrogen and steroid signaling pathways in cluster 1, and

DNA replication and repair pathways in cluster 2 (Fig 6G). The

smaller cluster 3 expressed a plethora of signaling pathways includ-

ing cAMP, PI3K/AKT, and MAPK. Analysis of cancer cells in TNBC

◀
Figure 5. The altered microenvironment in BRCA1+/- preneoplastic tissue versus tumors.

A Reclustered EPCAM-negative cells (excluding clusters 1, 6, 9, and 10 from Fig 4E) revealed immune/stromal cells in the microenvironment, identified using lineage

markers.

B Combined t-SNE plot as in (A) of the single-cell transcriptomes of immune/stromal cells from preneoplastic tissue of BRCA1 mutation carriers (blue; preneo) and

BRCA1-associated TNBCs (yellow; tumor).

C t-SNE plots showing relative expression of cardinal markers of immune and stromal cells in each cell.

D Bar plots showing the percentage of cells expressing typical immune cell (including Treg) genes for clusters in (A) by preneoplastic vs tumor.

E Left panel, same t-SNE map as in (A) but separated into cells from preneoplastic (blue) and tumor specimens (yellow). Endothelial cell (endo), fibroblast cell (fibro),

and pericytes (peri) clusters are marked. Right panel, proportion of clusters as in (A) according to tissue type.

F Relative cluster sizes as in (E) but by individual patient.

G Co-immunofluorescence of tissue stained for the epithelial marker (cytokeratin 19; yellow) and the tumor-associated macrophage marker CX3CR1 (magenta). DAPI is

shown in white (n = 2 preneoplastic samples; n = 2 tumors). Scale bar, 100 lm.

H Heat map of top differentially expressed genes in the major immune/stromal cell clusters, identified in (A). BRCA1+/- preneoplastic cells, blue; BRCA1-associated tumor

cells, yellow.

▸
Figure 6. Tumor heterogeneity among the major breast cancer subtypes.

A–C t-SNE plots of combined scRNA-seq profiles of total cells from 8 TNBC tumors, 6 HER2+ tumors, and 13 ER+ tumors, respectively. Integration and cluster sizes for

the same cells are shown in Fig EV2B–D. Cells colored by cluster (top left panels), EPCAM expression (top right), cancer subtype marker (bottom left), or MKI67

expression (bottom right). Dotted lines delineate epithelial cells (top panels) and cycling epithelial cells (bottom panels). Normal epithelial subsets (normal) are also

demarcated by dotted lines in the upper-right panels of (B) and (C).

D InferCNV plots to map inferred copy number variation (CNV) for the combined tumor scRNA-seq expression data for the epithelial clusters indicated in panels A-C.

scRNA-seq data from normal breast epithelial cells (N-1105-epi) served as a reference for normalization. Each row represents a gene and each column cells from a

cluster in a single tumor. The tumor clusters are color-coded as in (A-C). Amplifications (red) and deletions (blue) are inferred from the gene expression. Tumor cells

were distinguished from normal (N) cells by abundance of CNV.

E t-SNE plot of EPCAM+ epithelial cells from ER+ tumors (C). Top panel shows reclustering (resolution 0.05), bottom panel shows expression of MKI67.

F Heat map of cells from clusters in (E) using genes from the PAM50 cancer subtype classifier.

G Enrichment of KEGG pathways in EPCAM+ clusters 1 to 3 in (E) for ER+ tumors (Fisher’s exact test).

H Combined t-SNE transcriptome profiles of two distinct ER+ tumors isolated from the same breast of a patient: ER-0029-7C (blue) and ER-0029-9C (yellow). The

corresponding t-SNE cell clusters are shown in the middle panel, and expression of EPCAM is shown in the right-hand panel.
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and HER2+ tumors indicated enrichment of cell cycle and DNA

repair pathways in the MKi67+ cluster, similar to that for ER+ tumors

(Fig EV3D). Further interrogation of the three ER+ epithelial clusters

with the TCGA breast cancer signatures showed that the dominant

cluster 1 was closely aligned with the luminal A signature while the

highly proliferative cluster 2 was far less concordant with this

cancer subtype (Fig EV3E).

Interestingly, analysis of two spatially discrete ER+ tumors

isolated from the same breast of patient ER-0029 revealed disparate

tumors (Fig 6H). Interrogation of the transcriptomes of the

combined tumors together with inferCNV analysis of the epithelial

clusters indicated that the four cancer cell clusters (1, 2, 4, 6) were

genomically similar (Appendix Fig S2A and B). The carcinoma cell

subsets exhibited abundant expression of genes that typify ER+

cancers, including ESR1, PGR, KRT19, and AR (Appendix Fig S2C),

while cluster 6 was enriched for MKI67+ cycling cells derived from

both tumors. These findings are consistent with a common ancestral

origin for these spatially distinct, synchronous breast tumors.

