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Outdoor images captured in bad weather are prone to yield poor visibility, which is a fatal problem for most computer vision
applications. 
e majority of existing dehazing methods rely on an atmospheric scattering model and therefore share a common
limitation; that is, themodel is only valid when the atmosphere is homogeneous. In this paper, we propose an improved atmospheric
scattering model to overcome this inherent limitation. By adopting the proposed model, a corresponding dehazing method is also
presented. In this method, we �rst create a haze density distribution map of a hazy image, which enables us to segment the hazy
image into scenes according to the haze density similarity.
en, in order to improve the atmospheric light estimation accuracy, we
de�ne an e�ective weight assignment function to locate a candidate scene based on the scene segmentation results and therefore
avoid most potential errors. Next, we propose a simple but powerful prior named the average saturation prior (ASP), which is a
statistic of extensive high-de�nition outdoor images. Using this prior combined with the improved atmospheric scattering model,
we can directly estimate the scene atmospheric scattering coecient and restore the scene albedo. 
e experimental results verify
that our model is physically valid, and the proposed method outperforms several state-of-the-art single image dehazing methods
in terms of both robustness and e�ectiveness.

1. Introduction

Due to the atmospheric suspended particles (aerosols, water
droplets, etc.) that absorb and scatter light before reaching
a camera, outdoor images that are captured in bad weather
(haze, fog, etc.) are signi�cantly degraded and yield poor
visibility, such as blurred scene content, reduced contrast, and
faint surface color. 
e majority of applications in computer
vision and computer graphics, such as motion estimation
[1, 2], satellite imaging [3, 4], object recognition [5, 6], and
intelligent vehicles [7], are based on the assumption that
the input images have clear visibility. 
us, eliminating the
negative visual e�ects and recovering the true scene, which
is o�en referred to as “dehazing,” are highly desired and
have strong implications. However, dehazing is a challenge
problem since themagnitude of degradation is fundamentally
spatial-variant.

As a challenging problem, a variety of methods have been
proposed to address this task using di�erent strategies. 
e
�rst category of methods removes haze based on traditional

image processing techniques, such as histogram-based [8, 9]
and Retinex-based methods [10]. However, the recovered
results may su�er from haze residue and an unpleasing global
visual e�ects, since the adjustment strategies do not consider
the spatial relations of the degradation mechanism. A more
sophisticated category of haze removal methods attempts to
improve the dehazing performance by employing multiples
images that are taken in di�erent atmosphere conditions [11–
13]. Although the dehazing e�ect can be enhanced since
extra information about the hazy image is obtained through
di�erent atmospheric properties, the limitation of these
methods is evident because the acquisition step is dicult
to perform. Another category of methods estimates the
haze e�ects using a camera and polarization �lter which is
identically positioned [14–16]. But these methods are only
valid for mist images, where the polarization light is the
major degradation factor [17]; moreover, these methods are
normally time-consuming.

Recently, bene�ting from the atmospheric scattering
model, many state-of-the-art model-based single image
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dehazing methods have been proposed [11, 18–28]. Although
signi�cant progress has been made, two main limita-
tions remain. First, the atmospheric scattering model that
researchers have adopted is only valid in homogeneous atmo-
sphere conditions, as we noted in Section 2, and therefore
these model-based methods commonly lack robustness. Sec-
ond, many model-based single image dehazing methods that
recover clear-day images rely on the error-prone empirical
assumption as the atmospheric scattering coecient due to
the estimation diculty and model complexity and therefore
are limited in terms of robustness and e�ectiveness.

For instance, He et al. [21] proposed the dark channel
prior based on the statistical observation, which enables us to
directly obtain an approximate estimation of the transmission
map. Despite its e�ectiveness in most cases, this method
cannot process inhomogeneous hazy images due to the
atmospheric scattering model limitation and may fail for the
sky region where the prior is broken. Based on [21], Meng
et al. [23] added a boundary constraint and estimated the
transmission map via a weighted contextual regularization.
However, it is subject to color distortion for the white
object, since it cannot fundamentally address the problem of
ambiguity between the surface color andhaze. Fattal’smethod
[19] is proposed with the assumption that the surface shading
factor and transmission functions are statistically uncorre-
lated in a local patch and estimate the transmission within
the segmented scenes which have the constant scene albedo.
Although it can achieve an impressive e�ect when recovering
a homogeneous mist image, it fails for dense haze scenes and
inhomogeneous hazy imageswhere the assumption is invalid.
Tan [18] proposed a novel dehazing method by assuming
that the clear-day images have higher contrast than the hazy
images; however, results generated using a Markov Random
Field (MRF) tend to be oversaturated, since this method is
similar to the contrast stretching in general. Based on the
Bayesian probabilistic model and the atmospheric scattering
model, Nishino et al. [22] jointly estimated the scene albedo
and depth by completely leveraging its latent statistical struc-
tures. Despite the almost perfect dehazing results for dense
hazy images, the results tend to be overenhanced for the mist
image. Tarel et al.’s method [20] estimates the veil by using
combinations of �lters; the advantage of this method is its
linear complexity and therefore it can be implemented in real
time. Nevertheless, the dehazing e�ect is prone to be invalid
where depth changes drastically, since the median �lter
involved provides poor edge-preserving performance. Zhu et
al. [24] proposed the color attenuation prior, and the depth
information can be well estimated via this prior and a linear
model; nevertheless, it fails in inhomogeneous atmosphere
conditions since the atmospheric scattering model it adopted
is invalid. Wang et al. [26] proposed a fusion-based method
to remove haze, but haze remains when processing inho-
mogeneous hazy images because the atmospheric scattering
model may be invalid in these cases. Besides, this method
is based on wavelet fusion and tends to be invalid for dense
hazy images because the ambiguity between the image color
and haze cannot be well separated. Although Jiang et al. [25]
introduced an eciency hierarchical method for gray-scale
image dehazing, it cannot well handle inhomogeneous scenes

and su�ers from color distortion due to the limitations of the
model, which is similar to [26].

