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Abstract—Circularly polarized superquadric dielectric resonator
antenna is investigated. A single coaxial probe is used to excite
circularly polarized patterns. Finite element method is used to analyze
the problem. Different aspect ratios of the superquadric dielectric
resonator cross section for each squareness parameter for circular
polarization are calculated.

1. INTRODUCTION

The dielectric resonator antennas (DRAs) became attractive to
antenna designers since about 20 years ago [1–5]. DRA has many
advantages such as small size, low transmission loss and ease of
integration with other active or passive MIC components. In addition,
DRAs exhibit a relatively large bandwidth (∼ 10% for εr ∼ 10), while
the patch antenna has a typical bandwidth of only 1–3%. Moreover,
DRAs avoid the inherent disadvantage of patch antennas, such as
high conduction loss at millimeter wave frequencies, and low efficiency
due to surface wave excitation. In its simplest form, a dielectric
resonator antenna is normally made of high-permittivity material and
is located on a conducting ground plane. DRA can be versatile in
shape and exhibit many resonant modes [6–9] which have different
radiation characteristics. A variety of different feeding mechanisms
are available, including excitation by probes [10], slots [11], microstrip
lines [12], dielectric image guides, and coplanar lines [13], and the
various antenna characteristics such as input impedance, bandwidth,
and radiation patterns can be controlled by choosing the dielectric
constant, the dimensions of the dielectric resonator material and the
feeding mechanism.
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Circular polarization has been used in some mobile satellite
communications and vast number of communication systems. A typical
technique for producing circular polarization is by using the feeding
structure to excite two orthogonal linearly polarized modes with a 90◦
phase difference. In [14], the operation of circular polarized dielectric
resonant antenna has been proposed in which circular polarization
operation was accomplished by using two unequal cross slots to couple
energy from microstrip line to a simple DRA. Because their lengths
were unequal, the two near-degenerate orthogonal modes of equal
amplitude and 90◦ phase difference were excited with a relatively less
polarization purity. Recently, a single-fed elliptical dielectric resonator
antenna is designed for circular polarization [15].

In this paper, a single coaxial probe is used to excite a
superquadric dielectric resonator antenna for circular polarization.
The radiation characteristics of the superquadric dielectric resonator
antenna are investigated using the Finite Element Method for the first
time. The dimensions of the antenna and length of the feeding probe
are designed for circular polarization.

2. THE FINITE ELEMENT METHOD

The finite element method (FEM) has become an invaluable tool for
the analysis of electromagnetic problems with complex geometries. In
particular, the three-dimensional (3D) FEM allows for the rigorous
analysis of a broad range of practical structures [16–20]. The
routine use of the FEM in design problems can, however, become
cumbersome due to the vast computational resources often required.
The advantages of the FEM are [21]:

• Sparse matrices result (as opposed to MoM for which dense
matrices result). Sparse matrices allow the application of a wide
range of fast matrix solvers.

• Its application involves discretization of the computational
domain, and therefore is adaptable to a wide range of geometries
and material variations.

Figure 1 illustrates a generic problem. The computational region
is the enclosed volume, Ω. The vector wave equation is the starting
point for the FEM solution
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Figure 1. The problem configuration.

where Z, Jm, and k are the characteristic wave impedance, the current
density and the wave number respectively. A testing procedure is used
similar to the method of moments. Each side is multiplied by a testing
(weighting) function, and integrated. Using the inner product notation

〈
Ā, W̄

〉
=

∫
Ω

Ā · W̄dΩ (2)

where W̄ is the test function and Ā is a field or current. Ideally, the
two sides of the wave equation should be equal and the difference is
zero. In practice the difference will not be zero due to the expansion
of the current distribution into finite number of basis functions with
unknown coefficients, so we minimize the functional
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The finite element method of the problem involves basically four
steps [22]:

• Discretizing the solution region into a finite number of sub-regions
or elements.

• Deriving governing equations for a typical element.
• Assembling of all elements in the solution region.
• Solving the system of equations obtained.

