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Abstract—Several intrusive measures of reverberation can be
computed from measured and simulated room impulse responses,
over the full frequency band or for each individual mel-frequency
subband. It is initially shown that full-band clarity index C50 is
the most correlated measure on average with reverberant speech
recognition performance. This corroborates previous findings but
now for the dataset to be used in this study. We extend the pre-
vious findings to show that C50 also exhibits the highest mutual
information on average. Motivated by these extended findings,
a non-intrusive room acoustic (NIRA) estimation method is
proposed to estimate C50 from only the reverberant speech
signal. The NIRA method is a data-driven approach based on
computing a number of features from the speech signal and it
employs these features to train a model used to perform the
estimation. The choice of features and learning techniques are
explored in this work using an evaluation set which comprises
approximately 100000 different reverberant signals (around 93
hours of speech) including reverberation from measured and
simulated room impulse responses. The feature importance of
each feature with respect to the estimation of the target C50 is
analysed following two different approaches. In both cases the
newly chosen set of features shows high importance for the target.
The best C50 estimator provides a root mean square deviation
around 3 dB on average for all reverberant test environments.

Index Terms—Room acoustic parameter estimation, reverber-
ant speech recognition, reverberation

I. INTRODUCTION

IN enclosed acoustic spaces such as rooms, sound emitted

from a source propagates through the air and reflects

off the walls and different objects in the room creating the

effect known as reverberation. The energy associated with the

reflected waves determines the reverberation level in the room

and is often quantified relative to the energy at the receiver due

to direct path propagation. Reverberation is known to degrade

automatic speech recognition (ASR) performance and it is

therefore highly valuable to be able to quantify the relation

between room acoustic effects and ASR performance.
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The acoustic characteristics of a given enclosure, source and

receiver geometry can be represented using a room impulse

response (RIR), which depends on the room properties as well

as the position of the source and receiver. The reverberant

sound y(n) measured at a receiver in the room can be modelled

as the convolution of the RIR h(m), assumed time-invariant,

and the source signal in the room s(n) so that for each time

index n

y(n) =

M−1∑

m=0

h(m)s(n−m) (1)

where M is the effective length of h(m).

Several room acoustic parameters derived from the RIR

have been proposed in the literature [1] [2] in order to

measure the level of reverberation. The reverberation time

T60 is a widely used metric that characterizes the room

acoustics properties. Alternative parameters, such as the direct-

to-reverberant ratio (DRR) [1], the definition D50 [1] or the

clarity index C50 [1], provide further measures describing the

reverberation level in a signal.

These room acoustic parameters are employed for a wide

range of tasks. For example, in [3] a non-linear mapping

of T60, DRR and room spectral variance is proposed to

estimate the human perception of the reverberation disturbance

in speech signals. Kuttruff [2] suggests that D50 can be used

as an indicator of the speech intelligibility in reverberant

environments. Several room acoustic parameters have been

employed to predict the ASR performance for reverberant

speech. In [4] a new metric derived from D50 is proposed as an

estimator of the ASR performance. Tsilfidis et al. [5] present a

correlation analysis of several room acoustic parameters (T60,

C50, D50 ...) showing that C50 is the most correlated parameter

with ASR performance, reaching the same conclusion as in [6].

In [7] the ASR performance was investigated as a function

of early reflection duration. An analysis of the impact of the

RIR shape on the ASR performance [8] concludes that the

first 50 ms of the RIR barely affect the ASR performance

and therefore D50 could be used to predict the word accuracy

rate. Additionally, several room acoustic parameters have been

applied in different dereverberation methods to suppress the

reverberation in the signal. C50 is used in [9] [10] and T60

in [11][12] to select the ASR acoustic model that better

represents the reverberant conditions of the input utterance. In

[13] T60 is used to add to the current hidden Markov model

state the contribution of previous states by applying a piece-

wise energy decay curve that is separated in early reflections

and late reverberation contributions. The T60 information is
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also applied in [14] to suppress late reverberation through

a wavelet packet tree decomposition. From these examples,

it is clear that knowledge of estimation of room acoustic

parameters can be beneficially exploited in the processing of

reverberant signals.

In most real applications, the room impulse response is

unknown and the only available information is the reverberant

speech signal. Consequently the room acoustic parameters

need to be estimated non-intrusively from this signal rather

than directly from the RIR. Several methods have been pro-

posed to estimate T60 non-intrusively. The method of [15]

estimates the decay rate from a statistical model of the sound

decay by using the maximum likelihood (ML) approach and

then uses this decay rate to find the ML estimate for T60. The

T60 estimator [16] is based on spectral decay distributions.

In this case the signal is analysed with a mel-frequency

filter bank in order to compute the decay rate by applying

a least-square linear fit to the time-frequency log magnitude

bins. Variance of the negative gradients in the distribution

of decay rates is then mapped to T60 with a polynomial

function. A method to compute the reverberation time in

the modulation domain is proposed in [17], exploiting the

fact that low modulation frequency energy (below 20 Hz) is

only slightly affected by the reverberation level whilst high

modulation frequency energy increases with the reverberation

level. The estimator is created with a support vector regressor

(SVR) whose features are the ratio of the average of low

modulation frequency energy to different averages of high

modulation frequency energy. The overall ratio is then mapped

to estimate the DRR. Two methods to estimate T60 or C80

from speech and music signals are proposed in [18]. The first

method exploits the power spectral density (PSD), which is

estimated as the sum of the Hilbert envelopes computed per

frequency band. The second method employs a ML approach

to estimate the decay curve of the cleanest section in the signal

and then averages the partial estimation to create the final

estimate. In [19] a multilayer perceptron is built with spectro-

temporal modulation features extracted from a 2D-Gabor filter

bank in order to estimate the type of room that created the

reverberant signal. Although room acoustic parameters can be

also estimated from multichannel recordings, such as T60 [20]

or DRR [21], this paper focuses on the problem of single-

channel room acoustic parameter estimation.