In this paper, we propose an improved atmospheric
scattering model and a corresponding single image dehaz-
ing method that is aimed at overcoming the two main
aforementioned limitations. Compared with the previous
methods, major contributions of our method are presented.
(1) We propose an improved atmospheric scattering model
to address the limitation of the current model, which is
only valid under homogeneous atmosphere conditions. By
considering the inhomogeneous atmosphere, the proposed
model has better properties with respect to the validity and
robustness. (2) Based on the proposedmodel, we create a haze
density distribution map and train the relevant parameters
using a supervised learning method, which enables us to
segment the hazy image into scenes based on the haze density
similarity. 
erefore, the inhomogeneous atmosphere prob-
lem can be e�ectively converted into a group of homogeneous
atmosphere problems. (3) Using the segmented scenes, com-
bined with the proposed scene weight assignment function,
we can e�ectively improve the estimation accuracy of the
atmospheric light by excluding most of the potential errors.
(4) Few dehazing methods estimate the atmospheric scat-
tering coecient but simply use the error-prone empirical
values due to their diculty and model complexity; even this
problem has been noticed by many researchers. We estimate
the atmospheric scattering coecient via the proposed ASP.


e remainder of this paper is structured as follows. In
the next section, we propose the improved atmospheric scat-
tering model based on the limitation analysis of the current
model. In Section 3, we present a novel single image dehazing
method, which includes three key steps: scene segmentation
via a haze density distribution map, improved atmospheric
light estimation, and scene albedo recovery via the ASP. In
Section 4, we present and analyze the experimental results.
In Section 5, we summarize our method.

2. Improved Atmospheric Scattering Model

In computer vision and computer graphics, most model-
based dehazing methods [11, 18–28] rely on the following
atmospheric scatteringmodel, which is formulated under the
homogeneous atmosphere assumption [11, 12, 29, 30]:

� (�, �) = � ⋅ 	 (�, �) ⋅ 
(−�⋅�(�,�)) + �
⋅ (1 − 
(−�⋅�(�,�))) , (1)

where (�, �) is the pixel index, �(�, �) denotes the hazy image,(�, �) = � ⋅ 	(�, �) represents the corresponding clear-day
image, � is the atmospheric light, which is a constant value
throughout the whole image, 	(�, �) is the scene albedo, and�(�, �) is the transmission, which is de�ned as

� (�, �) = 
(−�⋅�(�,�)), (2)

where�(�, �) is the scene depth and� is the atmospheric scat-
tering coecient which describes the ability of a unit volume
of atmosphere to scatter light in all directions [11, 24, 29].



Mathematical Problems in Engineering 3

Figure 1: Examples of hazy images with inhomogeneous atmosphere. Haze density is approximately the samewithin a box but varies between
boxes.

Note that the atmospheric scattering coecient � is
a �xed scalar in (1), which indicates that the attenuation
magnitude is constant throughout the entire hazy image.
However, according to [11, 19, 24, 29], � is determined by the
density of atmospheric suspended particles in the atmosphere
for a particular light wavelength. Consequently, the constant
setting of � in (1) is only valid in homogeneous atmosphere
conditions, as discussed by [21, 24, 26, 29]. 
at is, when
we simply regard the atmospheric scattering coecient �
as a constant in inhomogeneous atmosphere conditions,
the transmission in some scenes is inevitably prone to be
underestimated or overestimated.

In addition, the atmosphere is inhomogeneous in most
practical scenarios, since haze has an inherent dynamic
di�usion property according to Fick’s laws of di�usion [31].
As shown in Figure 1, the haze density spatially varies between
di�erent boxes within a hazy image.

However, this problem can be relatively alleviated.
Although the haze density spatially varies across the entire
image, the haze density within a particular local region is
approximately the same, since the haze di�usion is physically
smooth [11]. For instance, the haze density is generally similar
within the same boxes in Figure 1. 
us, the inhomogeneous
hazy image can be converted into a group of homogeneous
scenes based on the haze density similarity, and each scene
can be regarded as an independent homogeneous subimage.
Based on this notion and inspired by [32, 33], we rede�ne
the atmospheric scattering coecient � in (1) as a scene-wise
variable and propose an improved atmospheric scattering
model as

� (�, �) = � ⋅ 	 (�, �) ⋅ 
−�(�)⋅�(�,�) + �
⋅ (1 − 
−�(�)⋅�(�,�)) , (�, �) ∈ Ω (�) , (3)

where � is the scene index, Ω(�) is the pixel index for the �th
scene, and�(�) is the scene atmospheric scattering coecient,
which is constant within a scene but varies between scenes.
With this improvement, we addressed the inherent limitation
of the atmospheric scatteringmodel, because all types of hazy
images can be precisely modeled.

Recovering the clear-day image is a challenging problem
because the inverse problem via (1) is fundamentally ill-
posed. 
is problem is further aggravated because the atmo-
spheric scattering coecient cannot be simply set using an
error-prone empirical value as in most of the state-of-the-
art dehazing methods [11, 18–28]. We resolve this problem in
Section 3.

3. A Novel Single Image Dehazing Method

In this section, we present a novel single image dehazing
method that is based on the proposed improved atmospheric
scatteringmodel. In thismethod, we �rst create a haze density
distribution map to describe the spatial relations of the haze
density for a hazy image and further segment the hazy image
into scenes based on the haze density similarity. 
en, as a
by-product of segmentation, we can improve the estimation
accuracy of atmospheric light using a proposed scene weight
assignment function. Next, based on the proposed ASP and
the depth information provided via [24], we can estimate the
scene atmospheric scattering coecient and recover the truth
scene albedo.

3.1. Scene Segmentation via a Haze Density Distribution Map

3.1.1. De�nition of aHazeDensity DistributionMap. Based on
the improved atmospheric scattering model, we need to seg-
ment the hazy image into scenes based on the similarity of the
haze density.
us, the spatial distribution of haze density for
a hazy image should be obtained.However, to our knowledge,
there does not yet exist a pixel-based nonreference haze den-
sity distribution model that is consistent well with the prac-
tical judgement of haze density. Choi et al. [34] propose the
fog aware density evaluator (FADE), which is a patch-based
evaluator to assess the fog density for an entire hazy image
or local patch. However, it is a patch-based assessment that is
relatively computationally expensive to obtain and therefore
cannot be implemented as an intermediate step. 
us, a
high eciency pixel-based strategy for describing the spatial
relations of the haze density for a hazy image is required.

According to [34–36], the haze density representation is
primarily correlated with threemeasurable statistical features
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of a hazy image �(�, �), including the brightness component��(�, �), texture details component ∇�(�, �), and saturation
component �∘(�, �). 
us, inspired by [24], we create a linear
model named the haze density distribution map that can be
expressed as

�(�, �) = �1 ⋅ �� (�, �) + �2 ⋅ ∇� (�, �) + �3 ⋅ �∘ (�, �)
+ �4, (4)

where �(�, �) is the haze density distribution map, �1,�2, and �3 are the corresponding unknown parameters for
each component. Inspired by [37, 38], we should further
consider the representation error, such as the quantization
error caused by the three components and noise. 
us, we
set the total representation error as �4. According to (4), all
the components are combined to yield a description of a
haze density distribution. Note that the three components
are relatively independent, and the slight deviation of a
component will therefore not a�ect the other components.

