A Single-Instance Incremental SAT Formulation of Proof- and
Counterexample-Based Abstraction

Niklas Een, Alan Mishchenko

EECS Department
Univ. of California, Berkeley, USA.

Abstract. This paper presents an efficient, combined for-
mulation of two widely used abstraction methods for bit-
level verification: counterexample-based abstraction (CBA)
and proof-based abstraction (PBA). Unlike previous work,
this new method is formulated as a single, incremental SAT-
problem, interleaving CBA and PBA to develop the ab-
straction in a bottom-up fashion. It is argued that the
new method is simpler conceptually and implementation-
wise than previous approaches. As an added bonus, proof-
logging is not required for the PBA part, which allows for a
wider set of SAT-solvers to be used.

1 Introduction

Abstraction techniques have long been a crucial part of
successful verification flows. Indeed, the success of SAT-
solving can largely be attributed to its inherent ability to
perform localization abstraction as part of its operations.
For this reason so called bug-hunting, or BMC, methods
can often be applied on a full design directly, thereby de-
ferring the abstraction work to the SAT-solver. However,
computing an abstraction explicitly is often more useful for
hard properties that require a mixture of different transfor-
mation and proof-engines to complete the verification.

In our formulation, both CBA and PBA compute a lo-
calization in the form of a set of flops. An abstracted flop
is in essence replaced by a primary input (PI), thus giving
more behaviors to the circuit. Both methods work by ana-
lyzing, through the use of SAT, a k-unrolling of the circuit.
However, they differ as follows:

— CBA works in a bottom-up fashion, starting with an
empty abstraction (all flops are replaced by PIs) and
adding flops to refute the counterexamples as they are
enumerated for successively larger k.

— PBA, in contrast, considers the full design and a com-
plete refutation of all counterexamples of depth & (in
the form of an UNSAT proof). Any flop not syntacti-
cally present in the proof of UNSAT is abstracted.

The two methods have complementary strengths: CBA by
virtue of being bottom-up is very fast, but may include
more flops than necessary. PBA on the other hand does a
more thorough analysis and almost always gives a tighter
abstraction than CBA, but at the cost of longer runtime.

Nina Amla

Cadence Research Labs
Berkeley, USA.

In this work, it is shown how the two methods can be
seamlessly combined by applying PBA, not on the full de-
sign, but on the latest abstraction produced by CBA. This
solution has a very elegant incremental SAT formulation,
which results in a simple, scalable algorithm that has the
strength of both methods.

In the experimental section it is shown how a design with
40,000 flops and 860,000 AND-gates is localized to a hand-
ful of flops in just 4 seconds (much faster than any previ-
ous method), and how this abstraction is instantaneously
solved by the interpolation-based proof-engine [10], whilst
the original unabstracted design took 2 minutes to verify,
despite the inherent localization ability of interpolation.

2 Related Work

Counterexample-based abstraction was first introduced by
Kurshan in [8] and further developed by Clarke et. al. in
[3]. Proof-based abstraction was coined by McMillan [11],
and independently proposed by Gupta et. al in [7].

The work most closely related to ours is Gupta’s work
of [7] and McMillan et. al’s work of [1]. In both ap-
proaches, abstract counterexamples are concretized using
a SAT-solver. When concretization fails, the UNSAT proof
guides the abstraction refinement. Our work does not rely
on a SAT-solver to refute counterexamples, but instead uses
a simpler and more scalable method based on ternary sim-
ulation (section 4.1).

Gupta’s approach does not rely on BDD reachability to
produce abstractions; although BDDs are used to form a
complete proof-procedure. Like our method, it tries to limit
the amount of logic that is put into the SAT-solver when
unrolling the circuit, thereby improving scalability. It dif-
fers, though, in that the initial unrolling is done on the
concrete design (our method starts with an empty abstrac-
tion), and that PBA is used to shrink the abstract model
in a more conservative manner, requiring the PBA result
to stabilize over several iterations.