In this work we provide evidence using different set-ups,

ASR engine and newly measured RIRs, that corroborates

previous evidence that C50 is the most correlated parameter to

ASR performance. Furthermore, we include new features and

a learning algorithm that provides a per-frame C50 estimate.

These new features and the learning method were not proposed

in previous work [6][22]. Additionally, the performance is

tested over an extensive database including newly measured

RIRs and different noise conditions and the relative impor-

tance of the different features is analysed. The proposed

configuration of the data-driven method outperforms previous

C50 estimators reported in [22] providing estimates highly

correlated with ASR performance.

The remainder of the article is organized as follows. Sec-

tion II presents the motivation to estimate full-band C50. We

describe the data-driven approach proposed to estimate this

room acoustic parameter in Section III. Section IV introduces

the evaluation metrics and the database utilized to evaluate

different aspects of the estimator performance shown in Sec-

tion V. Finally, conclusions are drawn in Section VI.

II. PARAMETERS AND EVALUATION

Before addressing the task of non-intrusive estimation of

room acoustic parameters, an analysis of intrusive room acous-

tic parameters is first performed to investigate the relationship

of various room acoustic parameters with ASR performance

and thus find the parameter most correlated with ASR perfor-

mance.

A. Room acoustic parameters

The reverberation time T60 is defined as the time needed for

the sound pressure level in the room to drop 60 dB after the

acoustic excitation ceases [1] and it is computed following

[23]. An alternative measurement is the DRR calculated as

[24]

DRR = 10 log10

(
Ed(∑M−1

m=0
h2(m)

)
−Ed

)
dB, (2)

where Ed is the direct path energy computed by convolving a

sinc function with the RIR around the direct path sample nd,

given by

Ed = max
σ

η∑

m=−η

(
sinc(π(m+ σ))h(m+ nd)

)2
, (3)

where η=8 is the number of sinc sidelobes and σ=[-1:1] is the

offset considered to find the maximum energy.

Similarly, the C50 and D50 can be formulated as follows

Cτ = 10 log10

( ∑Nτ

m=0
h2(m)

∑M−1

m=Nτ+1
h2(m)

)
dB, (4)

Dτ = 10 log10

(∑Nτ

m=0
h2(m)

∑M−1

m=0
h2(m)

)
dB, (5)

where τ = 50 ms in this case and Nτ represents the number of

samples in the RIR h(m) from the beginning to τ ms after the

reception of the direct path. Additionally, the centre time (Ts)

is a measure of reverberation that represents the centre of

gravity of the squared RIR and it is computed as follows [2]

Ts =

∑M−1

m=0
m
fs

h2(m)
∑M−1

m=0
h2(m)

s, (6)

where fs is the sampling frequency.

The motivation of this work is to estimate the measure of re-

verberation that is most correlated with the ASR performance.

We therefore analyse T60, Ts, DRR, Cτ and Dτ over a range

of τ .

B. Evaluation metrics

The ASR performance is measured as the phoneme error

rate (PER)

PER =
D + I + S

Nphn

(7)
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where Nphn is the total number of phonemes recognized, D

is the number of deletions, S is the number of substitutions

and I the number of insertions. The performance is measured

per phoneme to avoid possible influences of the language

model or dictionary rules and therefore be able to measure

more accurately the impact of reverberation on the acoustic

modelling of ASR. For this purpose a context-dependent

GMM-HMM phoneme recognizer was employed based on

Kaldi [25] following the TIMIT recipe ‘s5’. The feature vector

includes mel-frequency cepstral coefficients with delta and

delta-delta features computed from non-reverberant utterances

of the TIMIT training set.

In addition to PER, we include the Perceptual Evaluation of

Speech Quality (PESQ) in the evaluation as a commonly used

baseline that is helpful to obtain a quantitative insight into the

nature of the test data. PESQ [26] is an intrusive objective

method to estimate the speech quality. The reference signal

used in the PESQ calculation is the original anechoic clean

speech.

Two different metrics are used to evaluate the relevance

of different measures to ASR performance. The first is the

absolute value of the Pearson correlation coefficient computed

as

ρ =

∣∣∣∣∣∣∣∣∣∣

∑U
u=1

(yu − y)(xu − x)√
U∑

u=1

(yu − y)
2

U∑
u=1

(xu − x)
2

∣∣∣∣∣∣∣∣∣∣

(8)

where x is the average of the PER scores xu per utterance,

y is the average of a particular measure of reverberation

yu computed for each utterance, and U is the total number

of utterances included. Additionally, we also use the mutual

information between these variables computed as [27]

I(X,Y ) =

∫

X

∫

Y

p(x, y) log
p(x, y)

p(x)p(y)
dx dy (9)

where p(x) and p(y) are the marginal probability density

functions of X and Y respectively and p(x, y) is the joint

probability density function of X and Y . In (9) I(X,Y )
measures the amount of information shared between both

random variables, where the variables in this case are PER

scores and the values of a particular measure of reverberation.