To obtain all relevant parameters of the linear model, we
employ a supervised learning method. We employ 500 train-
ing samples to train this linear model; each training sample
consists of a pair of hazy images and the corresponding truth
haze density map (in order to prepare the training data, we
collect 500 various types of hazy images from the Internet and
use them to produce the corresponding truth haze density).
Considering the superior accuracy of FADE, we adopt it as
the reference for the truth haze density representation. 
e
training strategy is designed as the following:

� (�1, �2, �3, �4)
= argmin {������ − �1 ⋅ �� − �2 ⋅ ∇� − �3 ⋅ �∘ − �4�����2} . (5)

We utilize the gradient descent algorithm to estimate the
linear parameters �1, �2, �3 and �4. By taking the partial
derivatives of�(⋅)with respect to �1, �2, �3 and �4 respectively,
we can obtain the following expressions:

����1 =
1|Λ| ∑��∈Λ�

� (��) ⋅ (� (��) − �1 ⋅ �� (��) − �2
⋅ ∇� (��) − �3 ⋅ �∘ (��) − �4) ,

����2 =
1|Λ| ∑��∈Λ∇� (�

�) ⋅ (� (��) − �1 ⋅ �� (��) − �2
⋅ ∇� (��) − �3 ⋅ �∘ (��) − �4) ,

����3 =
1|Λ| ∑��∈Λ�

∘ (��) ⋅ (� (��) − �1 ⋅ �� (��) − �2
⋅ ∇� (��) − �3 ⋅ �∘ (��) − �4) ,

����4 =
1|Λ| ∑��∈Λ (� (�

�) − �1 ⋅ �� (��) − �2 ⋅ ∇� (��) − �3
⋅ �∘ (��) − �4) ,

(6)

where |Λ| is the total number of pixels within the training
hazy images and �� is the pixel index of the training hazy
images. 
e updating procedure of the linear parameters is
as follows:

�� fl �� + ����� s.t. � ∈ {1, 2, 3, 4} , (7)

where the notation fl indicates that the value of �� in the le�
term is set to be the value of the right term. A�er training, we
obtain the following optimal model parameters (retain four
decimal places for precision) as �1 = 0.9313, �2 = 0.1111,�3 = −1.4634, and �4 = −0.0213. 
e most important
advantage of this model is its linear complexity. Once the
model parameters have been determined, this model can be
used for modeling the haze density distribution of any hazy
image.

In Figure 2, we select several inhomogeneous and homo-
geneous hazy images with various haze densities (see Fig-
ure 2(a)) and demonstrate the corresponding haze density
distribution maps (see Figure 2(b)). 
e dark blue areas
indicate the thinnest haze scene and the dark red areas
represent the densest haze scene, and the color changes from
dark blue to dark red alongwith increasing haze density. Note
that the generated haze density distributionmaps are visually
consistent with the spatial feature of haze density.

However, we note that the haze density distribution map
contains excessive texture details. 
is �nding is caused by
the depth structure of the scene objects, which may a�ect the
components (brightness, texture details, and saturation) that
we adopted to model the density distribution map. 
e haze
density distribution should be �at and independent of any
image structure [33]. Although the excessive texture details
imply the microscopic haze density di�erence, additional
processing will incur extra computational cost. 
e accuracy
will be slightly sacri�ced if we eliminate part of the excessive
texture details; however, we consider this to be a reasonable
trade-o�. 
us, we utilize the guided total variation model
[33] to re�ne the haze density distribution map in the
following:

�ref = �12 ⋅ �����ref − �����22 + �22 ⋅ ( ) ⋅ ����∇�ref

����22 + �32
⋅ (1 −  ) ⋅ ����∇�ref − ∇!����22 ,

(8)

where �ref is the re�ned haze density distribution map,  
is the weight function, � is the haze density distribution
map, and ! is the guidance image, which is de�ned as the
haze density distribution map. According to [33], (8) can
be expressed and processed using an iteration form, and we
have �1 = 1, �2 = 12, and �3 = 1 as the regularization
parameters for the approximation term, smoothing term, and
edge-preserving term, respectively. By comparing Figures
2(b) and 2(c), we note that the excessive texture details have
been signi�cantly eliminated.

3.1.2. Scene Segmentation. Using the re�ned haze distribution
map �ref , our goal in this step is to segment the map
into a group of scenes based on the haze density similarity.
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(a)

(b)

(c)

Figure 2: (a)Various types of inhomogeneous andhomogeneous hazy images. (b)Corresponding haze density distributionmaps. (c) Relevant
re�ned haze density distribution maps.

(a) (b) (c) (d) (e) (f)

Figure 3: Relevant �nal segmentation results of Figure 2. Each hazy image is segmented into three scenes based on the haze density similarity;
we denote the segmented scenes using 1, 2, and 3.

A�er segmentation, pixels within a particular scene should
share an approximately identical haze density, which further
implies that they have the same scene atmospheric scattering
coecient. 
is problem is fundamentally similar to data
clustering; thus, we convert this segmentation process into
a clustering problem and adopt the k-means clustering
algorithm [39, 40].
e clustering procedure can be expressed
as

argmin
Ω

�∑
�=1

∑
(�,�)∈Ω(�)

�����ref (�, �) − "�����2 , (9)

where the # is the cluster number, Ω(�) is the �th cluster,
and "� is the cluster center. A�er extensive experiments and
qualitative and quantitative comparisons (as demonstrated in
Section 4), we obtain the relatively balanced cluster number# = 3. 
e k-means clustering algorithm iteratively forms
mutually exclusive clusters of a particular spatial extent by
minimizing the mean square distance from each pattern to
the cluster center.
e di�erence a�er the $th iteration can be
expressed as

% ($) = ( �∑
�=1

∑
(�,�)∈Ω(�)

�����ref (�, �) − "�����2)
�

, (10)

where $ is the iteration index. 
is iteration procedure stops
when a convergence criterion is satis�ed, and we adopt the

typical convergence criteria [40]: no (or minimal) di�erences
a�er the $th iteration; that is,

****% ($) − % ($ − 1)**** < -. (11)

And we set - = 10−4 to terminate this procedure. Note
that because the clustering step optimizes the within-cluster
sum of squares (WCSS) objective and there only exist a �nite
number of such partitions, the algorithm must converge to
(local) optimum.

