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ABSTRACT This paper presents a new boost inverter topology with nine level output voltage waveform

using a single dc source and two switched capacitors. The capacitor voltages are self-balancing and thus is

devoid of any sensors and auxiliary circuitry. The output voltage is twice higher than the input voltage, which

eliminates the need for an input dc boost converter especially when the inverter is powered from a renewable

source. The merits of the proposed topology in terms of the number of devices and cost are highlighted

by comparing the recent and conventional inverter topologies. In addition to this, the total voltage stress

of the proposed topology is lower and have a maximum efficiency of 98.25%. The operation and dynamic

performance of the proposed topology have been simulated using PLECS software and are validated using

an experimental setup considering a different dynamic operation.

INDEX TERMS Multilevel inverter, nine-level inverter, step-up inverter, switched capacitor, reduce switch

count.

I. INTRODUCTION

Multilevel inverters (MLIs) have emerged and evolved as

a perfect solution for the medium and high voltage/power

applications where high-quality dc-ac power conversion is

needed. The classical topologies for the MLIs are neutral

point clamped (NPC), flying capacitor (FC) and cascade

The associate editor coordinating the review of this manuscript and
approving it for publication was Firuz Zare.

H-bridge (CHB). These topologies are widely researched

and are well established in industrial applications. How-

ever, for a higher number of output levels, the increased in

the number components required for NPC and FC becomes

quixotic. Similarly, for CHB, the higher number of isolated

dc voltage sources for a higher number of levels limits its

applications [1]–[5].

One category of the MLI topologies has been based on

the multiple isolated dc voltage sources. In this category,
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the topologies have been classified as symmetrical and asym-

metrical configured topologies. In symmetrically configured

topologies, the dc voltage sources have the same magni-

tude. In asymmetrically configured topologies, the dc voltage

sources have differentmagnitude resulting in a higher number

of levels with a lower number of switches as well as dc

voltage sources. In both types of topologies, the need for

a higher number of isolated dc voltage sources limits their

applications [6]–[9].

In order to reduce the number of dc voltage sources, the use

of topologies with switched capacitor (SC) units have been

recommended. The SC unit has been used with different

arrangements resulting in different output voltage levels. One

topology based on capacitors has been proposed in [10] and

named as packed E-cell (PEC) topology. With two dc volt-

age sources and two capacitors, a nine-level output voltage

waveform can be achieved, however, the topology lacks the

boosting of the input voltage. Similar to [10], nine-level MLI

topologies with two dc voltage sources and two capacitors

have been proposed in [11], [12]. The authors in [13] pro-

posed two new topologies with two dc voltage source along

with two capacitors. Both topologies generate nine levels of

the voltage across the load. However, both topologies use

H-bridge for the polarity change, which requires switches

with a higher voltage rating. The topologies also lack boost-

ing ability. A K -type topology has been proposed in [14] in

which two dc voltage sources along with two capacitors have

been used for 13 levels at the output. However, the rating of

both capacitors is different. In addition, both capacitors need

to discharge for the last three levels, which results in a non-

steady response in the capacitor voltage and unequal voltage

steps across the load.

Most of the SC-based topologies use single dc voltage

source and the SC units are used to create different dc-link

voltages for the multilevel output across the load. Some of the

topologies with SC units have a distinctive feature of boosting

the output voltage, i.e., the peak of the output voltage is higher

than the input supply. The SC-based MLI topology based on

H-bridge has been proposed in [15], and [16] in which SC

is connected through H-bridges for charging and discharging

purposes. Several H-bridge with SC can be connected for

a higher number of levels, which increases the number of

switches.

A new seven-level boost inverter topology has been pro-

posed in [17] with triple voltage gain. A hybrid switched-

capacitor based nine-level MLI topology has been proposed

in [18], however, the boosting feature is absent from the

topology of [18]. Fewmore seven-level boost inverter topolo-

gies have been proposed in [19]–[25], however, the higher

number of components have always been the major concern

about these topologies. Furthermore, the topologies proposed

in [21], [22], [24], [25] have a lower value of boosting factor.

Based on the twice boosting gain, several nine-level MLI

topologies have input. In [26], a single-stage nine-level topol-

ogy has been proposed. The topology uses 12 switches

for nine levels across the load with twice of voltage gain.

An improvement in terms of switches from [26] has been

made in [27], which uses 11 switches to achieve nine levels.