C. Evaluation data

The data used to compute ρ and I(X,Y ) for the different

measures of reverberation is taken from two sets described in

Section IV-B. The first set is extracted from the training set

presented in Section IV-B by selecting only the reverberant

utterance without noise giving a total of 6144 utterances

(5.55 hours). The second set uses the RealInf set from the

evaluation set presented in Section IV-B which comprises 3960

reverberant utterances (3.70 hours) obtained with measured

impulse responses.

D. Correlation of room acoustic parameters with ASR perfor-

mance

We first review in this Section the correlation of different

room acoustic parameters with PER, as well as with PESQ

for comparison. Our aim is to corroborate the findings of

[6] in the case of our specific test data, and then extend the

previous findings to include mutual information analysis and

also room acoustic parameters computed from each individual

mel-frequency subband of the RIR.

1) Full frequency-band room acoustic parameters: Table I

displays the correlation coefficients obtained with simulated

impulse responses. It shows that the most correlated measure

with PER is C50, which is in accordance with the results

obtained in [5]. Additionally C50 is seen again to be the most

correlated with PESQ. Figure 1 shows the correlation of Cτ

and Dτ where Cτ from τ approximately 20 ms to 50 ms

achieves the highest correlation coefficients for PESQ and PER

and Dτ shows its highest correlation coefficients with smaller

τ . Similar results are obtained with real RIRs which are given

in Table II and in Fig. 2.

T60 DRR Ts D50 C50

PER 0.70 0.68 0.73 0.73 0.85

PESQ 0.75 0.75 0.78 0.78 0.91

TABLE I
CORRELATION COMPARISON OF PER AND PESQ WITH DIFFERENT

ACOUSTIC PARAMETERS FOR SIMULATED IMPULSE RESPONSES. THE

MAXIMUM VALUES ARE BOLD.
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Fig. 1. PER and PESQ correlation coefficients obtained with Cτ and Dτ for
τ between 0.1 ms and 600 ms using simulated RIRs.

T60 DRR Ts D50 C50

PER 0.75 0.37 0.72 0.60 0.85

PESQ 0.79 0.42 0.78 0.66 0.94

TABLE II
CORRELATION COMPARISON OF PER AND PESQ WITH DIFFERENT

ACOUSTIC PARAMETERS FOR REAL MEASURED IMPULSE RESPONSES. THE

MAXIMUM VALUES ARE BOLD.
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Fig. 2. PER and PESQ correlation coefficients obtained with Cτ and Dτ for
τ between 0.1 ms and 600 ms using real RIRs.

Table III gives the magnitude of the mutual information

between the measure of reverberation and PER and PESQ. It

shows that Ts provides the highest mutual information value

with PER and PESQ, closely followed by the C50. DRR is

seen to be the measure that shares the least information with

PER and PESQ.

T60 DRR Ts D50 C50

PER 0.59 0.40 0.66 0.58 0.64

PESQ 0.79 0.66 0.96 0.81 0.95

TABLE III
MUTUAL INFORMATION COMPARISON OF PER AND PESQ WITH

DIFFERENT ACOUSTIC PARAMETERS FOR SIMULATED IMPULSE

RESPONSES. THE MAXIMUM VALUES ARE BOLD.

Figure 3 shows the magnitude of mutual information

achieved for Cτ and Dτ for a range of τ from 0.1 ms to

600 ms. It shows in all cases higher values with Cτ than with

Dτ . The highest value of the mutual information of Cτ with

PER is at approximately τ = 50 ms. Regarding the mutual

information of Cτ with PESQ, the highest values are around

τ = 30 ms. On the other hand, mutual information of Dτ with

PER and PESQ shows lower values compared to Cτ with the

highest values obtained towards lower τ values.

Table IV shows the mutual information magnitude of several

measures of reverberation with the ASR performance (PER)

and PESQ obtained on reverberant data generated with real

measured impulse responses. Despite Ts showing high mutual

information in some cases, C50 is the measure of reverberation

that provides the highest values on average over the two

datasets.

Figure 4 shows the mutual information of Cτ and Dτ with

PER and PESQ respectively. All the figures presented in this

Section lead to the same conclusions: Cτ provides higher

correlation and mutual information values than Dτ and the

highest values of Cτ are in the range centred at τ = 50 ms.

2) Mel-frequency subbands room acoustic parameters: In

ASR, the input acoustic signal is commonly processed to
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Fig. 3. PER and PESQ mutual information magnitude obtained with Cτ and
Dτ for τ between 0.1 ms and 600 ms using simulated RIRs.

T60 DRR Ts D50 C50

PER 0.67 0.36 0.60 0.50 0.66

PESQ 1.07 0.78 0.99 0.88 1.15

TABLE IV
MUTUAL INFORMATION COMPARISON OF PER AND PESQ WITH

DIFFERENT ACOUSTIC PARAMETERS FOR REAL MEASURED IMPULSE

RESPONSES. THE MAXIMUM VALUES ARE BOLD.

extract the mel-frequency cepstral coefficients [28]. In this

section we compute parameters using the same mel-frequency

filter bank applied in the ASR [25] in order to investigate

whether room acoustic parameters per mel-frequency subband

provide higher correlation and mutual information values than

the full-band counterpart.