However, the segmentation results may exhibit instability
or oversegmentation because the k-means clustering algo-
rithm is uncorrelated with the spatial location, and there
is no guarantee that the global optimum is obtained. 
us,
we further re�ned it via a fast MRF method [41]. 
en, we
denote the further re�ned result as �mrf . Figure 3 shows the
corresponding results�mrf of Figure 2.

3.2. Estimation of Atmospheric Light. 
e atmospheric light� is an RGB vector that describes the intensity of the
ambient light in the hazy image. As discussed by [42], current
single image dehazing methods estimate the atmospheric
light either by user interactive algorithms [19, 24] or based
on the most haze-opaque (brightest) pixels [18, 21, 43–45].
Nevertheless, the located brightest pixels may belong to an
interference object, such as an extra light source, white/gray
objects, and high-light noise. As demonstrated in Figure 4,
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Our method 

He et al.’s method

Namer et al.’s method 

Figure 4: A challenging hazy image for the atmospheric light
locating. 
e result of [21] is depicted in the green box, the result
of [15] is depicted in the blue box, and our result is depicted in the
red outlined areas.

both He et al.’s method [21] (in the green box) and Namer
et al.’s method [15] (in the blue box) locate the interference
object as the atmospheric light in a challenging hazy image.

As a by-product of scene segmentation, we can cope with
the challenging task by designing a scene weight assignment
function. Using this function, we can locate a candidate scene
that excludes most of the interference objects. 
is function
is designed based on three basic observations:

(1) 
e probability that a scene contains the most haze-
opaque (brightest) pixels is proportional to the haze
density [18, 21, 44, 45].
is can be inferred according
to the atmospheric scattering model; when the haze
density is in�nite for a pixel, the relevant pixels will
be reduced to the atmospheric light.

(2) 
emost haze-opaque (brightest) pixel belongs to the
sky region with higher probability, and interference
objects, such as rivers, extra light sources, and road,
are primarily located spatially lower than the sky
scene. 
us, we can avoid these types of interference
objects by considering the scene vertical index.

(3) Most existing dehazing methods are not suitable for
white/gray interference objects (cars, animals, etc.)
because they are not sensitive to the white/gray color
[24]. However, the scene coverage ratio for these
objects is signi�cantly smaller than the scene coverage
ratio for a sky scene.

Accordingly, we assign the weight to each segmented
scene in �mrf by considering the scene haze density, scene
average height, and scene coverage ratio. 
us, the scene
weight assignment function is de�ned as

 � = exp (/�) − exp( 1****Ω�**** ∑(�,�)∈Ω� �) + exp(
****Ω�****
res
) , (12)

where res is the resolution of the hazy image and /� and |Ω�|
are the scene haze density and pixel number, respectively, for
each segmented scene. Based on (12), each segmented scene
will be assigned a weight, and we take the scene with the

Table 1: Assigned weight of each scene in Figure 3.

Weight (a) (b) (c) (d) (e) (f)

Scene 1 −0.3822 0.0805 −0.1065 −0.2837 −0.3827 −0.5711
Scene 2 −1.0301 −0.6728 −0.3528 −0.8370 −0.6412 −0.9283
Scene 3 −1.6284 −1.0299 −0.8407 −1.1495 −1.0578 −1.3305
top weight as the candidate scene 8�. In addition, to further
eliminate the a�ection from high-light noise, we locate the
top 0.1% brightest pixels as the potential atmospheric light
within the candidate scene 8� and take the average value of
these pixels as the atmospheric light.

As shown in Table 1, we list the assigned weight (retain
four decimal places for precision) of each scene (scenes
1, 2, and 3) for Figure 3 and depict the located potential
atmospheric light in the red outlined areas in Figure 5. We
successfully located the atmospheric light and avoid most of
the interference objects, as expected.

We tested our method on the same challenge hazy image
(Figure 4) and here depict our results (the red outlined areas
in Figure 4). By comparison, we demonstrate the advantage
of our method.

3.3. Scene Albedo Recovery via ASP

3.3.1. Average Saturation Prior. Hazy images o�en lack visual
vividness because the scene contents are extremely blurred
with reduced contrast and faint surface colors. Inherently
inspired by [21, 24], we conduct a number of experiments
on varied types of hazy images and high-de�nition clear-day
outdoor images to identify statistical regularities.

Interestingly, as an experimental demonstration shown
in Figure 6, we notice that the RGB histograms of a hazy
image are almost identically distributed (see Figure 6(c)).
Conversely, the RGB histograms of a high-de�nition clear-
day outdoor image (the same scene) are signi�cantly distin-
guishable (see Figure 6(d)). As shown in Figure 6(c), we also
notice that the hazy image contains nearly zero pixels that are
black (RGB 0, 0, and 0)/white (RGB 1, 1, and 1), whereas the
high-de�nition clear-day outdoor image includes numerous
pixels (see Figure 6(d)).


e observations (on hazy image RGB histograms) indi-
cate that most pixels in a hazy image are extremely similar,
therefore causing poor visibility and vice versa. We infer that
this observation will contribute to statistical regularities for
an average saturation distribution; thus we perform extensive
tests on various types of hazy images and high-de�nition
clear-day outdoor images.

Similar to [21, 24], we collect a large number of hazy
images and high-de�nition clear-day outdoor images from
the Internet using several search engines (with the keywords
hazy image and high-de�nition clear-day outdoor images).

en, we randomly select 2,000 hazy images and obtain the
average saturation probability distribution (see Figure 7(a)).
Next, we select 4,000 high-de�nition clear-day outdoor
images with landscape and cityscape scenes (where haze
usually occurs) and manually cut out the sky regions (con-
sidering the similarity between the sky region and the hazy
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Figure 5: Located potential atmospheric light using our method (in the red outlined areas).
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Figure 6: (a) Hazy image. (b) Clear-day image. (c) RGB histograms of (a). (d) RGB histograms of (b).

0

0.
02

5

0.
05

0.
07

5

0.
1

0.
12

5

0.
15

0.
17

5

0.
2

0.
22

5

0.
25

0.
27

5

0.
3

0.
32

5

0.
35

0.
37

5

0.
4

0.
42

5

0.
45

0.
47

5

0.
5

Average saturation

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

P
ro

b
ab

il
it

y 
(%

)

(a)

0
0.

02
0.

04
0.

06
0.

08 0.
1

0.
12

0.
14

0.
16

0.
18 0.

2
0.

22
0.

24
0.

26
0.

28 0.
3

0.
32

0.
34

0.
36

0.
38 0.

4
0.

42
0.

44
0.

46
0.