The work of McMillan et. al. mixes PBA for refut-
ing all counterexamples of length k with proof-analysis of
counterexamples from the BDD engine, refuting individual
(or small sets of) counterexamples. Unlike Gupta’s work,
BDDs are an integral part of the abstraction computation.

The approach proposed in this paper differs further from

previous work in that it does not constitute a complete
proof-procedure. There are many different ways of using
an abstraction method as part of a verification flow. A
simple use-model would be: Run the abstraction computa-
tion until some resource limit is reached, then output the
best abstraction found so far and put the method on hold.
If the abstraction turns out not to be good enough for the
downstream flow, resume abstraction computation with a
higher resource limit, and produce a more refined abstrac-
tion. Obviously, this use-model can be further improved by
multi-threading on a multi-core machine.

In the experimental evaluation, we choose to pass ab-
stractions to an interpolation-based proof-engine. This par-
ticular setup relates to the work of [9] and [2].

3 Assumptions and Notation

In the presentation, the following is assumed:

— The design is given as a set of next-state functions
expressed in terms of current state variables (flops) and
primary inputs (PIs).

— The design has only one property, which is a safety
property.

— All flops are initialized to zero, and are running on the
same clock (hence acting as unit delays).

It is further assumed that the logic of the next-state func-
tions is represented as a combined And-Inverter-graph, with
the single property being the output of a particular AND-
gate. As customary, the negation of the property is referred
to as the bad signal.

An “abstraction” is identified with a set of flops. If a flop
is not part of the abstraction, it is treated as a PI in the
abstract model of the design. By this semantics, adding a
flop to the current abstraction means concretizing it in the
abstract model: replace the PI by a flop and connect it to
the appropriate input signal.

4 Algorithm

How does the proposed algorithm work? It starts by assum-
ing the empty abstraction, treating all flops as PlIs. It then
inserts one time-frame of the design into the SAT-solver,
and asks for a satisfying assignment that produces TRUE
at the bad signal. The SAT-solver will come back SAT! and
the counterexample is used to concretize some of the flops
(= CBA). When enough flops have been concretized, the
SAT-problem becomes UNSAT, which means that all coun-
terexamples of length 0 have been refuted (unless there is
a true counterexample of length zero). The algorithm can
now move on to depth 1, but before doing so, any flop that
did not occur in the UNSAT proof is first removed from
the abstraction (= PBA). The procedure is repeated for
increasing depths, resulting in an incremental sequence of
SAT calls that looks something like

1The very first query only comes back “UNSAT” if the property
holds combinationally, a corner case we ignore here.

depth 0: SAT, SAT, SAT, SAT, UNSAT
depth 1: SAT, UNSAT
depth 2: SAT, SAT, SAT, UNSAT

with each sequence of calls at a given depth ending in an
“UNSAT” result that prunes the abstraction built up by
analyzing the preceding “SAT” counterexamples.

The algorithm terminates in one of two ways: either (i)
CBA comes back with the same set of flops as were given to
it, which means we have found a true, justified counterex-
ample, or (ii) it runs out of resources for doing abstraction
and stops. The resulting abstraction is then returned to the
caller to be used in the next step of the verification process.

4.1 Counterexample-based refinement

Assume that for the current abstraction A the last call to
SAT returned a counterexample of length k. The coun-
terexample is then analyzed and refined by the following
simple procedure? in order to refute it:

CBA refinement. Loop through all flops not in A.
Replace the current value of the counterexample with
an X (the undefined value) and do a three-valued simu-
lation. If the X does not reach the bad signal, its value
is unimportant for the justification of the counterexam-
ple, and the corresponding flop is kept as a PI. If, on the
other hand, X propagates all the way to bad, we undo
the changes made by that particular X-propagation and
add the corresponding flop to A.