Figures 5 and 6 show the correlation and mutual information

values for different acoustic parameters computed per mel-

frequency subband for simulated and real impulse responses

respectively. On average, C50 provides again the highest

values, especially at high frequencies. However, these values

are lower than (in certain cases approximately equal to) the
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Fig. 4. PER and PESQ mutual information magnitude obtained with Cτ and
Dτ for τ between 0.1 ms and 600 ms using real RIRs.
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C50 full-band correlation and mutual information. Thus, C50

computed from the full-band impulse response is the most

correlated room acoustic parameter with ASR performance

and provides on average the highest mutual information value

with ASR performance. Motivated by this finding, in Section

III we propose a method to estimate full-band C50 non-

intrusively using only the reverberant speech signal.
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Fig. 5. PER and PESQ correlation coefficients (top) and mutual information
values (bottom) obtained with five measures of reverberation computed per
mel-frequency subband using simulated RIRs.

III. METHOD DESCRIPTION

The proposed method to estimate C50 is a data-driven

approach which computes 409 features per utterance from a

single-channel speech signal at a sampling rate of 8 kHz.

Figure 7 presents the general block diagram of the NIRA

method. The features are used to build a model from which

the C50 value will be estimated.

A. Feature extraction

Features derived from modulation domain (MD) [29] and

from deep scattering spectrum (DSS) transformation [30] are

now proposed.

The modulation domain provides information about the

spectral envelopes of the signal. Speech is dominated by

modulation frequencies from 2 Hz to 8 Hz [31]. However,
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Fig. 6. PER and PESQ correlation coefficients (top) and mutual information
values (bottom) obtained with five measures of reverberation computed per
mel-frequency subband using real RIRs.

the reverberation effect boosts higher modulation frequencies

[17] in the speech signal. Motivated by this fact, modulation

domain features are extracted by first selecting the frequency-

band with the highest energy in the average modulation

domain representation and then computing the first four central

moments of this frequency band and its two adjacent modu-

lation frequency bands.

Deep scattering spectrum features are extracted from a

scattering transformation applied to the signal [30]. This

wavelet transformation is particularly interesting due to its

locally translation invariant representation and its stability to

time-warping deformations. The transformation comprises a

cascade of wavelet decomposition and modulus operators. The

MFCCs are approximately equal to the first-order scatter-

ing coefficients whereas second-order coefficients characterize

transient observations (e.g., onsets or amplitude modulation)

[30]. Since MFCCs are already included in the feature set

and reverberation effect causes distortions in transient periods,

features are extracted only from this second wavelet layer. The

DSS features are computed by employing one wavelet per

octave in both layers normalized by the first-order coefficients

and an average window size of 20 ms with 50% overlap.

In addition to these features, we employ the utterance-based

and frame-based features proposed in [6].
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Utterance-based features are computed from Long-Term

Average Speech Spectrum (LTASS) deviation by mapping it

into 16 bins with equal bandwidth as well as the slope of the

unwrapped Hilbert phase of the input signal.

Frame-based features comprise the following parameters:

• Line Spectrum Frequency (LSF) features computed by

mapping the first 10 LPC coefficients to the LSF repre-

sentation.

• Zero-crossing rate (ZCR).

• Speech variance.

• Pitch period estimated with the PEFAC algorithm [32].

• Estimation of the importance-weighted Signal-to-Noise

Ratio (iSNR) in units of dB [33].

• Variance and dynamic range of the Hilbert envelope.

• Three parameters extracted from the Power spectrum

of the Long term Deviation (PLD): spectral centroid,

spectral dynamics and spectral flatness. The PLD is

calculated per frame using the log difference between the

signal power spectrum and the LTASS power spectrum

magnitudes.

• 12th order mean- and variance-normalized MFCCs com-

puted from the fast Fourier transform as well as the rate

of change of the per-frame features.

The rate of change for all short-time features, excluding the

12th order MFCCs, is also computed.

A voice activity detector (VAD) is applied to the power-

normalized input signal to extract all the features employing

only active speech segments. This VAD uses the P.56 method

[34].

Table V summarizes all the features. The complete feature

vector is created by appending to the long-term features the

mean (µ), variance (σ2), skewness (s) and kurtosis (k) of all

short-time features and thereby creating the final vector with

409 features.

Description Feature ∆Feature

LSFs φ1:10 φ11:20

ZCR, Speech variance,
φ21:24 φ25:28Pitch period and iSNR

Variance and dynamic
φ29:30 φ31:32range of Hilbert envelope

Spectral flatness, centroid
φ33:35 φ36:38and dynamics of PLD

MFCCs with delta and delta-delta φ39:74 -

LTASS φ75:90 -

Unwrapped Hilbert phase φ91 -

MD φ92:103 -

DSS φ104:124 -

TABLE V
NIRA FEATURES: φ1:74−104:124 ARE FRAME-BASED FEATURES

COMPUTED FRAME BY FRAME, WHOSE STATISTICS ARE USED IN THE

LEARNING ALGORITHM, AND φ75:103 ARE UTTERANCE-BASED FEATURES

CALCULATED OVER THE ENTIRE UTTERANCE. ∆FEATURE REPRESENTS

THE RATE OF CHANGE OF THE FEATURE.

The feature configuration described above is used to es-

timate C50 per utterance. Additionally, we propose in this

work a C50 estimated per frame which employs a different

Normalization VAD
Utterance-based

features

Learning
algorithm

Frame-based
features

Feature
statistics

Speech
signal φ75:103

C50

estimate

φ1:74

φ104:124

Fig. 7. The NIRA method.

feature configuration. This configuration is based on com-

puting features φ1:74 with a 20 ms window size with 50%

overlap and computing φ92:103 per frame instead of averaging

over all per-frame modulation domain representations for each

utterance. A wider window size with the same overlap is used

for the modulation domain features, 256 ms window size,

and pitch estimation, 90 ms window size, to preserve higher

frequency resolution. The remaining utterance-based features

are excluded (i.e. φ75:91).