In [28], a new nine-level boost topology based on SC has

been proposed to which the capacitors are charged in the

first two levels and then discharged to give the boost feature

in the next two states of the output voltage. Furthermore,

for the topologies [29]–[38] the switch count for nine levels

has been on the higher side. Considering these facts, this

paper attempts to synthesize a nine-level voltage using the SC

technique to reduce the component count. The main features

of the proposed MLI are:

i. A single dc source is used.

ii. Self-voltage balancing is achieved across the capacitors.

iii. The output voltage is twice the input voltage.

iv. Low voltage stress across the switches.

v. The capacitor voltages are independent of the load power

factor and modulation index.

The circuit topology and its working will be discussed in

Section II. A detailed comparison has been carried out in

terms of quantitative and cost analysis and has been resented

in Section III. Sections IV gives a detailed explanation of the

proposed topology with several simulations and experimental

results and the conclusion of the paper has been presented

in Section V.

II. PROPOSED TOPOLOGY

A. CONFIGURATION OF THE PROPOSED TOPOLOGY

The configuration of the proposed single-phase SCMLI

topology is shown in Fig. 1 along with the maximum voltage

stress across each switch as a factor of input dc voltage

source, i.e. Vdc. The assembly of the proposed topology

consists of ten switches. The switches can be either IGBT or

MOSFET based on the frequency of operation, voltage, and

power rating of the converter. Two capacitors C1 and C2 are

used to split the dc supply voltage into halves. By systematic

and sequential turning ON/OFF of the switches, the capacitor

voltages are maintained at half of the supply voltage, i.e.,

Vdc/2. The proposed topology generates nine levels across

the load with a twice voltage boosting factor. The switching

FIGURE 1. Proposed nine level inverter topology.
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TABLE 1. Switching states of the proposed topology.

table for the proposed topology along with the variation of

capacitor voltages VC1 and VC2 are given in Table 1.

B. DESCRIPTION OF VOLTAGE LEVELS

With the proposed topology, nine levels are generated across

the load. In this section, all five levels in the positive half

cycle are described with the blocking voltages of all the non-

conducting switches and shown in Fig. 2 (a)-(e).

(i) State i (Zero voltage state): In this voltage state,

as shown in Fig. 2 (a), the capacitors C1 and C2 are made

to charge to their peak voltage by connecting them directly

across the dc voltage source. This is achieved by turning ON

the switches S3 and S4. By turning ON the switches S5 and

S7, the load terminals are shorted and a path is provided for

the flow of current in case of an inductive load.

(ii) State ii (+Vdc/2): As shown in Fig. 2 (b), the first

voltage state equal to Vdc/2 appears across the load by turning

ON the switches S8 and S9 and turning OFF switches S5
and S7. In this state, the capacitor voltage VC1 and VC2 are

maintained at Vdc/2. The capacitor voltage VC1, equal to

Vdc/2, is subtracted from dc voltage source Vdc.

(iii) State iii (+Vdc): In this voltage state, the full source

voltage appears across the load by turning ON switch S5 and

turning OFF switch S9 as shown in Fig. 2 (c). Both capacitor

voltages are further maintained at Vdc/2. The energy is stored

in both capacitors until this voltage state.

(iv) State iv (+3Vdc/2): In this voltage state, the switches

S3 and S4 are turned OFF and energy stored in capacitor C2

is used to create the third voltage state. The voltage VC2 is

(v) added to the dc voltage source Vdc by turning ON

switch S2. The state of capacitor C1 remains unchanged and

the voltage is held at Vdc/2. This voltage state is shown in

Fig. 2 (d).

(vi) State v (+2Vdc): The energies stored in both capacitors

are released in this voltage state and the voltages of both

capacitors are added to the dc voltage source. This boosting

of dc voltage source results in 2Vdc across the load as shown

in Fig. 2 (e).

Fig. 3 summarizes the voltage stress across all the switches

for each level at the output. The switches S1 and S2 are

FIGURE 2. Positive voltage states of the proposed nine level topology
with (a) Vo = 0, (b) Vo = Vdc/2, (c) Vo = Vdc, (d) Vo = 3Vdc/2, and
(e) Vo = 2Vdc.

cross-connected between the dc voltage source and capacitors

to obtain the boost feature. These switches need to block

the 2Vdc due to the cross-connection. The switches S3 and
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FIGURE 3. Voltage stress across all switches during all voltage levels.

S4 are connected in series with diodes in order to prevent

the conduction of switches S3 and S4 in the boost mode of

operation. The switches S3 to S8 are needed to block the

supply voltage Vdc and the bidirectional switch S9 needs to

block half of the supply voltage.