The order in which flops are inspected does matter for the
end result. It seems like a good idea to consider multiple
orders and pick the one producing the smallest abstraction.
But in our experience it does not improve the overall algo-
rithm. The extra runtime may save a few flops temporarily,
but they are typically added back in a later iteration, or re-
moved by PBA anyway, resulting in the same abstraction
in the end.

4.2 Incremental SAT

Incremental SAT is not a uniquely defined concept. The
interpretation used here is a solver with the following two
methods:

— addClause(literals): This method adds a clausal con-
straint, i.e. (poVp1 V...V py_1) where p; € literals, to
the SAT-solver. The incremental interface allows for
more clauses to be added later.

— solveSat(assumps): This method searches for an as-
signment that satisfies the current set of clauses under
the unit assumptions assumps = ag Aa1 A ... A ap—1.
If there is an assignment that satisfies all the clauses
added so far, as well as the unit literals a;, that model

2This procedure (implemented by Alan Mishchenko in ABC [6]),
has been independently discovered by one of our industrial collabora-
tors, and probably by others too. A similar procedure is described in
[13].

is returned. If, on the other hand, the problem is UN-
SAT under the given assumptions, the subset of those
assumptions used in the proof of UNSAT is returned
in the form of a final conflict clause.

The extension of solveSat() to accept a set of unit literals
as assumptions, and to produce the subset of those that
were part of the UNSAT proof, can easily be added to any
modern SAT-solver.? This is in contrast to adding proof-
logging, which is a non-trivial endeavor. For that reason,
the proposed algorithm is stated entirely in terms of this
interface and does not rely on generating UNSAT proofs.

4.3 Refinement using activation literals

Unlike the typical implementation of PBA, this work uses
activation literals, rather than a syntactic analysis of reso-
lution proofs, to determine the set of flops used for proving
UNSAT. For each flop f that is concretized, a literal a
is introduced in the SAT-instance. As the flop input f;,
at time-frame k is tied to the flop output at time-frame
k + 1, the literal is used to activate or deactivate propaga-
tion through the flop by inserting two clauses stating:

a— (flk+1] = finlk])

The set of activation literals is passed as assumptions to
solveSat(), and for UNSAT results, the current abstrac-
tion can immediately be pruned of flops missing from the
final conflict clause returned by the solver.

This PBA phase is very affordable. The same SAT-
problem would have to be solved in a pure CBA based
method anyway. The cost we pay is only that of propa-
gating the assumption literals. Because abstractions are
derived in a bottom-up fashion, with the final abstraction
typically containing just a few hundred flops, the overhead
is small.

5 Implementation

This section describes the combined abstraction method in
enough detail for the reader to easily and accurately re-
produce the experimental results of the final section. The
pseudo-code uses the following conventions:

— Symbol & indicates pass-by-reference.

— The type Vec(T) is a dynamic vector whose elements
are of type T.

— The type Netlist is an extended And-Inverter-graph.
It has the following gate types: AND, PI, FLop,
CoONST. Inverters are represented as complemented
edges. Flops act as unit delays. Every netlist N, has a
special gate N.True of type CONST.

3Two simple things should be done: (i) the decision heuristic has
to be changed so that the first n decisions are made on the assumption
literals; and (ii) if a conflict clause is derived that contradicts the set
of assumptions, that clause has to be further analyzed back to the
decision literals rather than the first UIP. For more details, please
review the analyzeFinal() method of MiniSAT [5].

— The type Wire represents an edge in the netlist. Think
of it as a pointer to a gate plus a “sign” bit. It serves
the same function as a literal w.r.t. a variable in SAT.
Function sign(w) will return TRUE if the edge is com-
plemented, FALSE otherwise. By wg and w; we refer
to the left and right child of an AND-gate. By w;, we
refer to the input of a flop.

— The type WSet is a set of wires.