B. Learning algorithms

The learning algorithms employed to build the NIRA mod-

els, designed to estimate C50 with the features presented in

Section III-A, are now presented.

1) Classification And Regression Trees (CART): Classi-

fication And Regression Trees [35] offer a non-parametric

methodology to build binary trees. These trees split the data

recursively into smaller partitions in order to find the best fit.

The training process involves three main steps: tree building,

stopping tree building and pruning the tree.

The predicted output is obtained according to the leaf

reached after having recursively traversed the tree in depth,

deciding the branch to follow at each node based on one or

more input feature values. We use CART in a regression mode

rather than a classification mode since our target is to estimate

a room acoustic parameter within a continuous range.

2) Linear regression (LR): The estimate Ĉ50,u is computed

using linear regression [36] as

Ĉ50,u =

J∑

j=1

θjΦj,u + θ0, (10)

where Φu = [Φ1,u, . . . ,ΦJ,u]
T represents the length-J ob-

served variables (i.e. feature vector) for the uth utterance

and θ = [θ0, . . . , θJ ] is a vector comprised of J + 1 linear

regression coefficients.

The optimal coefficient vector θ to model the target C50,u is

obtained by minimizing the sum of squared errors according

to the cost function

min
θ

1

2U

U∑

u=1






J∑

j=1

θjΦj,u + θ0


− C50,u




2

+ λ

J∑

j=1

θ2j ,

(11)

where λ is the regularization parameter and U represents

the total number of utterances. This minimization problem

is solved by applying the gradient descent algorithm [37].

Additionally, an L2 regularization term is included in the cost

function to avoid complex and overfitted models.



7

3) Deep belief neural network (DBN): A deep belief net-

work structure allows complex non-linear models to learn how

to fit the input data to the target C50 values. The discriminative

training of these networks is applied to a stack of generative

pretrained layers. This generative training attempts to learn

the structure of the input data in an unsupervised manner

by setting the output values to the input values at each

layer. Pretrained networks reduce overfitting and discrimina-

tive training effort [38]. Sparse autoencoders [39] are used to

pretrain each layer that aim to find optimal weights with the

backpropagation algorithm subject to sparsity constraints. This

sparsity constraint facilitates the task of finding dependencies

in the input data. Additionally, dropout [40] is applied in the

fine-tuning by randomly removing units of the network at

each training step to prevent overfitting. The fine-tune training

is carried out with stochastic gradient descent and adaptive

momentum [41].

Whereas the DBN is widely used for classification tasks,

in this work the output layer uses a linear regression on the

final hidden layer of neurons in order to estimate a continuous

value for C50.

4) Bidirectional long short-term memory (BLSTM): Recur-

rent neural networks (RNN) have been applied in different

tasks [42] [43] [44] [45]. This type of neural network can

be seen as a neural network with at least one feedback

connection, hence the output of the activation function is

employed to compute the output in the next time step. This

configuration provides memory capabilities in the RNN which

enables it to learn sequences such as temporal correlations.

In addition to the forward propagation, bidirectional RNNs

also exploit future context information by processing the

data in time reverse direction. The principal drawback of

conventional RNNs is the vanishing gradient problem during

learning [46] which is overcome by introducing the Long

Short-Term Memory (LSTM) cells [47] in the network. LSTM

is better at modelling long-term dependencies and it can be

combined with a bidirectional RNN to form a bidirectional

LSTM.

We employ this structure to build a model [48], which

provides a C50 estimation per frame, motivated by the bidi-

rectional long-term dependency capabilities of the BLSTM

which can potentially represent temporal smearing effects of

reverberation.

IV. EXPERIMENTAL SETUP

Experiments have been performed to assess different C50

estimators considered in this work. Section IV-A defines

the evaluation parameters while Section IV-B introduces the

database employed to evaluate the methods. Section IV-C

describes the trained neural network topology finally employed

for each model.

A. Evaluation metrics

The root mean square deviation (RMSD) of C50 is com-

puted using

Eu = Ĉ50,u − C50,u dB,

RMSD =

√√√√ 1

U

U∑

u=1

(Eu)2 dB, (12)

where Ĉ50,u and C50,u, both measured in dB, correspond to

the estimated and ground truth C50 value of the uth utterance

respectively, and U is the total number of utterances.

In addition, the mean (µE) and standard deviation (σE) of

the estimation error are also included in the analysis to provide

further information about the C50 estimation error, and are

computed as

µE =
1

U

U∑

u=1

Eu dB, (13)

σE =

√√√√ 1

U

U∑

u=1

(Eu − µE)2 dB. (14)

Moreover, the Pearson correlation coefficient ρ and the

mutual information I(X,Y ) are employed in the analysis to

measure the linear relationship between the estimated and

ground truth values. They are computed following (8) and (9),

where xu = Ĉ50,u, yu = C50,u and X and Y represent the

estimated and ground truth C50 respectively.

B. Data sets

Three data sets are employed. The training set is used

to train the methods which are tuned with the development

set, whereas the evaluation set is used only to evaluate the

methods. The utterances, RIRs and noise signals are different

for each set and are all sampled at 8 kHz.