48 0.
5

Average saturation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

P
ro

b
ab

il
it

y 
(%

)

(b)

Figure 7: (a) Average saturation probability distribution of hazy images. (b) Average saturation probability distribution of high-de�nition
clear-day outdoor images.

image). 
e corresponding average saturation probability
distribution of the high-de�nition clear-day outdoor images
is depicted in Figure 7(b).


e average saturation probability distribution of hazy
images, as shown in Figure 7(a), is distinctly concentrated
at approximately 0.005 (more than 40% at 0.005 and with
a cumulative probability of more than 70% from 0 to 0.01).

is �nding indicates that few pixels are nearly pure white or

black, which con�rms our second observation on Figure 6(c).

us, this result strongly suggests that the average saturation
for a hazy image tends to be a very small value (0 to 0.01 with
an overwhelming probability).


e average saturation probability distribution of high-
de�nition clear-day outdoor images is demonstrated in
Figure 7(b). We compute the expectation of the average
saturation; the results indicate that the average saturation for
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(a) (b)

(c) (d)

Figure 8: Hazy images (homogeneous and inhomogeneous) and the corresponding scattering map.

a high-de�nition clear-day outdoor image tends to be 0.106
with a high probability. As demonstrated in Section 4, to fur-
ther evaluate this conclusion, we select another six possible
average saturation values and further compare the dehazing
e�ect both qualitatively and quantitatively on another 200
various types of hazy images.

3.3.2. Scene Atmospheric Scattering Coe�cient Estimation
and Scene Albedo Recovery. To our knowledge, most exiting
dehazing methods take the error-prone empirical value as
the atmospheric scattering coecient. Despite the valuable
progress that has been made to overcome this problem, there
is likely no optimal solution for all types of hazy images
(even homogeneous images) due to the variation in haze
density. For instance, Zhu et al. tested numerous atmospheric
scattering coecients values in [24] to pursue an optimal
solution; however, the atmospheric scattering coecient is
simply assumed to be 1 in thismethod. Shi et al. [46] also tried
to address the problem by considering the impact of Earth’s
gravity on the atmospheric suspended particles; however, the
dehazing results tend to be unstable [33].

By combining the proposed ASP with the improved
atmospheric scattering model, we can e�ectively estimate the
scene atmospheric scattering coecient within each scene.
We derive (3) as

	 (�, �)
= max(min(� (�, �) − :∞ + :∞ ⋅ 
−�(�)�(�,�)� − 
−�(�)�(�,�) , 1) ,
0) .

(13)

Note that �(�, �) is given and� is estimated in Section 3.2;
the scene albedo 	(�, �) is now a function with respect to
the scene atmospheric scattering coecient �(�) and the
scene depth �(�, �). Due to signi�cant progress in estimating
the scene depth [22, 24], we assume that the scene depth

�(�, �) is given by [24]. 
erefore, the scene albedo 	(�, �)
is a function only with respect to the scene atmospheric
scattering coecient �(�). For convenience of expression, we
rewrite (13) as

	 (�, �) = ; (� (�)) , (�, �) ∈ Ω�. (14)

Next, based on the proposed ASP, we can obtain the scene
atmospheric scattering coecient �(�) as

�̂ (�) = argmin
�(�)
����? (; (� (�))) − 0.106����2 , (15)

where ?(⋅) is the average saturation computing function. Note
that (15) is a convex function, and we can obtain the optimal
solutions of the scene atmospheric scattering coecient using
the golden section method [47] and set the termination

criteria to 10−4 according to [48, 49]. Once we estimate the
scene atmospheric scattering coecient �(�) for all scenes,
the corresponding scattering map is obtained. Considering
that the scene atmospheric scattering coecient estimation
is inherently a scene-wise process, we utilize the guided
total variation model [33] to increase the edge-consistency
property. Figure 8 shows four example demonstrations of
hazy images (Figures 8(a) and 8(b) are homogeneous hazy
images, and Figures 8(c) and 8(d) are inhomogeneous hazy
images) and the obtained corresponding scattering maps. It
can be noticed that the scattering maps are consistent well
with the corresponding haze images.

According to (3), we can directly obtain the scene albedo	(�, �), since all the unknown coecients are determined,
including the atmospheric light A, the scene atmospheric
scattering coecient �(�), and the scene depth �(�, �). 
en,
the clear-day image can be recovered as (�, �) = � ⋅ 	(�, �).
4. Experiments

Given hazy image with @ pixels and segmented into #
scenes a�er jth iteration, the computational complexity for
the proposed method is A(@#$), when the linear parameters
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Figure 9: Five example experimental demonstrations of qualitative comparison using di�erent clustering number #. (a) Hazy image. (b–j)
Le� to right: the recovered images using the value of # from 1 to 9, respectively.

�1, �2, �3, and �4 in (4) are obtained via training. In our
experiments, we implemented our method in MATLAB, and
approximately 1.9 seconds is required to process a 600 ×400 pixels’ image using a personal computer with 2.6GHz
Intel(R) Core i5 processor and 8.0GB RAM.

In this section,we �rst demonstrate the experimental pro-
cedure for determining the clustering number in (10). 
en
we demonstrate the validity of the proposed ASP through
qualitative and quantitative experimental comparisons. Next,
in order to verify the e�ectiveness and robustness of the
corresponding dehazing method, we test it on various real-
world hazy images and conduct a qualitative and quantitative
comparison with several state-of-the-art dehazing methods,
such as those by Tarel et al. [20], Zhu et al. [24], He et al.
[21], Ju et al. [33], andMeng et al. [23].
e parameters in our
method are all demonstrated in Section 3, and the parameters
in the �ve state-of-the-art dehazing methods are set to be
optimal according to [20, 21, 23, 24, 33] for fair comparison.

For quantitative evaluation and comparison, we adopt
several extensively employed indicators, including the per-
centage of new visible edges 
, contrast restoration quality B,
FADE ?, and the hue �delityC. According to [50], indicator 

measures the ratio of edges that are newly visible a�er restora-
tion, and indicator B veri�es the average visibility enhance-
ment obtained by the restoration.
e indicator ? is proposed
by [34], which is an assessment of haze removal ability. 
e
indicator C is presented by [51], which is a statistical metric
to indicate the hue �delity a�er restoration. Higher values
of 
 and B imply better visual improvement a�er restoration,
lower values of ? indicate less haze residual (which means a
better dehazing ability), and a smaller value of C indicates
that the dehazing method maintains better hue �delity.