Distinct tumor subtypes exhibit different immune landscapes

To survey the microenvironment of the different subtypes, EPCAM+

tumor and normal epithelial clusters were removed from the

combined datasets and stromal/immune cells reclustered (Fig 7A–

C). Interrogation of the expression of top marker genes per major

cluster using pseudo-bulk gene signatures identified the different

cellular constituents within the microenvironment (Fig 7A–C).

Canonical markers of T (CD4, CD8, FOXP3) and myeloid/TAMs

(CD68, CD14) indicated that these cells formed prominent clusters

in all subtypes (Fig 7A–D). Similar to BRCA1-associated tumors, a

marked infiltration of immune cells and concomitant decrease in

fibroblast and pericyte populations was evident. The expression of

typical markers of fibroblasts (PDGFRA), pericytes (MCAM), NK

(NKG7), B (CD19), plasma (IgLC7, IgHA1), and endothelial cells

(VWF, CD34) is depicted in Appendix Fig S3. Interestingly, 50% of

patients harboring TNBC or HER2+ tumors comprised obvious

plasma cell clusters (Fig 7A and B), but the role of these cells

within tumors remains unclear. Numerous tumor-infiltrating

myeloid cells expressed abundant MRC1, TREM1, CD68, and

SIGLEC1 (Fig 7A–D), thus sharing features with the breast

TAMs recently described through flow cytometry (Cassetta et al,

2019). Conversely, dendritic cells (DCs) appeared to constitute a

minor proportion of myeloid cells but could be delineated in

TNBCs (Fig 7A).

To further explore diversity within the T-cell compartment, we

reclustered T cells (CD3+) and performed DE gene analysis using the

pseudo-bulk approach (Fig EV4A-C). This identified Tregs, CD8+

effector cells encompassing effector memory T (TEM) cells, cells

resembling resting/na€ıve T cells, and NK cells in all cancer

subtypes. Cells resembling tissue-resident memory T (TRM) cells

(Schenkel & Masopust, 2014) were apparent in TNBC and HER2+

but not in ER+ cancers (Fig EV4A). TNBCs comprised the largest

cluster of CD8+ cells, comprising effector cells and cells reminiscent

of TEM and TRM cells. The expression of immune checkpoint mole-

cules and markers of functional exhaustion in the CD4+FOXP3+ Treg

subset (e.g., CTLA4, BATF, TIGIT, TNFRSF4/18, TIM3, LAG3)

renders them potential targets of immune checkpoint blockade

(Schreiber et al, 2011) (Fig EV4C). Notably, the immune repertoires

apparent in TNBC and HER2+ breast cancers were most similar,

each comprising a proliferative CD8+ T-cell cluster (TRM-like in

HER2+, and TRM- and TEMRA-like in TNBC) that expressed an exten-

sive module of cell cycle-associated genes (e.g., MKI67, PCNA,

HMGB2, TOP2A, CCNB2, AURKB, CDK1, CENPF, MCM7) (Figs 7A

and B, and EV4B). The repertoire of T-cell subsets, including mitotic

TRM-like cells, is consistent with a previous analysis of T cells in

TNBCs by scRNA-seq (Savas et al, 2018). Overall, immune cell pro-

filing at the single-cell level points to heterogeneous CD8+ and CD4+

T-cell populations within the microenvironment of all breast cancer

subtypes. Many genes were common across multiple T-cell

subtypes, implying a continuum of T-cell states rather than discrete

states, as previously noted (Azizi et al, 2018). It remains to be deter-

mined whether this continuum exists at the protein level.

In contrast to TNBC and HER2+ tumors, ER+ cancers did not

harbor a discrete, highly proliferative T-cell subset (Fig EV4B).

Rather, ER+ cancers featured an actively cycling TAM population

(Fig 7C and D; cluster 7), which expressed genes including CD14,

FCGR1A, CD11b, MHCII genes, CD68, SIGLEC1, CD74, APOC1,

TYROBP, C1QC, FCER1G/3A, and multiple cell cycle genes. HER2-

amplified cancers and TNBCs also comprised very small subsets of

cycling TAMs. To confirm the immunophenotype of these cells at

the protein level and assess their spatial distribution in the tumor

infiltrate versus stromal environment, we performed co-immunoflu-

orescence staining and image quantification on tumor sections.

Quantification of tumor and stromal immune infiltrates verified the

paucity of Ki67+CD8+ double-positive cells in ER+ tumors relative to

TNBCs (Fig 8A and B), particularly within the tumor region itself.