— The type WMap(T) maps wires to elements of type
T. For practical reasons, the sign bit of the wire is
not used. For map m, m[w] is equivalent to m[-w].
Unmapped elements of m are assumed to go to a dis-
tinct element T_UNDEF (e.g. LIT_UNDEF for literals,
or WIRE_UNDEF for wires).

— The type lbool is a three-valued boolean that is either
true, false, or undefined, represented in the code by:
LBOOL_0, LBOOL_1, LBOOL_X.

— Every SAT-instance S (of type SatSolver) has a spe-
cial literal S.True which is bound to true. Method
S.newLit() creates a new variable and returns it as
a literal with positive polarity. Clauses are added by
S.addClause() and method S.satSolve() commences
the search for a satisfying assignment.

Because the pseudo-code deals with two netlists N and F,
wire-types are subscripted Wirex and Wirer to make clear
which netlist the wire belongs to. The same holds for WSet
and WMap.

5.1 BMC Traces

To succinctly express the SAT analysis of the unrolled de-
sign, the class Trace is introduced (see Figure 1). It al-
lows for incrementally extending the abstraction, as well
as lengthening the unrolled trace. Its machinery needs the
following;:

— A reference N to the input design (read-only).

— A set of flops abstr, storing the current abstraction.
Calling extendAbs() will grow this set. Calling
solve() may shrink it through its built-in PBA.

— A netlist F' to store the unrolling of N under the cur-
rent abstraction. Gates are put into F' by calling in-
sert(frame, w). Only the logic reachable from gate w
of time-frame frame is inserted. For efficiency, netlist
F is kept structurally hashed.

— A SAT-instance S to analyze the logic of F. Call-
ing solve(f-disj) will incrementally add the necessary
clauses to model the logic of F' reachable from the
set of wires f.disj. The user of the class does not
have to worry about how clauses are added; hence
clausify() is a private method. The SAT-solving will
take place under the assumption fo V f1 V...V fo_1.
The method solve() has two important side-effects:

class Trace {

— Private variables:

Netlist& N;

Netlist F;

SatSolver S

WSetn abstr; — publicly read-only
Vec(WMapn (Wirer)) n2f;

WMapr (Lit) f2s;

WMapn (Lit) act_lits;

— Private functions:
Lit clausify (Wirer f);
void insertFlop (int frame, Wirex w_flop, Wirer f);

— Constructor:
Trace(Netlist& N);

— Public functions:

Wirer insert (int frame, Wiren w);
void extendAbs (Wirex w_flop);

bool solve (WSetr f-disj);

Cex getCex (int depth);

};

class Cex { ... }; — stores a counter-ezample

Figure 1. Interface of the “Trace” class. The class handles
the BMC unrolling of the design N. Netlist F' will store the
structurally hashed unrolling of N. SAT-solver S will store a
CNF representation of the logic in F.

- For satisfiable runs, the satisfying assignment is
stored so that getCex() can later retrieve it.

- For unsatisfiable runs, the flops not participating
in the proof are removed from the current abstrac-
tion.

— Maps n2f and f2s. Expression “n2f[d][w]” gives the
wire in F' corresponding to gate w of N in frame d.
Expression “f2s[f]” gives the literal in S corresponding
to gate f of F.

— Map act_lits. Expression “act_lits|w_flop] gives the ac-
tivation literal for flop w_flop, or WIRE_UNDEF if none
has been introduced.

5.2 The main procedure

The main loop of the abstraction procedure is given in Fig-
ure 2. Trace instance T is created with an empty abstrac-
tion. For increasing depths, the following is done:

— If the SAT-solver produces a counterexample, it is an-
alyzed (by refineAbstraction()) and flops are added
to the abstraction to rule out this particular counterex-
ample.

— If UNSAT is returned, the depth is increased. The
solve() method will have performed proof-based ab-
straction internally and may have removed some flops
from the abstraction.