C. MODULATION TECHNIQUE

For the proposed topology, phase disposition pulse

width modulation (PD-PWM) technique has been used.

In PD-PWM, four carrier signals with the same magnitude

and high frequency have been compared with the sinusoidal

reference signal Vref having a frequency of output voltage.

The comparison results in the gate pulses for the switched

according to Table 1. The logic for the proposed nine-level

topology has been derived using Table 1 and has been imple-

mented using the logic gates as shown in Fig. 4 (a). Based on

the logic as shown in Fig. 4 (a), the different signals are shown

in Fig. 4 (b) and (c). Fig 4 (b) depicts the four carrier signals

Vcr1 to Vcr4, each having a magnitude of Vcr along with

the reference voltage Vref. The gate signals produced with

the comparison and the switching logic has been depicted

in Fig. 4 (c). The modulation index for the PWM shown in

Fig. 4 (b) can be obtained as

MI =
Vref

4Vcr
(1)

In order to show a better performance of the PD-PWM, differ-

ent modulation techniques have been applied to the proposed

nine-level topology. Apart from PD-PWM, phase opposition

disposition PWM (POD-PWM), alternate phase opposition

disposition PWM (APOD-PWM) and nearest level control

PWM (NLC-PWM) techniques have been used for the com-

parison. With a carrier frequency of 2.5kHz and input voltage

source, Vdc = 100V, Table 2 gives the comparison of dif-

ferent modulation techniques with the different factors. The

PD-PWM gives the lower THD and higher output voltage

compare to all other modulation techniques.

D. CAPACITOR VOLTAGE BALANCING

The self-voltage balancing of the capacitors C1 and C2 is

one of the essential features of the proposed topology. Both

voltages must be balanced with the voltage equal to half of

the input voltage. From Table 1, the capacitor C1 and C2

have the same behavior in terms of charging and discharging

pattern over a fundamental cycle. The capacitors C1 and

FIGURE 4. PD-PWM technique with (a) logic for the gate pulse
generation, (b) carrier and reference signal and (c) generated gate pulses
for all switches.

C2 get charged during the voltage levels of zero, ±Vdc/2,

and ±Vdc. The equivalent circuit during the charging od

the capacitors is depicted in Fig. 5 (a). In the charing loop,

the parasitic resistance of diodes, switches and equivalent

series resistance (ESR) of capacitors are present. The lower
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TABLE 2. Comparison of different PWM techniques.

FIGURE 5. Equivalent circuit for the proposed nine level inverter for
(a) charging of capacitors, (b) discharging of capacitor during voltage level
of ±3Vdc/2 and (c) discharging of capacitors during the voltage voltage of
±2Vdc [Vd = Forward voltage drop of diode, rd = forward resistance of
diode, rsw = forward resistance of switch and rESR = ESR of capacitor].

value of these elements results in a meager value of time

constant RC in the charing loop. By neglecting the voltage

drops of the switches and diodes, the capacitor voltages will

be half of the input voltage, i.e.,

VC1 = VC2 =
Vdc

2
(2)

The capacitors get discharged by connecting them in series

with the input source during the boost mode of operation,

i.e., during the voltage levels of ±3Vdc/2, and ±2Vdc as

shown in Fig. 5 (b) and (c) respectively. the fully charged

capacitors start to discharge and their voltage drops from

Vdc/2. However, during the discharging of capacitors as

shown in Fig. 5 (b) and (c), the time constant RC is very much

high compared to the charging of the capacitors. This results

in the slow discharging of the capacitors. When the next

charging state comes, the voltage across the capacitors again

rises to Vdc/2. Therefore, over a complete fundamental cycle,

both capacitors charge and discharge for several duration, and

each capacitor voltage can be maintained at the Vdc/2 with

some ripple voltage.

III. COMPARATIVE STUDY

To show the merits of the proposed nine-level topology,

a comparison has been carried out in terms of different

component counts, total voltage stress, and gain of different

topologies. Table 3 gives a quantitative comparison between

the proposed topology and recently introduced SC-based

topologies. The proposed topology requires ten switches for

the nine-level generation, which is lower than the topologies

proposed in [26], [27], [30], [33], and [35]. Furthermore,

the proposed topology uses only two capacitors for the gain

of two. However, the topologies proposed in [22] and [24]

gives a voltage gain of 1.5 by using three capacitors. Another

noticeable benefit of the proposed topology has been in

terms of reduced voltage stress. The TSVpu for the pro-

posed topology has a lower value compared to topologies

of [28], [30], [33], [34], and [36].