By contrast, Ki67+CD68+ cells were readily detectable within the

tumor and stroma in both subtypes (Fig 8A and B), despite fewer

cycling CD68+ cells detectable in TNBCs at the scRNA level. Repre-

sentative confocal images of cycling CD8+ T cells and CD68+ TAMs

in triple-negative and ER+ tumors are shown in Fig 8C–F. Interest-

ingly, HER2+ cancers appeared most similar to TNBCs in the context

of Ki67+CD8+ T cells (Fig 8A). The presence of a definitive cycling

CD8 T-cell population in TNBC/HER2+ but not ER+ tumors may

contribute in part to the efficacy of T-cell-based immunotherapies in

TNBC/HER2+ versus ER+ breast cancers.

▸
Figure 7. Deconvolution of the microenvironment in different breast tumor subtypes.

A–C t-SNE maps of reclustered EPCAM-negative non-epithelial cells identified in Fig 6 (A-C). Cluster resolutions 0.136, 0.1, and 0.1, respectively. The major cell clusters

within the microenvironment were identified based on expression of lineage-specific genes. Heat maps of pseudo-bulk samples show marker genes for each

cluster. The top 30 marker genes were identified for each cluster by differential expression analysis of the pseudo-bulk read counts. Cluster 9 in HER2+ tumors (B)

expressed myeloid and luminal epithelial markers, suggesting phagocytosis of the latter by macrophages. Color bars at the top of the heat map indicate the cluster

of each sample; top genes that mark each cluster are indicated.

D t-SNE plots showing the expression of T lymphoid and myeloid markers as shown in (A-C). Right panels: t-SNE plots showing the expression of the proliferation

marker MKI67 for the same clusters. Dotted lines highlight T and myeloid cells that express MKI67.
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Heterogeneity in male breast cancers

Interrogation of two male ER+ breast cancers (mER-0068 and mER-

0178) showed little overlap between the major tumor cell clusters in

each patient (Fig EV5A). These tumors appeared to be very dense

histologically, with an abundance of tumor cells (Fig EV2A). Similar

to female breast cancers, these tumors retained abundant expression

of luminal keratins and GATA3, as well as a discrete MKI67+ subset,

but these tumors expressed relatively low levels of ESR1, PGR, and

BCL2 (Fig EV5B). Furthermore, unlike female breast cancers that

are highly enriched for a ML signature, both clusters 1 and 2 in the

male tumors harbored an expression profile intermediate between

the LP and ML epithelial signatures (Fig EV5C).

Clonal versus mass migration revealed through profiling of

matched primary tumor-lymph node specimens

To explore early changes within the tumor cell population that may

accompany migration and seeding of axillary lymph nodes (LN), the

single-cell transcriptomes of primary tumors and involved lymph

nodes isolated from seven patients at the time of surgery were deter-

mined for six female patients and one male patient with ER+ disease

(Table EV3). These were clinically aggressive tumors, based on

tumor grade (Grade 3 for 5 tumors; Grade 2 for 2 tumors), nodal

involvement (all 7 tumors), extranodal extension (6 of 7 tumors),

and a high proliferative index (18–60% Ki67+ cells in 6 of 7 tumors).

The profiles of the combined specimen pairs are shown in Fig 9A,

with primary tumor cells marked in blue and LN-derived cells in

yellow. The expression of key marker genes among the cell clusters

confirmed their identity as stromal, immune, or epithelial cells

(Figs 9A and EV5D).

InferCNV analysis was used to examine the relationship between

primary tumor cells and those in axillary LNs, in addition to dif-

ferentiating tumor cells from normal epithelium. This approach

revealed that patients ER-0043, ER-0064, and ER-0173 harbored a

single diffuse primary tumor cluster (EPCAM+) while patients ER-

0040, ER-0056, ER-0167, and mER-0068 comprised at least two

tumor clusters (Figs 9B and EV5E). Normal ductal epithelial cells

carrying no apparent copy number variations were detectable in

four of the seven surgical breast specimens. Most LN biopsies

comprised dense tumor cell infiltrates (Fig 9C) but varying immune

cell populations were detectable among the specimens including a

large B-cell population in ER-0064, a myeloid population in ER-0043

and both T-cell and myeloid clusters in ER-0173 (Fig EV5D).

Metastatic LN samples from patients ER-0040, ER-0167, and ER-

0173 contained a large, dispersed population of tumor cells that

overlapped with primary tumor cells, indicative of mass cell migra-

tion from the primary tumor to the LN. Some alterations in chromo-

somal loci were evident for ER-0167 upon comparison of primary

tumor versus LN cells in cluster 1 (Fig EV5E). In contrast to ER-

0040, ER-0167 and ER-0173, the expression profiles of malignant

cells in ER-0056 and mER-0068 appeared largely distinct from their

involved LNs despite overall similarity between the inferred CNV

signatures of the primary tumor and LN lesion. Indeed, the majority

of tumor cells in the LNs exhibited a marked shift in gene expres-

sion relative to the primary tumor, suggesting global dysregulation

of gene expression in the LN tumor cell infiltrate. Interestingly, only

a subset of cells in tumors ER-0043 and ER-0064 seeded the axillary

LNs (Fig 9A). Furthermore, the LN tumor cells in these patients

harbored distinct copy number alterations relative to the primary

tumor, implying that one or more clones had undergone further

genomic alterations during migration or seeding of the LN, commen-

surate with clonal selection.