1) Training set: Speech signals from the TIMIT [49]

database are employed to build the training data set. A total

of 32 utterances are selected randomly from the training

set ensuring that 2 different male and 2 female speakers

are included for each dialect and excluding ‘SA sentences’.

The reverberant speech is created by convolving these speech

utterances with simulated room impulse responses. These are

generated randomly using the randomized image method [50]

and then 192 RIRs are carefully selected to obtain a set of RIRs

with a uniformly distributed C50 in the interval [-3,28] dB.

White noise and babble noise from the NOISEX corpus [51]

are added to the reverberant speech at SNRs of 0 dB to 30 dB

in steps of 5 dB.

2) Development set: The development set is created fol-

lowing the training set configuration using 16 utterances and

64 RIRs. None of the speech signals nor RIRs of this set are

included in the training set.

3) Evaluation set: In the evaluation set, one utterance of

each TIMIT core set speaker is included resulting in 24

sentences. The SA sentences are excluded. Babble noise and

white noise are also included in the evaluation set at 6 different

SNR levels: 2 dB, 7 dB, 12 dB, 17 dB, 22 dB, 27 dB. Both

simulated and real measured RIRs are included in this set.

Four different databases are considered to build the real room

impulse response set: MARDY [52]; REVERB challenge [53];

C4DM RIR [54]; and SMARD [55]. Only recordings from the

B-format microphone taken in the Great Hall are considered
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within the C4DM RIR database due to an artefact in the

other C4DM recordings at the 125 Hz octave band. The same

selection procedure applied to simulated RIRs is employed in

this case to build a set of RIRs with a uniform distribution of

C50 in the range from -3 dB to 28 dB.

Accordingly, this evaluation set covers a wide range of

reverberant scenarios from large rooms such as the Great

Hall of the C4DM RIR database to medium rooms with low

reverberation as in the SMARD database. Figure 8 illustrates

the C50 distribution of each of the RIR data sets.
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Fig. 8. Distribution of C50 in real measured RIR databases: (a) MARDY
database [52] ; (b) RIRs collected from the training set of the REVERB
challenge database [53]; (c) B-format microphone recording from the Great
Hall of the C4DM database [54]; (d) SMARD database [55].

The average duration of simulated and real RIRs is 2 sec-

onds and 1.17 seconds respectively, i.e. M in (1) is on average

16000 for simulated RIRs and 9360 for real RIRs.

This evaluation set is divided into 26 subsets which are

evaluated independently to assess the performance of the

methods for each specific situation as outlined in Table VI.

C. Learning algorithm topologies

The DBN architecture is selected using genetic algorithms

[56] which find the topology that minimizes the estimation

error in the development set. Two different DBN models are

trained for comparison purposes employing features φ1:91,

containing the features proposed in [6], and features φ1:124,

adding to the previous feature vector φ1:91 the features pro-

posed in this work. The main motivation for this splitting

RIR

type

Noise

type

SNR

level
Name

Simulated

none ∞ SimInf

Babble /

White

2 Sim2BA / Sim2WN

7 Sim7BA / Sim7WN

12 Sim12BA / Sim12WN

17 Sim17BA / Sim12WN

22 Sim22BA / Sim22WN

27 Sim27BA / Sim27WN

Real

none ∞ RealInf

Babble /

White

2 Real2BA / Real2WN

7 Real7BA / Real2WN

12 Real12BA / Real12WN

17 Real17BA / Real17WN

22 Real22BA / Real22WN

27 Real27BA / Real27WN

TABLE VI
SUBSETS OF THE EVALUATION SET REGARDING RIR TYPE, NOISE TYPE

AND SNR LEVEL. IN ALL CASES, THE SAME 24 UTTERANCES ARE

CONVOLVED WITH 160 RIRS. THEREFORE EACH SUBSET COMPRISES

3840 FILES (APPROXIMATELY 3.6 HOURS).

is to measure the improvement in performance obtained by

including the new features proposed in this work φ92:124.

The topology selected in the DBN model is a two layer

neural network with 75 and 79 neurons in the first and second

layer respectively, whereas the latter model comprises a first

layer of 160 neurons and a second layer of 110 neurons.

The BLSTM model trained with φ1:91 includes 3 layers of

256 neurons in each layer and the model trained with φ1:124

comprises 4 layers of 64 neurons in each layer.

V. PERFORMANCE EVALUATION

In this Section the methods presented in Section III are

evaluated. Firstly, in Section V-A an analysis of the importance

of the features with respect to the target C50 is presented. Two

measures of feature importance are used to find the value of

the feature to estimate C50. The proposed C50 estimators are

evaluated in Section V-B. A baseline method [18] provides

a comparison. The baseline method originally estimates C80

based on PSD of the reverberant microphone signal. However

here it has been adapted to estimate C50 by modifying the

target values in the learning process. Finally, the correlation

and mutual information values of the C50 estimates with ASR

performance are compared in Section V-C to an upper bound

on the performance, obtained using ground truth C50 values.

A. Feature importance

The importance to the C50 estimator of each of the features

presented in Table V is now analysed. Numerous methods

have been proposed in the literature to compute the feature

importance [57] [58]. We employ two different methods to

rank the features according to their importance: CART [35]

and Regressional ReliefF method (RReliefF) [59].

The first approach relies on the CART learning algorithm

presented in Section III-B1. This decision tree method attempts
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to find the feature to split the data set at each node that

provides the best discrimination between a set of targets. Once

the tree is built, the importance is computed as a function of

the purity reduction due to the split at each node. Since CART

is employed to estimate C50, we also use the already trained

model for feature importance purposes.