4.1. Experimental Comparison for Clustering Number. In
Section 3.1, we propose a haze density distribution map
to describe the spatial relations of the haze density for a
hazy image and adopt the k-means clustering algorithm to
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Figure 10: Values of 
 using di�erent clustering number k.

segment it into a group of scenes based on the haze density
similarity. To determine a relatively balanced clustering num-
ber k, we conduct a large number of experiments on di�erent
hazy images using di�erent values of clustering number #.

en, we compared the dehazing e�ect in terms of the qual-
itative comparison, computational time, and quantitatively
comparison using three indicators (
, B, and ?).

Figure 9 shows �ve example experimental demonstra-
tions of qualitative comparison using di�erent clustering
number k, and Figures 10–13 show the corresponding quan-
titative comparison results of 
, B, ? and computational time,
respectively.
rough qualitative comparison, we �nd that the
dehazing e�ect improves when # increases from 1 to 3 and
tends to stabilize a�erwards. As we can see, when # equals 1
(which implies removing haze using the current atmospheric
scattering model (1)), the haze residual is obvious (see
Figure 9(b), the sky region in Test 1, upper le� corner in Test 2
andTest 3, and the long-range scene in Test 4).When # equals
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Figure 11: Values of B using di�erent clustering number k.
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Figure 13: Computational time using di�erent clustering number k.

3 (see Figure 9(d)), haze is completely removed and the details
of the scenes are adequately restored, the recovered color
is nature and visually pleasing, and no overenhancement
appears. However, the dehazing e�ect tends to be the same;
even # continues to increases (see Figure 9(d), comparedwith
Figures 9(e)–9(j)).


is observation is consistent with the quantitative com-
parison results, as shown in Figures 10–12; when # increases
from 1 to 3, the values of 
 and B rise (see Figures 10 and 11),
which means more edges are recovered and better visibility
enhancement is obtained. 
e value of ? decreases obviously
(see Figure 12), and it implies thatmore haze is removedwhen# increases from 1 to 3. Despite the increased computational
time, as shown in Figure 13, we think it is a reasonable trade-
o� for better dehazing e�ect. A�erwards, with the increased
clustering number (from 3 to 9), the values of 
 and B tend to
be stable, and the value of ? �uctuates and even rises slightly,
as shown in Figures 10–12. Meanwhile, the computational
time rises along with the increasing clustering number.


e observations for the �ve example experimental
demonstrations are consistent with the results of more than
200 experiments. Consequently, we assume a clustering
number # of three is a balanced choice for our method.

4.2. Experimental Comparison for ASP. In Section 3.3, we
propose the ASP based on the statistics of extensive high-
de�nition clear-day outdoor images, and the results indicate
an average saturation of 0.106 with high probability for a
high-de�nition clear-day outdoor image. To further verify
the validity of this conclusion, we test and compare the
dehazing e�ect using di�erent values of the average saturation
(0.01, 0.05, 0.106, 0.15, 0.2, 0.25, and 0.3) on another 200
hazy images.
e four example experimental demonstrations
are depicted in Figure 14. 
rough qualitative comparison,
it is obvious that the dehazing magnitude is approximately
proportional to the average saturation value, especially when
average saturation value rises from 0.01 to 0.15 (see Figures
14(b)–14(e)). However, when average saturation value goes
beyond 0.15, the recovered image looks dimand color tends to
be unnatural (see Figures 14(f)–14(h), the close-range scene
in Test 1 and Test 2, the upper le� corner and middle part
in Test 3, and long-range scene in Test 4). When the average
saturation equals 0.106, as shown in Figure 14(d), ourmethod
unveils most of the details, recovers vivid color information,
and avoids overenhancement, with minimal Halo artifacts.


e corresponding quantitative comparisons of Figure 14
are shown in Figures 15–18. In addition to 
, B, and ?, we also
measure and compare the value of indicatorC.

As shown in Figures 15 and 16, when average saturation
value rises from 0.01, the values of 
 and B increase and
tend to achieve a high value when average saturation value
equals 0.106 and �uctuate slightly a�erwards. 
is indicates
more edges newly visible are obtained and better visual e�ect
is enhanced when average saturation value achieves 0.106.

is observation is consistent with Figure 17; the value of? declines signi�cantly and tends to be stable when average
saturation value equals 0.106, which implies the best haze
removal e�ect can be achieved when average saturation value
achieves 0.106. However, as shown in Figure 18, the value of



Mathematical Problems in Engineering 11
T

es
t 

2 
T

es
t 

3 
T

es
t 

4 
T

es
t 

1

(a) (e)(d)(c)(b) (f) (h)(g)

Figure 14: Four example experimental demonstrations of qualitative comparison using di�erent values of the average saturation. (a) Hazy
image. (b–h) Le� to right: recovered images using average saturations of 0.01, 0.05, 0.106, 0.15, 0.2, 0.25, and 0.3, respectively.
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Figure 16: Values of 	 using di�erent average saturation values.
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Figure 17: Values of ? using di�erent average saturation values.
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(a) (b) (c) (d) (e) (f) (g)

Figure 19: Qualitative comparison of the homogeneous dense hazy image. (a) Hazy image. (b) Tarel et al.’s result. (c) Zhu et al.’s result. (d) He
et al.’s result. (e) Ju et al.’s result. (f) Meng et al.’s result. (g) Our result.

(a) (b) (c) (d) (e) (f) (g)

Figure 20: Qualitative comparison of the homogeneous image with large white or gray regions. (a) Hazy image. (b) Tarel et al.’s result. (c)
Zhu et al.’s result. (d) He et al.’s result. (e) Ju et al.’s result. (f) Meng et al.’s result. (g) Our result.

(a) (b) (c) (d) (e) (f) (g)

Figure 21: Qualitative comparison of the homogeneous image with sky region. (a) Hazy image. (b) Tarel et al.’s result. (c) Zhu et al.’s result.
(d) He et al.’s result. (e) Ju et al.’s result. (f) Meng et al.’s result. (g) Our result.

C stays at a low level and increases dramatically when the
average saturation value exceeds 0.106, whichmeans the color
distortion appears inevitably.


ese observations on the four example experimental
demonstrations are in consistency with most of the rest
experimental results; thus the ASP is physically valid and is
able to well handle various types of hazy image.

4.3. Qualitative Comparison. Considering that the �ve state-
of-the-art dehazing methods are able to generate perfect
results using hazy images, a visual ranking of the methods
is therefore dicult to complete. 
us, we select six chal-
lenging images, including a homogeneous dense haze image
(Figure 19(a)), a homogeneous image with large white or
gray regions (Figure 20(a)), a homogeneous image with a sky
region (Figure 21(a)), a homogeneous image with rich texture

details (Figure 22(a)), an inhomogeneous long-range image
(Figure 23(a)), and an inhomogeneous close-range image
(Figure 24(a)).