For each new depth explored, a new bad signal is added
to bad_disy. This disjunction is passed as an assumption to
the solve method of T, which means we are looking for a
counterexample where the property fail in at least one time
frame. It is not enough to just check the last time frame
because of PBA.

5.3 Unrolling and SAT solving

Figure 3 details how insert() produces an unrolling of N
inside F, and Figure 4 describes how solve() translates the
logic of F' into clauses and calls SAT. Great care is taken
to describe accurately what is implemented, as the precise
incremental SAT formulation is important for the perfor-
mance and quality. For the casual reader who may not want
to delve into details, the following paragraph summarizes
some properties of the implementation:

As the procedure works its way up to greater and greater
depth, only the logic reachable from the bad signal is intro-
duced into the SAT-solver, and only flops that have been
concretized bring in logic from the preceding time-frames.
Constant propagation and structural hashing is performed
on the design, although constants are not propagated across
time-frames due to proof-based abstraction (PBA). Con-
crete flops are guarded by activation literals, which are used
to implement PBA. One literal guards all occurrences of one
flop in the unrolling. Flops that are removed by PBA will
not be unrolled in future time-frames. However, fanin-logic
from removed flops will remain in F and in the SAT-solver,
but is disabled using the same activation literals.

6 FEvaluation and Conclusions

The method of this paper was evaluated along two dimen-
sions: (i) how does the new abstraction procedure fare in
the simplest possible verification flow, where a complete
proof-engine (in this case interpolation [10]) is applied to
its result versus applying the same proof-engine without
any abstraction; and (ii) how does it compare to previous
hybrid abstraction methods—in our experiments, the im-
plementation of CBA and PBA inside ABC [6], and the
hybrid method of McMillan et. al. [1].

The examples used were drawn from a large set of com-
mercial benchmarks by focusing on designs with local prop-
erties containing more than 1000 flops.* Experiments were
run on an 2 GHz AMD Opteron, with a timeout of 500
seconds. The results are presented in Table 1.

For all methods, the depth was increased until an abstrac-
tion good enough to prove the property was found. ABC
has a similar CBA implementation to the one presented
in this work (based on ternary simulation), but restarts the
SAT-solver after each refinement. ABC’s PBA procedure is
separate from CBA, so we opted for applying it once at the
end to trim the model returned by CBA. This flow was also

4In other words, we’ve picked examples for which abstraction
should work well. There are many verification problems where ab-
straction is not a useful technique, but here we investigate cases where
it is.

WSetn W Cex combinedAbstraction(Netlist N) {
Trace T(N);
Wiren bad = —N.getProperty();
WSetr bad_disj = 0;

for (int depth = 03;) {
if ((reached resource limit))
return T.abstr;

bad_disj = bad_disj U { T.insert(depth, bad)};

if (T.solve(bad_disj)) { — Found counter-example; refine abstraction:
int n_flops = T.abstr.size();
refineAbstraction(T, depth, bad);
if (T.abstr.size() == n_flops) — Abstraction stable = counter-ezample is valid:
return T.getCex(depth);
telse
depth++;

}

void refineAbstraction(Trace& T, int depth, Wirenx bad) {
Cex cex = T.getCex(depth);
Vec(WMapn (Ibool)) sim = simulateCex(T.N, T.abstr, cezx); — Jsim[d][w]’ = value if gate "w’ at frame ’d’

WSetn to-add;
for all flops w not in T.abstr {
for (int frame = 0; frame < depth; frame++) {
stmPropagate(sim, T.abstr, frame, w, LBOOL_X);
if (sim[depth][bad] == LBOOL_X) {
— "X’ propagated all the way to the output; undo simulation and add flop to abstraction:
for (; frame > 0; frame——)
stmPropagate(sim, T.abstr, frame, w, cez.flops|frame][w]);
to_add = to_add U {w};

break;
}
}
}
for w € to_add
T.extendAbs(w);