The RReliefF [59] method computes the importance of the

features based on the capability to differentiate target values

that are close together. The importance is defined as a function

of three different terms:

• Probability of different values of the feature given the

nearest observations.

• Probability of different target values given the nearest

observations.

• Probability of different target values given different fea-

ture values and the nearest observations.

We use this method because it provides an importance ranking

of the features. Additionally, this method is faster than wrapper

methods [60] and it is not targeted to any specific learning

algorithm.

Table VII shows the 10 most important features for each

method using the features proposed in previous work φ1:91

[6]. The ranking of feature importance estimated in each case

is different, however there are some common features: φ29,

φ52, φ64, φ65, φ66. The results also suggest that the MFCC

features are highly important for C50 estimation.

RANK CART RReliefF

1 σ2φ54 σ2φ64

2 σ2φ63 sφ26

3 µφ29 µφ29

4 σ2φ52 σ2φ66

5 σ2φ64 µφ30

6 σ2φ66 kφ26

7 σ2φ28 sφ22

8 sφ52 σ2φ67

9 σ2φ38 σ2φ65

10 σ2φ65 σ2φ52

TABLE VII
RANKED FEATURE IMPORTANCE EMPLOYING CART AND RRELIEFF WITH

THE FEATURE SET φ1:91 EXTRACTED FROM THE TRAINING SET. THE

VARIANCE, MEAN, SKEWNESS AND KURTOSIS OF THE PER-FRAME

FEATURES ARE REPRESENTED WITH σ2 , µ, s AND k RESPECTIVELY.

Table VIII shows the top 10 important features for the

full feature set, including now the newly proposed MD and

DSS features to the previous existing feature set presented

in [6] (i.e. φ1:91). CART and RReliefF show some common

features to be highly important: φ98 and φ64. In both cases,

some of the new features (i.e. features within φ92:124) are

present, in particular MD features appear 8 times in the top

10 for RReliefF. Looking further in the RReliefF ranking,

DSS features appear 19 times in the first 100 features, which

indicates that these features are also important. Additionally,

it should be mentioned that CART only uses 46 features after

pruning, of which 11 are DSS features and 2 are MD features.

These results highlight the suitability of these new features for

the estimation of C50.

RANK CART RReliefF

1 σ2φ54 φ101

2 σ2φ63 φ100

3 φ98 φ103

4 µφ29 φ93

5 σ2φ64 σ2φ64

6 σ2φ66 φ92

7 σ2φ28 sφ26

8 σ2φ38 φ99

9 σ2φ118 φ95

10 σ2φ55 φ98

TABLE VIII
RANKED FEATURE IMPORTANCE EMPLOYING CART AND RRELIEFF WITH

THE FEATURE SET φ1:124 EXTRACTED FROM THE TRAINING SET. THE

VARIANCE, MEAN, SKEWNESS AND KURTOSIS OF THE PER-FRAME

FEATURES ARE REPRESENTED WITH σ2 , µ, s AND k RESPECTIVELY.

B. C50 estimators

Figure 9 shows a comparison of the estimators’ performance

with regards to RMSD for all evaluation sets. In this first

analysis only features φ1−91 are included in the feature vector.

It is important to note that the BLSTM provides an estimation

per frame, hence for comparison purposes only the average of

all the frame estimations per utterance is taken into account.

Figure 9 suggests that the estimation accuracy is lower with

babble noise compared to the same RIRs with white noise,

and estimation accuracy is better in lower levels of noise as

expected. The best estimations are achieved with BLSTM,

whereas the baseline provides the worst RMSD values.

The bias (µE) and standard deviation (σE) of the estimation

errors for each set are shown in Fig. 10. CART provides a

low-biased estimator. However, due to its high variance the

estimation accuracy is degraded. BLSTM achieves the lowest

standard deviations for all sets, while the baseline provides the

worst bias and standard deviation of the estimation error.

Figure 11 plots the improvement in RMSD achieved

by including the additional features proposed in this work

(φ92−124). This improvement is measured as

∆RMSD = RMSDφ1−91
− RMSDφ1−124

, (15)

where the subscripts indicate the set of features considered

to build the estimators. Figure 11 shows that all estimators

improve when using the new features (i.e. φ91−124). The

highest improvement is achieved with DBN, which is about

0.4 dB on average across all sets. Despite this fact, the best

overall performance is achieved with BLSTM, approximately

RMSD = 3.3 dB on average.

Figure 12 summarizes the reduction of the bias (∆µE) and

standard deviation (∆σE) of the estimation error. These are

quantified as follows

∆µE = µEφ1−91
− µEφ1−124

,

∆σE = σEφ1−91
− σEφ1−124

,
(16)

where the lowest subscripts indicate the range of features

considered to perform the estimations. BLSTM shows a sig-

nificant reduction of the bias while the standard deviation is
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Fig. 9. RMSD obtained for different room impulse responses (simulated and real) including different noise types (WN: white, BA: babble).

increased. On the contrary, all methods except BLSTM achieve

a significant reduction of the standard deviation but their bias

is increased.

Figure 13 shows the ground truth C50 and the estimated C50

for the BLSTM based method that achieves the lowest RMSD

on average and the baseline method. Only two different sets

are shown for the sake of clarity: SimInf and SimBA2 which

provide approximately the worst and best performance in terms

of RMSD for the BLSTM.