Figures 19–24 demonstrate the qualitative comparison of
the �ve state-of-the-art dehazing methods with our method.

e original hazy images are displayed in column (a);
columns (b) to (g), from le� to right, depict the dehazing
results and the corresponding zoom-in patches of the meth-
ods of Tarel et al., Zhu et al., He et al., Ju et al., Meng et al.,
and our method, respectively.

As shown in Figure 19(b), Tarel et al.’s methods are
obviously unable to process dense hazy image. 
is is due to
the fact that Tarel et al.’s method uses a geometric criterion
to decide whether the observed white region belongs to the
haze or the scene object; thus it is unreliable under dense haze
condition. In Figures 20(b) and 22(b), we can notice that Tarel
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(a) (b) (c) (d) (e) (f) (g)

Figure 22: Qualitative comparison of the homogeneous image with rich texture details. (a) Hazy image. (b) Tarel et al.’s result. (c) Zhu et al.’s
result. (d) He et al.’s result. (e) Ju et al.’s result. (f) Meng et al.’s result. (g) Our result.

(a) (b) (c) (d) (e) (f) (g)

Figure 23: Qualitative comparison of the inhomogeneous long-range image. (a) Hazy image. (b) Tarel et al.’s result. (c) Zhu et al.’s result. (d)
He et al.’s result. (e) Ju et al.’s result. (f) Meng et al.’s result. (g) Our result.

(a) (b) (c) (d) (e) (f) (g)

Figure 24: Qualitative comparison of the inhomogeneous close-range image. (a) Hazy image. (b) Tarel et al.’s result. (c) Zhu et al.’s result. (d)
He et al.’s result. (e) Ju et al.’s result. (f) Meng et al.’s result. (g) Our result.

et al.’s results su�er from the overenhancement; this is because
this method is based on He et al.’s method, and therefore the
transmission will be overestimated inevitably, as discussed in
[21]. In addition, haze obviously remains around the sharp
edges in Tarel et al.’s results, as shown in the zoom-in patches
of Figures 21(b) and 23(b), since the median �lter involved
has poor edge-preserving behavior.

Zhu et al.’s method is a prior-based dehazing method and
therefore cannot handle dense hazy image (see Figure 19(c)),
since the relevant color attenuation prior fails for dense
hazy image where the haze density is independent with
the scene depth. Although Zhu et al.’s method is able to
yield almost perfect when processing homogeneous mist
images, the dehazing e�ect is unstable for the inhomogeneous
hazy images (the haze remains at the mountain scene in
Figure 23(c) and the zoom-in patches of Figure 24(c)).

Obviously, this is because the atmospheric scattering model
adopted is invalid under inhomogeneous atmosphere condi-
tion.

Due to the inherent problem of dark channel prior, He
et al.’s method cannot be applied to the regions where the
brightness is similar to the atmospheric light (the sky region
in the Figure 21(d) is signi�cantly overenhanced). Moreover,
similar with Zhu et al.’s method, He et al.’s method tends to
be unreliable when processing inhomogeneous hazy images.
As we can see from the zoom-in patches of Figures 23(d) and
24(d), haze cannot be removed globally.

Despite Ju et al.’s method getting really good result,
the overexposure (see the zoom-in patches of Figures 22(e)
and 24(e)) and color distortion e�ects (see the upper part
of Figures 22(e) and 23(e)) appear since the transmission
estimation method is parameter sensitive. As shown in
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Table 2: Value of indicator 
 for the dehazing results of Figures 19(a)–24(a) using di�erent methods.


 Tarel et al.’s
method [20]

Zhu et al.’s
method [24]

He et al.’s
method [21]

Ju et al.’s
method [33]

Meng et al.’s
method [23]

Our method

Figure 19 10.3350 9.1313 51.9002 47.7362 50.0129 50.0986

Figure 20 1.4785 1.0081 1.0650 1.2816 1.0323 1.4758

Figure 21 0.4016 0.1519 0.1491 0.0603 0.3040 0.1469

Figure 22 0.6243 0.2225 0.3097 0.1753 0.3232 0.3494

Figure 23 0.4573 0.0713 0.0958 0.0589 0.1446 0.1463

Figure 24 4.2303 1.3941 2.8247 2.9906 1.7313 4.4613

Table 3: Value of indicator B for the dehazing results of Figures 19(a)–24(a) using di�erent methods.

B Tarel et al.’s
method [20]

Zhu et al.’s
method [24]

He et al.’s
method [21]

Ju et al.’s
method [33]

Meng et al.’s
method [23]

Our method

Figure 19 2.2456 2.7717 5.0828 6.0780 4.2383 5.1630

Figure 20 2.1193 1.4425 1.4451 3.8099 1.7171 1.9012

Figure 21 2.3780 1.5599 1.5730 3.3111 1.6098 1.6143

Figure 22 2.1833 1.4152 1.5034 2.4242 1.3657 1.6909

Figure 23 1.4632 1.1635 1.5654 1.5703 1.2689 1.7143

Figure 24 3.0146 1.7835 1.7323 4.4592 1.5042 4.7029

Table 4: Value of indicatorC for the dehazing results of Figures 19(a)–24(a) using di�erent methods.

C Tarel et al.’s
method [20]

Zhu et al.’s
method [24]

He et al.’s
method [21]

Ju et al.’s
method [33]

Meng et al.’s
method [23]

Our method

Figure 19 0.0622 0.1152 0.0001 0.2971 0.3748 0.0209

Figure 20 0.0918 0.0318 0.0026 0.5505 0.2152 0.0517

Figure 21 0.0546 0.0631 0.0013 0.2548 0.0729 0.0539

Figure 22 0.0442 0.077 0.0006 0.1469 0.237 0.0544

Figure 23 0.0373 0.0154 0.0028 0.3324 0.0351 0.0116

Figure 24 0.0504 0.0415 0.0006 0.0493 0.0177 0.0389

Figure 20(e), Ju et al.’smethod recovers themost scene objects
but su�ers from the overenhancement.

Meng et al.’smethod is based on [21] and further improves
the dehazing e�ect by adding a boundary constraint, but the
problem of ambiguity between the image color and haze still
exits and therefore fails for the sky region in Figure 21(f).
In addition, Meng et al.’s results signi�cantly su�er from the
overall color distortion, as illustrated in Figures 21(f), 22(f),
and 23(f).

In contrast, our method removes most of the haze and
well unveils the scene objects, maintains the color �delity,
and eliminates the overenhancement, with minimal Halo
artifacts. Note that, by taking advantage of the proposed
improved atmospheric scattering model, our method is
e�ective for both homogeneous and inhomogeneous hazy
images.