Apart from the quantitative analysis, a cost comparison

of the proposed topology is given in Table 4. The rating of

components has been selected based on the structure of the

topologies. From Table 4, the proposed topology gives the

minimum cost among all the topologies under consideration.

The lower cost, along with the lower number of components

gives an additional edge of the proposed topology for low and

medium voltage applications as compared to other nine-level

topologies with a single dc input voltage source. The reduced

switch count implies reduced conduction losses. In theory,

the maximum switch blocking voltage dictates the switching

losses in addition to switching frequency. Furthermore, two

of the total switches operate at the fundamental switching

frequency. These factors supplement the fact of reduced

switching losses. All these factors help in concluding that

the proposed MLI has improved efficiency in comparison to

similar counterpart topologies

For a power electronic converter, efficiency has been one

of the leading performance parameters. The efficiency of

a converter depends on the losses of the converter. With

power electronic switches, conduction and switching losses

contribute to the overall losses in addition to the ripple losses

of the switched capacitor unit. The conduction losses occur

due to the power loss of the equivalent resistance of switch or

diode. PLECS software has been used for the accurate estima-

tion of efficiency through thermal modeling. Fig. 6 illustrates

the curves of efficiencies with output power for different

similar topologies. As can be seen from these curves that the

proposed topology along with topologies of [26] and [27] has

almost similar curves. However, the proposed topology has

a slightly higher value of efficiency compared to all other

topologies. The topologies proposed in [30] and [36] have

lower efficiencies due to their higher number of components

and the number of capacitors.

IV. RESULTS AND DISCUSSION

In this section, different simulation and experimental results

have been illustrated and discussed in detail. The PD-PWM

technique as shown in Fig. 4 has been used to demonstrate

the performance of the proposed nine-level topology. For the

simulation, two capacitors with 2200µF have been used. The

rating of the capacitor has been chosen based on the following

5844 VOLUME 8, 2020
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TABLE 3. Quantitative comparison of the proposed topology with other topologies.

TABLE 4. Cost comparison between proposed topology and recently introduced topologies with single source nine level configuration.

equation:

C1 = C2 =
Ipk

(1VC × fo)
(3)

where, Ipk , 1VC , and fo are the peak load current, capacitor

voltage ripple, and frequency of the output voltage, respec-

tively [27]. The different parameters used for the validation

of the proposed topology has been given in Table 5.

A. SIMULATION RESULTS

The proposed nine-level topology has been simulated using

PLECS software. Fig. 7 shows the different simulated

waveforms for the proposed topology. The ac output voltage

has a peak of 200V, which has been fed to a series-connected

the resistive-inductive load (Z = 50mH + 20 �), results in

an output current of a peak value of 7.5A. The voltage across

both capacitors varies around 50V with a minimum and max-

imum value of 45V and 51V, respectively. Furthermore, the

FFT of the output voltage has also been shown in Fig. 7 (b),

which has a THD of 9.41% with the elimination of all lower-

order harmonics.

Some of the performance parameters have also been shown

for the proposed topology. Fig. 8 shows the variation of

capacitor ripple voltage alongwith THD. The capacitor ripple
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FIGURE 6. Efficiency comparison of different topologies.

TABLE 5. Simulation and experimental parameters.

TABLE 6. Power loss distribution of the proposed topology with
Po = 800W.

voltage increases as the output power increase. The increase

in capacitor ripple voltage slightly deteriorates the output

voltage waveform and this change results in a slight increase

in the THD. At no load, the THD has a value of 9.2% which

increases to 9.7% at an output power of 2kW.

Furthermore, the performance of the proposed topology

has been tested with a dynamic change of load and mod-

ulation index (MI). Fig. 9 (a) illustrates the output volt-

age, current and capacitor voltages with a load change of

FIGURE 7. Simulation results of (a) output voltage, output current and
capacitor voltage with Z = 50mH + 20 � and (b) FFT of output voltage.

FIGURE 8. Variation of capacitor ripple voltage along with THD.

purely resistive load of Z = 50 � to a series-connected

resistive-inductive load with Z = 50mH + 50 �. With the

change of load type, both capacitor voltages are balanced

and it shows that the load type does not affect the balanc-

ing of capacitor voltages. In addition, a dynamic change of

modulation index has been illustrated in Fig. 9 (b). The MI

has been changed from 1.0 to 0.6 and from 0.6 to 0.4. With

a modulation index of 0.6, the number of levels is reduced

to seven and with a modulation index of 0.4, the number of

levels becomes 5. However, both capacitor voltages remain

balanced.
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FIGURE 9. Simulation results of output voltage, output current and
capacitor voltage with (a) change of load from Z = 50 � to Z = 50mH +

50 � and (b) change of modulation index with Z = 20mH + 20 �.