Discussion

This atlas represents a comprehensive resource for breast tissue in

different states. Single-cell transcriptomic analysis of normal breast

tissue in different hormonal milieu did not reveal substantive

compositional or gene expression changes within the epithelial

compartment. Profiling of both sorted breast epithelial cells and

total tissue confirmed the presence of three main populations and

no change in cell clustering between pre- and post-menopausal

◀
Figure 8. Presence of distinct proliferating immune cell subsets in TNBC and ER+ tumors.

A, B Image quantification showing number of CD8+Ki67+ cells (A) or CD68+Ki67+ cells (B) per mm2 of tissue from TNBC, HER2+, and ER+ tumors, either within the tumor

region (K8/18+) or the stroma (defined as > 5 lm from tumor border). Error bars represent s.e.m. CD8/Ki67: n = 11 for TNBC, n = 12 for ER+, n = 5 for HER2+. CD68/

Ki67: n = 6 for TNBC, n = 8 for ER+, n = 5 for HER2+.

C–F Representative confocal images of ER+ (ER-0032) and triple-negative tumors (TN-0066) immunolabeled for K8/18 (yellow), CD68 (green) and Ki67 (red) (C, E) or K8/

18 (yellow), CD8 (green) and Ki67 (red) (D, F). DAPI is shown in blue. Arrows depict proliferative T cells (CD8+Ki67+) or macrophages (CD68+Ki67+). Enlargements on

shown in the right-hand panels. Scale bars, 200 µm for large tilescans; 50 µm for enlargements and smaller tilescans.

▸
Figure 9. Analysis of the single-cell transcriptomes of primary tumors and infiltrated lymph nodes identifies clonal propagation of tumor cells.

A Combined t-SNE plots of matching tumor and lymph node samples from seven patients (6 female and 1 male) with ER+ disease. Patient 1: ER-0040-T and ER-0040-

LN; Patient 2: ER-0056-T and ER-0056-LN; Patient 3: ER-0043-T and ER-0043-LN; Patient 4: ER-0064-T and ER-0064-LN; Patient 5: ER-0167-T and ER-0167-LN;

Patient 6: ER-0173-T and ER-0173-LN and Patient 7: mER-0068-T and mER-0068-LN. The top panels show the combined cells marked according to primary tumor

(blue) or involved LN cells (yellow). The middle panels show expression of the epithelial marker EPCAM and proliferation marker MKI67. The bottom panels indicate

the major cell clusters and their identity based on expression analyses for lineage-specific markers.

B InferCNV plots were generated from the combined transcriptomes (A) to map copy number variation (CNV) in each chromosome. Tumor cells can be distinguished

from normal (N) cells by abundance of CNV.

C Immunostaining of tumor and LN from patient ER-0064 for expression of ER, PR, and pan-cytokeratin. Insets show sections stained with control isotype antibodies.

PR, progesterone receptor. Scale bar, 100 lm.
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women. The transcriptional landscape of the ductal microenviron-

ment in normal breast was found to comprise at least seven primary

clusters: fibroblasts, pericytes/perivascular cells, endothelial cells,

monocytes, macrophages, T and B lymphoid cells. Menopausal

status was found to predominantly influence tissue-resident fibrob-

lasts. Lower gene expression of typical fibroblast markers such as

PDGFRA, PDGFRB, POSTN, and COL genes was apparent, while

confocal imaging confirmed the decrease in PDGFRb-expressing

cells in post-menopausal tissue at the protein level. The molecularly

altered fibroblasts may result in a modified matrix composition in

the post-menopausal state. As the majority of premenopausal

women in our cohort were nulliparous and most post-menopausal

samples derived from multiparous individuals, deciphering the

effect of parity on cellular heterogeneity will require the analysis of

numerous nulliparous and multiparous specimens from premeno-

pausal women.

Marked intra- and inter-patient heterogeneity in cell composition

was apparent across each tumor subtype (ER+, HER2+, TNBC) upon

interrogation of > 30 treatment-na€ıve tumors. The EPCAM+ cancer

population in each subtype comprised a distinct cycling subset in

addition to a larger cluster. TNBCs were noted to have the largest

proliferative subset, in parallel with their more aggressive behavior.