In the finite element method, the radiation boundaries are used
to simulate open problems that allow waves to radiate infinitely far
into space. The waves are observed at the radiation boundary surface.
More details about the finite element method can be found in [22].
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3. ANTENNA STRUCTURE

Figure 2 shows the geometry of the cylindrical superquadric dielectric
resonator antenna structure. The dielectric resonator antenna of
height “h” and dielectric permittivity “εr” has a superquadric cross
section area with aspect ratio “a/b” (major to minor axes ratio). The
superquadric cross section curve is the locus of points satisfying the
following equation [23],

(x
a

)ν
+

(y
b

)ν
= 1 x ≤ a, and y ≤ b (4)

where “a” and “b” are the semi-axes in the x and y directions
respectively, and ν is a “squareness parameter” which controls the
behavior of loop radius of curvature. The coordinates of any point on
the curvature are given by,

x = aψ (β) cosβ
y = bψ (β) sinβ

}
(5)

where

ψ (β) = (|sinβ|ν + |cosβ|ν)−1/ν .

The parameter β is in the range (0 ≤ β ≤ 2π). An important
feature of this particular representation is the fact that equal divisions
in the parameter β results in reasonably equal values of arc length for
the sub-sectional segments. Figure 2(b) illustrates the superquadric
geometry for ν = 2, 3, and 10 and an aspect ratio of “a/b” = 1.5. Thus
the superquadric loop allows modeling of different dielectric resonator
configurations through the variation of parameters a, b, and ν starting
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Figure 2. Geometry of the elliptic dielectric resonator antenna excited
by a probe.
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from circular (ellipse) to square (rectangular) cross sectional area. The
feeding probe of length “�” is embedded within the DRA at feed point
(wx and wy). The DRA is mounted on an infinite size ground plane.
As the squareness parameter “ν” and aspect ratio “a/b” have the most
effect on the dielectric resonator antenna characteristics, through out
the paper these parameters are studied to obtain the best circular
polarization.

4. NUMERICAL RESULTS

To verify our analysis, a superquadric DRA with ν = 2 (elliptical
cross section) with major axis a = 5.25 mm, b = 3.5 mm, h = 3.5 mm,
εr = 12, � = 3 mm, feed probe radius of 0.25 mm, and feed probe
location at (2 mm, 2 mm) is simulated and compared with results
in [15]. Figures 3 and 4 show comparison between the calculated input
impedance and the reflection coefficients and that calculated in [15].
Figure 5 depicts the results of the axial ratio (AR) against frequency.
Figure 6 shows the circular polarization components copolar and cross
polar radiation patterns plotted at frequency f = 9.28 GHz. The
simulated results are in good agreement with the results in [15].
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Figure 3. Input impedance of superquadric DRA.

In the following sections a parametric study is done for computing
the best axial ratio for each superquadric case (ν, a/b) to obtain the
widest bandwidth for circular polarization. The squareness parameter
“ν” of the superquadric DRA is varied and taking the values (2, 4,
and 10) which varies the DRA cross section shape from ellipse to
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Figure 4. Reflection coefficient of superquadric DRA (relative to 50 Ω
feed line).
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Figure 5. The axial ratio versus frequency of superquadric DRA
(ν = 2).

rectangular. The superquadric DRA feeding probe is located at (wx,
wy) = (2 mm, 2 mm) just inside the dielectric. The axial ratio along
the antenna axis is computed for a superquadric DRA with different
aspect ratios (a/b). The minor axis b = 3 mm, h = 3.5 mm, εr = 12,
� = 3 mm, feed probe radius of 0.25 mm, and feed probe location at
(2 mm, 2 mm). These dimensions are used to agree with that used
in [15].
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Figure 6. Computed circular polarization co-polar and cross-polar
radiation pattern at the frequency that has best axial ratio at f =
9.28 GHz.

Table 1. The different superquadric DRA at case (1).

Squareness
parameter (ν)

Aspect
ratio (a/b)

Resonance frequency
(fr) GHz

ν = 2 1.5 10.2
ν = 4 1.6 9.5
ν = 6 1.6 9.4
ν = 8 1.7 9.2
ν = 10 1.7 9.2

Table 2. The different superquadric DRA at case (2).