From an application point of view, the minimum number

of frames required to provide a C50 estimate relatively close

to the estimate achieved when using the entire utterance is

relevant in order to reduce the computational cost of the

estimate and the latency in real-time applications. For this

purpose we analyse the per-frame performance of the best

C50 estimator presented previously (i.e. BLSTM). Figure 14

illustrates the effect of the number of frames employed to

estimate C50 on the final RMSD. This performance curve

converges to the RMSD value of this estimator, plotted in

dashed line in Fig. 14, when approximately 180 frames are

considered. Taking into account that the window size and

increment are 20 ms and 10 ms respectively, approximately

1.9 seconds are required to achieve the same performance as

with the full utterance.

Additionally, Fig. 15 presents the RMSD average per frame

k obtained with the same estimator when employing n frames

available for the estimation. Note that the RMSD of the

frames decreases when the number n of frames included

increases. The main reason is because BLSTM applies back-

ward propagation (as well as forward propagation) to provide

an estimation, therefore the performance depends not only

on previous frames but on future frames as well. Figure 15

indicates that, even from the first frame, a low C50 estimate

deviation is achieved using 180 frames which is similar to

the RMSD obtained with the entire utterance information and

estimation errors are higher in the last frames.

C. Correlation and mutual information of the C50 estimates

with PER

In Section II we have shown that ground truth C50 values

provide high correlation and mutual information values with

ASR performance. The correlation and mutual information of

the estimated C50 values with ASR performance is summa-

rized in Table IX. This shows that the C50 estimates provide

a high correlation value which is comparable to the value

obtained with the ground truth C50 values. Furthermore, the

use of C50 within the context of speech recognition has been

investigated and the results documented in [9] [10].

Metric GT Baseline CART LR DBN BLSTM

ρ 0.85 0.56 0.77 0.84 0.85 0.85

I(X,Y ) 0.66 0.36 0.67 0.67 0.69 0.73

TABLE IX
CORRELATION (ρ) AND MUTUAL INFORMATION (I(X,Y )) VALUES OF

THE GROUND TRUTH C50 (GT) AND THE ESTIMATED C50 (BASELINE,
CART, LR, DBN AND BLSTM) WITH PER FOR REALINF EVALUATION

SET.



11

Sim
In

f

Sim
BA

27

Sim
W

N
27

Sim
BA

22

Sim
W

N
22

Sim
BA

17

Sim
W

N
17

Sim
BA

12

Sim
W

N
12

Sim
BA

7

Sim
W

N
7

Sim
BA

2

Sim
W

N
2

−2

0

2

4

Datasets

µ
E
(d

B
)

Baseline CART LR DBN BLSTM

Sim
In

f

Sim
BA

27

Sim
W

N
27

Sim
BA

22

Sim
W

N
22

Sim
BA

17

Sim
W

N
17

Sim
BA

12

Sim
W

N
12

Sim
BA

7

Sim
W

N
7

Sim
BA

2

Sim
W

N
2

0

2

4

6

8

Datasets

σ
E
(d

B
)

R
ea

lIn
f

R
ea

lB
A

27

R
ea

lW
N

27

R
ea

lB
A

22

R
ea

lW
N

22

R
ea

lB
A

17

R
ea

lW
N

17

R
ea

lB
A

12

R
ea

lW
N

12

R
ea

lB
A

7

R
ea

lW
N

7

R
ea

lB
A

2

R
ea

lW
N

2

−2

0

2

4

Datasets

µ
E
(d

B
)

R
ea

lIn
f

R
ea

lB
A

27

R
ea

lW
N

27

R
ea

lB
A

22

R
ea

lW
N

22

R
ea

lB
A

17

R
ea

lW
N

17

R
ea

lB
A

12

R
ea

lW
N

12

R
ea

lB
A

7

R
ea

lW
N

7

R
ea

lB
A

2

R
ea

lW
N

2
0

2

4

6

8

Datasets

σ
E
(d

B
)

Fig. 10. Mean and standard deviation of the estimation error obtained for different room impulse responses (simulated and real) including different noise
types (WN: white, BA: babble).
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using the baseline method and also in SimInf (middle) and SimBA2 (bottom)
evaluation sets employing the BLSTM with all the features φ1−124.

VI. SUMMARY AND CONCLUSIONS

We have shown that the full frequency-band C50 is the

most relevant measure of reverberation to predict phoneme
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Fig. 14. RMSD achieved with BLSTM employing the n first frames of each
utterance in SimInf evaluation set.

recognition in terms of correlation and mutual information.

Motivated by this finding, we have proposed a data-driven

method (NIRA) to estimate C50 from the reverberant speech

signal using a single microphone observation. New features

based on modulation domain and deep scatter spectrum have

been included in NIRA and have been shown to improve the

performance of NIRA and to be highly ranked in terms of

feature importance. Additionally, we have introduced recurrent

neural networks in NIRA to model the time smearing effect

of reverberation and provide an estimation per frame. This

configuration has shown the best performance on average

across all evaluation sets, which include measured impulse

responses, achieving a root mean square deviation of 3.3 dB in

C50 estimation. This deviation is similar to the minimum C50

variation necessary to perceive a change in reverberant speech

in everyday situations stated on [61] to be in the region of 3

dB.
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Fig. 11. RMSD improvement including new features (DSS and MD) for different room impulse responses (simulated and real) including different noise types
(WN: white, BA: babble).
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