No discrete clusters or satellites corresponding to putative cancer

stem cells or cells with EMT properties were observed. Rather, cells

expressing EMT signature genes were scattered throughout the

larger tumor population, particularly within TNBC and ER+ cancers.

Comparison of preneoplastic tissue versus tumors from BRCA1

mutation carriers highlighted the remarkable changes that occur

within the breast tumor microenvironment. Large infiltrates of

lymphocytes and myeloid cells were notable in tumors and little

overlap was seen between these populations and tissue-resident

cells in preneoplastic tissue. A similar expansion of T lineage and

myeloid cells was seen in other TNBCs, HER2+, and ER+ tumors. In

contrast, populations enriched for tissue-resident fibroblasts, peri-

cytes, and endothelial cells within BRCA1-associated tumors showed

more overlap with their normal tissue counterparts. CAFs within

BRCA1-associated and other tumors tended to present as a single

broad cluster. Recent scRNA-seq data, however, have identified

distinct cell states among CAFs in TNBCs including an immunomod-

ulatory subset (Wu et al, 2020). There is mounting evidence that

CAFs are an integral part of the breast tumor microenvironment,

playing roles in immunosuppression and mediating response to

therapy (Brechbuhl et al, 2017; Cazet et al, 2018; Costa et al, 2018).

It remains unclear whether the CAF populations described here are

pro- or anti-tumorigenic (Ozdemir et al, 2014).

The tumor immune landscape in different patient specimens

showed a large degree of variation for both innate and adaptive

cells, consistent with emerging single-cell RNA and protein data in

the field (Chung et al, 2017; Azizi et al, 2018; Karaayvaz et al, 2018;

Kim et al, 2018; Wagner et al, 2019). A number of T cell types were

evident based on canonical marker expression and gene signatures.

These included CD8+ effector cells, Tregs, resting/na€ıve T cells, and

cells resembling TEM, TRM, and TEMRA (terminally differentiated)

cells. T lymphoid cells were particularly notable in TNBCs. In these

cancers, a substantial proportion of TRM cells was recently reported

and their expression profile was predictive of better prognosis

(Savas et al, 2018). These cells have been implicated in cancer

immunosurveillance (Ganesan et al, 2017; Malik et al, 2017; Nizard

et al, 2017), whereas Tregs execute a central role in immune

suppression (Josefowicz et al, 2012). The myeloid compartment

was also diverse, with at least one TAM cluster visible in the dif-

ferent subtypes. It was not possible to sub-stratify the T and myeloid

cell compartments in these breast cancers to the same degree as via

mass cytometry (Wagner et al, 2019) or flow cytometric analysis

(Cassetta et al, 2019). However, a number of T and myeloid cell

states were detected in breast tumors based on single-cell analysis,

with increased phenotypic diversity seen in tumors compared to

normal tissue (Azizi et al, 2018).

Both TNBC and HER2 featured a proliferative CD8+ T-cell cluster,

most likely corresponding to TRM-like cells (Savas et al, 2018). By

contrast, ER+ tumors primarily comprised cycling TAMs that

expressed markers such as CD163, MARCH1, MRC1, and CX3CR1,

among others. Interestingly, CX3CR1 was recently shown to mark a

unique population of tissue-resident ductal macrophages and TAMs

in the mouse mammary gland (Dawson et al, 2020), though it is not

expressed by normal breast tissue macrophages. Immune cell infil-

trates can profoundly affect tumor progression and the proportion of

lymphocytic infiltrate has been shown to hold predictive value for

patients with TNBC but not ER+ disease (Savas et al, 2016). More-

over, higher TAM infiltrates correlate with more invasive disease

(Qian & Pollard, 2010; DeNardo & Ruffell, 2019). Based on our find-

ings, it is tempting to speculate that endocrine therapy combined

with suppression of TAMs may potentially benefit patients with ER+

disease, in contrast to TNBC and HER2+ cancers, where T-cell-based

therapies have proven more effective (Savas et al, 2016; Denkert

et al, 2018).

It is well-recognized that the presence of tumor-infiltrated LNs in

breast cancer patients correlates with poor prognosis (Moffat, 2014).

scRNA-seq and CNV analyses of paired specimens from ER+ breast

cancer patients uncovered different mechanisms of LN metastasis.

In two patients, genomically distinct clones seeded the axillary LN,

indicative of clonal selection and expansion. In other cases, mass

migration of cells from the primary tumor to the LN was observed,

resulting in marked overlap among the transcriptomes of tumor and

LN cells. Interestingly, a large shift in gene expression was noted in

LN tumor cells of two patients in the absence of genomic alterations,

thus implicating epigenetic mechanisms. Genomic analyses have

indicated both monoclonal and polyclonal metastatic seeding in

patients (Navin et al, 2011; Leung et al, 2017), as well as collective

cell migration from the invasive edge of tumors via the penetration

of the basement membrane (Aceto et al, 2014; Casasent et al, 2018).