In addition, the efficiency of the proposed topology against

the output power has been shown in Fig. 10. The maximum

efficiency of the proposed topology has been estimated as

98.25% at the output power of 200W. At the output power

of 2kW, the efficiency of the proposed topology comes out

to be 95%. The proposed topology gives adequate efficiency

at a higher power rating. Furthermore, the power loss distri-

bution among different switches and capacitors for a power

rating of 800W has been given in VI. The switch pair S3

FIGURE 10. Efficiency vs output power curve of the proposed topology.

and S4 have the maximum power loss as both switches are

involved in the charging and discharging of capacitors. With

800W output power, the total losses of the converter become

20.9W. This results in the efficiency of the proposed topology

as 97.5%.

B. EXPERIMENTAL RESULTS

To verify the feasibility of the proposed nine-level topology,

a laboratory prototype was developed to carry out the exper-

imental work. The switching frequency of 2.5 kHz has been

selected for the PD-PWM with a dead time of 2µs provided

by the delay circuit. The gate pulses have been generated

using dSPACE. The experimental setup has been shown in

Fig. 11. For the experimental results, the magnitude of the

dc input voltage source was fixed to 100V. Fig. 12 (a) shows

the output voltage and current waveform for series-connected

resistive-inductive load with R=10� and L=100mH. One

of the main features of the proposed topology has been the

twice voltage gain and this has been confirmed by the out-

put voltage, which has a 200V peak resulting from a 100V

dc input voltage. In addition, both capacitor voltages are

depicted in Fig. 12 (b). Both capacitor voltages, i.e., Vc1

and Vc2 are well balanced and are equal to half of the dc

voltage source, i.e., 50V as shown in Fig. 12 (b). Fig. 12 (c)

depicts the FFT spectrum of the output voltage with a THD

value of 9.5% which is analogous to the simulation value

of THD.

FIGURE 11. Experimental setup for the proposed nine level topology.
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FIGURE 12. Experimental results of (a) output voltage, output current
waveform [v = 100v/div, i = 5A/div] (b) capacitor voltages
[Vc1 = Vc2 = 10V/div] and (c) FFT of output voltage with
Z = 100mH + 10 �.

Moreover, a change in the type of load has also been

considered during the experimental results. Fig. 13 (a) shows

the waveforms as the load changes from resistive-inductive

load to a purely inductive load. Furthermore, the proposed

topology has been tested with a step-change in input dc

voltage while feeding the resistive load. The input dc voltage

Vdc is changed to 100V from 10V and the corresponding

voltage and current waveforms are shown in Fig. 13 (b). All

these results prove the suitability and feasibility of the pro-

posed nine-level boost inverter topology for varying operating

conditions.

Fig. 14 shows the variation of efficiency of the pro-

posed topology with simulation and hardware results. As the

FIGURE 13. Experimental results for the proposed nine level MLI with
(a) change of load from purely inductive to resistive-inductive load
[v = 100v/div, i = 5A/div, Vc1 = Vc2 = 50V/div] and (b) step change in
input dc voltage source from 10V to 100V [v = 80V/div, i = 5A/div,
Vdc = 200V/div.

FIGURE 14. Simulation and experimental efficiency of the proposed
topology.

maximum efficiency of the proposed topology in simulation

is 98.25%, however, with the experimental setup, the mea-

sured efficiency is about 96%.

V. CONCLUSION

A new single-phase nine-level MLI topology has been pro-

posed in this paper. The proposed nine-level boost inverter

topology has been based on switched capacitors with a

reduced number of switches. A detailed comparative study

highlights the proposed topology potential in terms of

reduced requirements of components for the same number of

voltage levels. The cost comparison supplements the lower
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price of the proposed topology with a single dc voltage

source for nine-level and proves it to be cost-beneficial. The

efficiency comparison also gives the additional edge of the

proposed topology compare to other topologies. The reduc-

tion in the number of components, cost, and higher efficiency

makes the proposed topology suitable for low and medium

voltage applications. The workability of the proposed topol-

ogy has been proved by the different results with various load-

ing conditions. The different simulation and hardware results

verify the improved performance of the proposed topology.
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