4.4. Quantitative Comparison. To quantitatively assess and
rate the �ve state-of-the-art dehazing methods and our
method, we compute four indicators (
, B, ?, and C) for the
dehazing e�ects of Figures 19–24 and list the corresponding

results in Tables 2–5. For convenience, we indicate the top
value in bold and italics and the second-highest values in
bold.

According to Table 2, our results yield the top value for
Figure 24, which is a typical inhomogeneous hazy image.
Although our results only achieve the second top value for
Figures 19, 20, 22, and 23, the results must be balanced
because the number of recovered visible edges can cause
noise ampli�cation. For instance, Tarel et al.’s results have
the highest value in Figures 19–24, but the relevant visual
e�ects are either overenhanced or su�er from Halo artifacts.
Conversely, our results avoid most of the negative e�ects.

As shown in Table 3, our dehazing results achieve the top
values for both inhomogeneous hazy images (Figures 23 and
24) and the second top values for Figures 19 and 22, which
verify the validity of the proposed atmospheric scattering
model and the e�ectiveness of ourmethod. Althoughwe only
obtain the third top values for Figures 20 and 21, our results
are more visually pleasing. Although Ju et al.’s and Tarel et al.’s
results achieve the top and the second top values for Figures
20 and 21, overenhancement is evident in Figures 20(b) and
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Table 5: Value of indicator ? for the dehazing results of Figures 19(a)–24(a) using di�erent methods.

? Tarel et al.’s
method [20]

Zhu et al.’s
method [24]

He et al.’s
method [21]

Ju et al.’s
method [33]

Meng et al.’s
method [23]

Our method

Figure 19 2.1654 2.4913 0.6674 0.3553 0.7728 0.4962

Figure 20 0.2649 0.3001 0.2853 0.2807 0.3279 0.2172

Figure 21 0.3879 0.5218 0.3247 0.3121 0.3156 0.3034

Figure 22 0.1792 0.2864 0.2294 0.2645 0.2067 0.1664

Figure 23 0.1814 0.4503 0.3402 0.2287 0.2636 0.1794

Figure 24 0.2176 0.5004 0.3266 0.3106 0.4070 0.1293

Table 6: Computational time for Figures 19(a)–24(a) using di�erent methods.

Computational
time (s)

Tarel et al.’s
method [20]

Zhu et al.’s
method [24]

He et al.’s
method [21]

Ju et al.’s
method [33]

Meng et al.’s
method [23]

Our method

Figure 19
(845 × 496) 19.02 3.30 207.00 7.20 5.37 4.85

Figure 20
(768 × 497) 15.12 3.10 189.80 6.70 4.85 3.63

Figure 21
(400 × 600) 6.66 2.44 122.20 4.57 3.12 1.90

Figure 22
(512 × 460) 5.13 2.72 119.76 4.30 3.25 1.75

Figure 23
(512 × 384) 4.72 2.21 99.30 4.20 2.90 1.60

Figure 24
(629 × 420) 7.44 2.47 171.45 4.20 4.03 2.14

20(e), haze is signi�cant in Figure 21(b), and the corners of
the sky region in Figure 21(e) tend to be dark.

As shown in Table 4, the ability for dehazing methods
to maintain the color �delity can be assessed through these
results. He et al.’s results get the best values for all the dehazing
results, our results achieve the second-best values for three
hazy images (Figures 19, 21, and 23), and our results are very
closed to the second-best score for Figures 20 and 22. 
us,
our method canmaintain the color �delity generally for most
of the challenge hazy images. However, this indicator may
only partially reveal the ability of a dehazing method and are
not sensitive to the overenhancement. For instance, He et al.’s
results su�er from overenhancement (refer to Figure 21(d));
Tarel et al.’s results are overenhanced for Figure 22 and achieve
the second-best score. 
us, exploration of an integrated
indicator, which is consistent with human visual judgement,
is necessary.

Because the indicator ? correlates well with human
judgements of fog density [34], we compute the values of
the indicator ? for all dehazing results and list them in
Table 5. As shown in Table 5, our method outperforms other
methods for Figures 20–24 and has the second-best value for
Figure 19.
is �nding veri�es the outstanding dehazing e�ect
of our method, and this conclusion is consistent with our
observation of the qualitative comparison. Importantly, we
prove the power of our method for dehazing inhomogeneous
hazy images. We attribute this advantage to the proposed
improved atmospheric scattering model and the correspond-
ing dehazing method.

In Table 6, we provide a comparison of the computational
times. Note that our method is signi�cantly faster than most
of the other methods and relatively close to the computation
time of Zhu et al.’s method.
e high eciency of ourmethod
is primarily attributed to the linear model, which describes
the haze density distribution and therefore simpli�es the
estimation procedure using a scene-based method instead of
a per-pixel or patch-based strategy.

5. Discussion and Conclusions

In this paper, we have proposed an improved atmospheric
scattering model to overcome the inherent limitation of the
current model. 
is improved model is physically valid and
has an advantage with respect to e�ectiveness and robustness.
Based on the proposed model, we further improve the
e�ectiveness of the corresponding single image dehazing
method, since we abandoned the assumption-based atmo-
spheric scattering coecient but estimated it via the proposed
ASP.

In this method, by means of the proposed haze density
distribution map and the scene segmentation, the inho-
mogeneous problems can be converted into a group of
homogeneous ones. 
en, we further propose the ASP based
on statistics of extensive high-de�nition outdoor images and
�rst estimate the scene atmospheric scattering coecient
via ASP. Next, as a by-product of scene segmentation, we
e�ectively increase the estimation accuracy of the atmo-
spheric light by de�ning a scene weight assignment function.
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Experimental results verify the robustness of the proposed
improved atmospheric scatteringmodel and the e�ectiveness
of the corresponding dehazing method.

Although we have overcome the inherent limitation of
the current atmospheric scattering model and have identi�ed
a method for estimating the scene atmospheric scattering
coecient based on the proposed ASP, a problem remains
unsolved. Despite extensive experimental assessment and
comparison, �nding the optimal solution for scene segmenta-
tion (the clustering problem) is a dicult mathematical task
due to the variety of hazy images. To address this task, some
machine learning methods can be considered, and we leave
this problem for our future research.
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[1] G. Botella and C. Garćıa, “Real-time motion estimation for
image and video processing applications,” Journal of Real-Time
Image Processing, vol. 11, no. 4, pp. 625–631, 2016.

[2] G. Botella, U. Meyer-Baese, A. Garćıa, and M. Rodŕıguez,
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