Curiously, in patient ER-0064, the involved LN had apparently lower

levels of genetic heterogeneity compared to the primary tumor, also

recently observed (Siegel et al, 2018; Fasterius et al, 2019).

The large-scale RNA expression data presented here provide a

global view of heterogeneity within normal breast tissue, tumors,

and their surrounding microenvironment. Other complementary

single-cell techniques such as mass cytometry, spatial-seq, and high

content imaging will be required to correlate single-cell phenotypes

with the spatial organization of cells within tumors. Emerging find-

ings in this area have indicated that tumor ecosystems comprise

distinct microenvironments and have begun to shed light on poten-

tial intercellular relationships (Ali et al, 2020; Jackson et al, 2020).

Moving forward, it will be necessary to integrate multiple different

"omics" platforms to fully understand breast cancer heterogeneity

and its clinical significance.
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Materials and Methods

Human samples

Human breast tissues (normal tissue, tumors, and lymph nodes)

were obtained from consenting patients through the Royal

Melbourne Hospital Tissue Bank, the Victorian Cancer Biobank and

kConFab with relevant institutional review board approval. Human

Ethics approval was obtained from the Walter and Eliza Hall Insti-

tute (WEHI) Human Research Ethics Committee.

Single-cell preparation

Single-cell suspensions from reduction mammoplasties and prophy-

lactic mastectomies were prepared from fresh surgical specimens, as

previously described (Lim et al, 2009). For preparation of tumor cell

suspensions, patient-direct tumors were minced to a homogeneous

slurry using scapel blades and then digested with 150 U/ml collage-

nase (Sigma) and 50 U/ml hyaluronidase (Sigma) in MEC media

(DMEM/F12 containing 5 mg/ml insulin (Roche), 250 ng/ml hydro-

cortisone (Sigma), and 10 ng/ml epidermal growth factor (Sigma),

supplemented with 5% bovine calf serum in the presence of 100 U/

ml deoxyribonuclease (Worthington) at 37°C with agitation. The

digestion time varied up to 60 min depending on tumor size.

Normal tissues were digested for 8–9 h. The resulting suspension

was digested with 0.25% trypsin (Gibco)/1 mM EGTA (Sigma) for

1–3 min at 37°C. A single-cell suspension was obtained by filtration

(40 lm). If necessary, red blood cells were removed by lysis.

Flow cytometry

To assess epithelial cell marker expression on normal tissue, single

cells were blocked in phosphate-buffered saline (PBS) containing

2% FCS, 10% DNase, rat immunoglobulin (Jackson Immunolabs),

and antibodies to CD16 and CD32 Fcc II and III receptors (WEHI

Monoclonal Antibody Facility) for 10 min at 4°C. Cells were then

incubated with the following antibodies for 25 min at 4°C: PE-conju-

gated anti-human CD31 (BD Pharmingen; clone WM59; 1/40), PE-

conjugated anti-human CD45 (BD Pharmingen; clone H130; 1/120),

PE-conjugated anti-human CD235a (BD Pharmingen; clone GA-R2;

1/120), FITC-conjugated anti-human CD236 (EpCAM; Stem Cell

Technologies; clone VU-1D9; 1/40), and APC-Cy7-conjugated anti-

human CD49f (integrin a6; clone GoH3; 1/120). Cells were then

washed with PBS/2% FCS and resuspended in 7-AAD (0.2 mg/ml)

for live-cell discrimination. Cells were sorted on a FACSAria flow

cytometer (Becton Dickinson). For normal tissue, lineage-negative

(depleted for CD45, CD31, CD235a lineage-positive cells), epithelial

cells (EpCAM+CD49f– + EpCAM+CD49f+ + EpCAMCD49f+) were

sorted.