Squareness
parameter (ν)

Aspect
ratio (a/b)

Resonance
frequency (fr) GHz

ν = 2 1.4 10
ν = 4 1.5 9.2
ν = 6 1.5 9.1
ν = 8 1.6 8.9
ν = 10 1.7 8.7
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Figure 7. The axial ratio of superquadric DRA at different squareness
parameter.
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Figure 7 shows the axial ratio (AR) computed against frequency at
different values of “ν”. The resonant frequency decreased as the aspect
ratio (a/b) increased when “ν” increased (going to be rectangular).
Also the polarization axial ratio is poor when (a/b) is close to one.
The major observation that at each “ν” there will be a certain value
for aspect ratio (a/b) that gives the best axial ratio with the widest
bandwidth for circular polarization. Figure 8 shows the best axial
ratio (its minimum close to 0 dB) curve versus frequency for each “ν”
and aspect ratio (a/b). For the same aspect ratio (a/b), increasing
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Figure 8. The best axial ratio of superquadric DRA at different
squareness parameter.
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Figure 9. The reflection coefficients corresponding to best axial ratio
of Figure 8.
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Figure 10. The input impedance corresponding to best axial ratio of
Figure 8.
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Figure 11. Computed circular polarization copular and cross-polar
radiation patterns at the frequency that has best axial ratio for each
case, h = 3.5 mm and L = 3 mm.
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Figure 12. The axial ratio of superquadric DRA at different
squareness parameter.
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the squareness parameter (ν) leads to an increase in the volume of the
cylinder with both “a” and “b” are kept constant, which also leads to a
decrease in the resonant frequency of the cylinder. The corresponding
reflection coefficient and input impedance for each case are shown in
Figures 9 and 10 respectively. From Fig. 8 and Fig. 9 good impedance
matching occurs depending on the definition of 2.5 dB:1 axial ratio or
about 7.3 dB return loss [24] for different values of (ν) and the aspect
ratio (a/b), i.e., both the axial ratio bandwidth (below 2.5 dB) and
the impedance bandwidth (below 7.3 dB return loss) are overlap each
other to achieve a desirable CP antenna design.
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Figure 13. The best axial ratio of superquadric DRA at different
squareness parameter.
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Figure 15. The input impedance corresponding to best axial ratio of
Figure 13.
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Table 1 gives the values of aspect ratio (a/b) that gives the best
axial ratio and the corresponding resonance frequency (fr) for each
squareness parameter (ν). The aspect ratio (a/b) must be changed
with the squareness parameter (ν) to give the desired CP antenna.
Figure 11 shows the circular polarization copolar and cross polar
radiation patterns plotted at the frequency that has the smallest axial
ratio in the direction normal to the antenna (θ = 0◦).

Keeping the same dimensions as before and changing the height
of the superquadric dielectric resonator antenna “h” = 4 mm and the
feeding probe length “�” = 3.9 mm. Figures 12 shows the axial ratio
(AR) computed against frequency at different “ν”. Also, the resonant
frequency decreased as the aspect ratio (a/b) increased when “ν”
increased. Figure 13 shows the best axial ratio versus frequency
for each “ν” and aspect ratio (a/b). The corresponding reflection
coefficient and input impedance for each case are shown in Figures 14
and 15 respectively.

Table 2 gives the values of aspect ratio (a/b) that gives the best
axial ratio and the corresponding resonance frequency (fr) for each
squareness parameter (ν). Figure 16 shows the circular polarization
copolar and cross polar radiation patterns plotted at the frequency
that has the smallest axial ratio in the direction normal to the antenna
(θ = 0◦).

5. CONCLUSION

Finite element method is used to calculate the dimensions of
the superquadric dielectric resonator antenna designed for circular
polarization. As the aspect ratio (a/b) increased, with “b” constant,
means that the dimension “a” is increased which obviously leading to
a lower resonant frequency. For the same aspect ratio (a/b), increasing
the squareness parameter (ν) leads to an increase in the volume of the
cylinder with both “a” and “b” are kept constant, which also leads to a
decrease in the resonant frequency of the cylinder. It became clear from
the results that, the aspect ratio (a/b) must be varied with changing
the squareness parameter (ν) to achieve a desirable CP antenna design.
Also, there is always a frequency at which a relatively good polarization
ratio is obtained for (a/b > 1.3).
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