}

Vec(WMapn (Ibool)) simulateCex(Netlist N, WSetn abstr, Cex cezx) {
return (ternary simulate counter-example ’cex’ on 'N’ under abstraction ’abstr’)

}

void simPropagate(Vec(WMapn (Ibool))& sim, WSetn abstr, int frame, Wirex w, 1bool value) {
(incrementally propagate effect of changing gate 'w’ at time-frame ’frame’ to "value’)
}

Figure 2. Main procedure. Function combinedAbstraction() takes a netlist and returns either (i) a counter-example (if the
property fails) or (ii) the best abstraction produced at the point where resources were exhausted. We leave it unspecified what
precise limits to use, but examples include a bound on the depth of the unrolling, the CPU time, or the number of propagations
performed by the SAT solver. Function refineAbstraction() will use the latest counterexample stored in T (by solve(), if the
last call was SAT) to grow the abstraction. Ternary (or X-valued) simulation is used to shrink the support of the counterexample.
Abstract flops that could be removed from the support (i.e. putting in an X did not invalidate the counterexample) are kept
abstract; all other flops are concretized. When simulating under an abstraction, abstract flops don’t use the value of their input
signal, but instead the value of the counterexample produced by the SAT solver (where the flop is a free variable).

Abstr. Size (flops) Abstr. Time (sec) Proof Time (sec)
Bench.| #Ands #Flops New New’ ABC Hyb. New New’ ABC Hyb. New New’ ABC Hyb. NoAbs.
T0 57,560 1,549 2 4 2 6 0.1 0.1 0.3 0.5 0.1 0.1 0.1 0.2 0.4
T1 57,570 1,548 15 15 15 15 1.1 0.7 2.3 9.7 0.9 0.9 0.9 2.8 3.5
S0 2,351 1,376 112 157 174 - 0.1 0.3 2.0 - 8.7 129.7 5.3 - 21.2
S1 2,371 1,379 136 170 167 - 0.1 0.1 0.6 - | 57.8 1629 104.9 - 188.1
S2 3,740 1,526 83 123 113 187 0.3 0.1 0.6 26.0 1.1 37.1 11.8 106.7 4.3
DO 8,061 1,026 107 112 106 - 3.0 3.3 159 - 6.9 19.6 4.9 - 7.9
D1 7,262 1,020 139 139 139 139 1.2 1.2 4.4 0.9 0.3 0.3 0.3 2.9 0.6
Mo 17,135 1,367 179 179 180 178 6.8 6.3 18.5 206.5 0.2 0.2 0.2 6.3 0.7
10 1,241 1,104 59 57 50 - 0.5 0.1 0.6 - 2.0 1.9 0.7 - 5.8
11 395,150 25,480 24 21 21 33 5.5 1.3 1.1 16.3 0.0 0.0 0.0 0.3 22.1
12 5,589 1,259 45 44 51 - 1.5 0.5 1.5 - 6.2 5.7 6.8 - 18.0
13 5,616 1,259 49 47 52 - 1.2 0.4 1.5 - 5.9 6.5 6.2 - 19.1
1y 394,907 25,451 79 72 100 - 64.3 19.3 30.9 - 5.1 15.0 17.9 - -
15 5,131 1,227 49 44 38 59 0.5 0.1 0.4 202.2 2.2 0.2 0.4 20.2 1.6
A0 35,248 2,704 61 68 95 81 1.8 1.6 6.3 6.9 18.9 12.0 35.7 18.3 43.2
Al 35,391 2,738 56 56 62 83 2.3 1.7 4.9 11.6 15.7 13.1 31.1 6.9 29.5
A2 35,261 2,707 8 8 18 24 0.1 0.1 0.2 0.8 0.0 0.0 0.0 0.2 0.6
A3 35,416 2,741 59 70 79 83 2.2 2.4 7.9 104.0 21.2 11.5 79.0 12.3 52.2
A4 35,400 2,741 63 65 67 101 2.5 2.1 4.4 34.4 11.9 20.0 36.2 12.1 34.6
Fo 863,248 40,849 3 3 3 - 1.0 2.0 3.5 - 0.0 0.0 0.0 - 48.2
F1 863,251 40,850 4 8 4 - 1.5 4.7 7.0 - 0.0 2.2 0.0 - 100.6
F2 863,254 40,851 5 9 5 - 3.9 6.1 9.4 - 0.0 2.4 0.0 - 110.1