Immunohistochemistry and immunofluorescence staining

Human tissues were fixed in 10% neutral-buffered formalin before

embedding in paraffin. Sections were subjected to antigen retrieval

using pH9 antigen retrieval buffer (DAKO Cat# S2375) at 95°C for

20 min. For immunohistochemistry, sections were incubated with

antibodies against ER (Novocastra, Clone 6F11), PR (Novocastra,

Clone 16), HER2 (Clone SP3, Spring Bioscience), pan-cytokeratin

(Clone AE1/AE3, DAKO) at 4°C overnight, followed by biotinylated

anti-IgG secondary antibodies (Vector Labs). Signal detection was

performed using ABC Elite (Vector Labs) for 30 min and 3,30-

diaminobenzidine (DAKO) for 5 min at room temperature. For

immunofluorescence, sections were incubated with primary anti-

bodies against CX3CR1 (BioLegend, Cat# 824001; 1:50 dilution),

CK19 (Abcam, Cat# ab195872; 1:500 dilution), CD8 (Invitrogen,

Clone SP16, 1:500 dilution), CD68 (DAKO, Clone PG-M1; 1:200 dilu-

tion), Ki67 (BD Pharmingen, Clone B56; 1:100 dilution), Ki67

(Abcam, Cat# ab15580; 1:200 dilution), K8/18 (DSHB, Clone

Troma1; 1:400 dilution), rabbit monoclonal platelet-derived growth

factor receptor ß (Cell Signaling, Clone 28E1, Cat# 3169; 1:100 dilu-

tion), pan-cytokeratin (DAKO, Clone AE1/AE3, 1:500 dilution),

CD31 (DAKO, Cat# M0823, 1:50 dilution) at 4°C overnight, followed

by incubation of fluorophore-conjugated secondary antibodies and

DAPI (Invitrogen, Cat# D1306; 1:500 dilution).

3D confocal imaging of breast tissue

For 3D confocal imaging, breast tissue was prepared and imaged as

previously described (Rios et al, 2019). Briefly, fresh tissue from

reduction mammoplasty surgeries (pathologically normal) was fixed

in 4% paraformaldehyde in PBS for 2 h, and then, samples were

washed prior to immunolabeling overnight with the following

primary antibodies: rat monoclonal E-cadherin (Thermo Fisher

Scientific, Clone ECCD-2, Cat#13-1900; 1:250 dilution) and rabbit

monoclonal platelet-derived growth factor receptor ß (Cell Signal-

ing, Clone 28E1, Cat# 3169; 1:100 dilution). After washing steps,

samples were then incubated overnight with fluorescently conju-

gated secondary antibodies: donkey anti-rat (H + L) Alexa Fluor 488

(Thermo Fisher Scientific, Cat# A-21208) and donkey anti-rabbit IgG

(H + L) (Thermo Fisher Scientific, Cat# A-31573) Alexa Fluor 647

together with Phalloidin Alexa Fluor 555 (Thermo Fisher Scientific,

Cat# A-34055) and DAPI (Thermo Fisher Scientific, Cat# 62248).

Immunolabeled samples were subsequently cleared using FUnGI

prior to dissection and mounting. Confocal imaging was performed

using a Zeiss LSM 880 or 980 inverted microscope using a 40×,

1.3 N.A. oil objective. Image processing and visualization was

performed in Zen (Zeiss) and Imaris (Bitplane) software.

10x Genomics Chromium library construction and sequencing

A 10x Genomics Chromium machine was used for > 5,000 single-

cell capture and cDNA preparations according to the Single Cell 3’

Protocol recommended by the manufacturer. The silane magnetic

beads and solid-phase reversible immobilization (SPRI) beads were

used to clean up the GEM reaction mixture, and the barcoded cDNA

was then amplified in a PCR step. The P7 and R2 primers were

added during the GEM incubation and the P5, and R1 during library

construction via end repair, A-tailing, adaptor ligation, and PCR.

The final libraries contain the P5 and P7 primers used in Illumina

bridge amplification. Sequencing was carried out on an Illumina

Nextseq 500.

scRNA-seq bioinformatics

Illumina output from 10× Genomics Chromium sequencing was

processed using Cell Ranger 3.0.2. Genewise read counts for cells
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with a least 500 reads were exported from Cell Ranger to Matrix

Market format files and read into R with edgeR’s read10X function.

An average of > 33 million reads and > 6,200 cells were obtained

for each sample (Table EV4). Each 10x library was individually

quality checked, and cells were filtered to ensure good gene cover-

age, a consistent range of read counts and low numbers of mito-

chondrial reads. At least 500 detected genes were generally required

for each cell, although the lower limit was reduced to 400 or 300 for

some libraries. No more than 20% mitochondrial reads were gener-

ally allowed per cell, although the upper limit was increased as high

as 40% for a small number of libraries. Cells with exceptionally high

numbers of reads or genes detected were also filtered to minimize

the occurrence of doublets. An average of 5000 cells per sample

remained after this quality filtering (Fig EV1A, Table EV4). Statisti-

cal analyses of the 10x data were conducted using the Seurat

(V3.1.1) (Stuart et al, 2019) and edgeR (V3.26.8) (McCarthy et al,

2012) software packages for R. Gene symbols from Cell Ranger were

converted to current HUGO symbols and Entrez Gene IDs using

limma’s alias2SymbolUsingNCBI function and NCBI gene annota-

tion dated 18 Aug 2018. Genes that did not map to official symbols

were filtered as were genes expressed in < 1% cells for any individ-

ual sample. If two or more Cell Ranger genes mapped to the same

official symbol, then the one with largest read count was kept for

each sample.

Where appropriate, multiple samples were combined using the

anchor-based integration method implemented in Seurat (Stuart

et al, 2019). Cell clusters were identified using the default Louvain

clustering algorithm implemented in Seurat. Default Seurat function

settings were used except that clustering resolutions were set to

lower than default values in order to ensure conservative and repro-

ducible clusters, and principal component dimensions 1:30 were

used for all dimension reduction and integration steps. The cluster

resolutions were set to 0.1 unless otherwise stated. The RunTSNE

random seed was set to 1918 to ensure reproducibility. Marker

genes for cell clusters were identified using Seurat’s FindMarkers

function with default settings for Figs EV2E and EV4F. Elsewhere, a

pseudo-bulk approach was taken for differential expression analyses

in order to fully account for biological variation between the human

patients. Read counts from cells with the same patient-cluster

combination were summed together to form a pseudo-bulk sample.

Marker genes of each cluster were identified using edgeR’s quasi-

likelihood pipeline on the pseudo-bulk samples (Chen et al, 2016).

A linear model was fitted adjusting for baseline differences between

patients. Contrasts between each cluster and the average of the

other clusters identified marker genes. Gene ontology (GO) and

KEGG pathway analyses were conducted using limma’s goana and

kegga functions.

Ternary plots position cells according to the proportion of

basal, LP- or ML-positive signature genes expressed by that

cell and were generated using the vcd package. MDS plots were

created with edgeR’s plotMDS function. Log2-CPM values for each

gene across cells were calculated using edgeR’s cpm function with

a prior count of 1. Heat maps were generated using the pheatmap

package. Log2-CPM values were standardized to have mean 0

and standard deviation 1 for each gene before producing the heat

maps, after which genes and cells were clustered by the Ward’s

minimum variance method. Diffusion plots were generated using

the destiny package.

DNA copy number variations were detected using inferCNV of

the Trinity CTAT Project. https://github.com/broadinstitute/inferCNV.

Signature genes for epithelial cell lineages

Signature genes for basal, luminal progenitor (LP), mature luminal

(ML), and stromal cell types were obtained from bulk RNA-seq data

for sorted cells. Total RNA was extracted from sorted basal, luminal

progenitor (Lin–CD29loCD24+), mature luminal (Lin–CD29hiCD24+),

and stromal cells from pathologically normal human breast samples.

Basal, LP, and ML populations were sorted from eight independent

samples and stroma from 6 samples. Total RNA (100 ng) was used

to generate libraries for whole transcriptome analysis following the

Illumina’s TruSeq RNA v2 sample preparation protocol. Libraries

were sequenced on an Illumina NextSeq 500. At least 20 million

75 bp paired-end reads were obtained for each sample.

Read were aligned to the hg39 genome using Rsubread (Liao

et al, 2019) and summarized by Entrez Gene ID using featureCounts

and Rsubread’s built-in annotation (Liao et al, 2014). Low expressed

genes were filtered by edgeR’s filterByExpr function, and library

sizes were normalized by the TMM method. Differential expression

analysis was performed using limma-voom and TREAT with a fold

change threshold of 1.5 (McCarthy & Smyth, 2009; Law et al, 2014).

Genes were considered cell type-specific if they were upregulated in

one cell type vs both other types. An FDR cut-off of 0.05 was applied

for each comparison. This yielded 515, 323, 765, and 1094 signature

genes for basal, LP, ML, and stroma, respectively, which were used

to construct ternary plot signature scores. Quantitative signature

scores for individual samples shown in boxplots were computed as

the average log2-CPM (count per million) for the signature genes in

that sample.

Statistical analysis

Quasi-multinomial and quasi-binomial generalized linear models

were used to assess differences in cell cluster frequencies between

patient groups. Quasi-multinomial F-tests were used to test for over-

all interaction between cell cluster frequencies and group member-

ship, while quasi-binomial F-tests were used to test for differences

in cell frequencies for individual clusters.

Image quantification

Cell detection and counting was performed in a semi-automated

manner using QuPath (Bankhead et al, 2017). Cells were detected

with Stardist (Schmidt et al, 2018). Positive cells were considered

outliers, and cells with mean intensity more than 3 standard devia-

tions above the mean were scored as positive. For the area measure-

ment, 10 regions per tissue area (tumor or stroma) were manually

annotated for the training. Tumor-associated areas were set with a

5 lm margin around the K8/K18-positive tumor cell areas.

Data availability

Processed scRNA-seq and bulk RNA-seq data generated for this

study are available as GEO series GSE161529 and GSE161892,

respectively. Raw data are available on request, subject to approval
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by our institutional Data Access Committee (dataaccess@wehi.

edu.au) to ensure preservation of patient confidentiality.

Expanded View for this article is available online.
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