Table 1. Evaluation of abstraction techniques. Four implementations of hybrid counterexample- and proof-based abstraction were
applied to 22 benchmarks of more than 1000 flops, all for which the property holds. In New’, PBA was only applied to the final
iteration (to be closer to the ABC implementation). The first section of the table shows the size of the designs. The second section
shows, for each implementation, the size of the smallest abstraction it produced that was good enough to prove the property. The
third and fourth sections show the time to compute the abstraction, and the time to prove the property using interpolation based
modelchecking, with the very last column showing interpolation on the original unabstracted design. Benchmarks with the same
first letter denote different properties of the same design. Timeout was set to 500 seconds.

simulated in our new algorithm by delaying the PBA filter-
ing until the final iteration (reported in column New’). This
approach is often faster due to the fewer CBA refinement
steps required, but there seems to be a quality/effort trade-
off between applying PBA at every step, or only once at the
end. In particular for the S series, interleaved CBA/PBA
resulted in significantly smaller abstractions. We have ob-
served this behavior on other benchmarks as well.

The McMillan hybrid technique was improved by replac-
ing BDDs with interpolation, which led to a significant and
consistent speedup. However, our new method, and the
similar techniques of ABC, still appear to be superior in
terms of scalability. This is most likely explained by the
expensive concretization phase of the older method, which
requires the full design to be unrolled for the length of the
counterexample.

The effect of an incremental implementation can be seen
by comparing columns New’ and ABC. We have observed
that the speedup tends to be more significant for harder
problems with higher timeouts.

The overall conclusion is that small abstractions help the
proof-engine. However, there are cases where a tighter ab-
straction led to significantly longer runtimes than a looser
one (although that effect did not manifested itself in this
benchmark set). This can partly be explained by the under-
lying random nature of interpolant-based model checking,
but it should also be recognized that replacing flops with
PIs introduces more behaviors, which means the SAT-solver
has to prove a more general theorem. Occasionally this can

be detrimental, and offset the benefit of the reduced amount
of logic that needs to be analyzed. Altogether, it empha-
sizes that abstraction should be used in good orchestration
with other verification techniques.

7 Acknowledgments

This work was supported in part by SRC contracts 1875.001
and 2057.001, NSF contract CCF-0702668, and industrial
sponsors: Actel, Altera, Calypto, IBM, Intel, Intrinsity,
Magma, Mentor Graphics, Synopsys (Synplicity), Tabula,
Verific, and Xilinx.

Trace:: Trace(Netlist& NO) {
N = NoO;
f2s[F.True] = S. True;
}

Wirer Trace:insert(int frame, Wiren w) {

Wirer ret = n2f|[frame][w];

if (ret == WIRE_UNDEF) {
if (w == N.True) { ret = F.True; }
else if (type(w) == PI) { ret = F.add_PI(); }
else if (type(w) == AND) { ret = F.add_And(insert(frame, wo), insert(frame, w1)); }
else if (type(w) == FLOP) { ret = F.add_PI(); if (w € abstr) insertFlop(frame, w, ret); }
n2f [frame][w] = ret;

}

return ret = sign(w); — interpretation: (w " b)= (b ? ~w : w)

}

void Trace::insertFlop(int frame, Wiren w_flop, Wirer f) {
Wirer fuin = (frame == 0) ? =F.True : insert(frame—1, wiy);
Lit p = clausify(f-in);
Lit ¢ = clausify(f);
Lit a = act_lits[w-flop];
if (a == LIT_-UNDEF) {
a = S.newLit();
act_lits[w_flop] = a; }
S.addClause({—a, —p, q});
S.addClause({—a, p, q}); — we’ve now added: a — (p < q)

}

void Trace::extendAbs(Wirex w_flop) {
abstr = abstr U {w_flop};
for (int frame = 0; frame < n2f.size(); frame++) {
Wirer f = n2f[frame][w_flop];
if (f '= WIRE_UNDEF) — f is either undefined or a PI
insertFlop(frame, w_flop, f);

}

Figure 3. Unrolling the netlist. Method insert() will recursively add the logic feeding w to netlist F'. Flops that are concrete
will be traversed across time-frames, but not abstract flops. Each flop that is introduced to F' is given an activation literal. If this
literal is set to TRUE, the flop will connect to its input; if it is set to FALSE, the flop acts as a PI. Activation literals are used to
implement the proof-based abstraction, and to disable flops when the abstraction shrinks. At frame 0, flops are assumed to be
initialized to zero. The purpose of extendAbs() is to grow the abstraction by one flop, adding the missing logic for all time frames.

Lit Trace::clausify(Wirer f) {
Lit ret = f2s[f); — map ignores the sign of ’f’
if (ret == LIT_UNDEF) {
if (type(f) == PI)
ret = S.newLit();
else if (type(f) == AND) {
— Standard Tseitin clausification
Lit z = clausify(fo);
Lit y = clausify(f1);
ret = S.newLit();
S.addClause({z, —ret});
S.addClause({y, —ret});
S.addClause({—z, —y, ret});
}
12s]f] = ret;

return ret ~ sign(f);

}

bool Trace::solve(WSetr f_disj) {
Lit ¢ = S-newLit();
S.addClause({—q} U {clausify(f) | f € f-disj});

assumps = {q} U {act_lits|w] | act_lits[w] != LIT_UNDEF && w € abstr};

bool result = S.solve(assumps);
if (result) (store SAT model)
else abstr = abstr \ {w | type(w) == FLOP && w ¢ S.conflict}; — this line does PBA

S.addClause({—q}); — forever disable temporary clause
return result;

}

Cex Trace::getCex(int depth) {
return (use maps 'n2f’ and ’f2s’ to translate the last SAT model
into 0/1/X values for the Pls and Flops of frames 0..depth)

}

Figure 4. SAT-Solving. Method clausify() translates the logic of F' into CNF for the SAT-solver using the Tseitin transformation.
The above procedure can be improved, e.g., by the techniques of [4, 12]. Method solve() takes a disjunction of wires in F' and
searches for a satisfying assignment to that disjunction. Because only unit assumptions can be passed to solveSat(), a literal g is
introduced to represent the disjunction, and a temporary clause is added. Disabling the clause afterwards will in effect remove it.
The activation literals of the current abstraction are passed together with ¢ as assumptions to solveSat(). The SAT-solver will give
back either a satisfying assignment (stored for later use by getCex()), or a conflict clause expressing which of the assumptions were
used for proving UNSAT. This set is used to perform PBA. In computing assumps, we note that “&& w € abstr” is necessary if
PBA has shrunken the abstraction. In the experimental section, a variant (column New’ in Table 1) is evaluated where PBA is not
applied inside solve(). The set of redundant flops is still computed as above, and remembered. When the resource limit is reached,
those flops that were redundant in the final UNSAT call are removed. In essence, the variant corresponds to an incremental CBA
implementation with a final trimming of the absraction by PBA.

References

1]

N. Amla and K. McMillan. A Hybrid of
Counterexample-based and Proof-based Ab-
straction. In FMCAD, 2004.

N. Amla and K. McMillan. Combining Abstraction
Refinement and SAT-based Model Checking. In
TACAS, 2007.

P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith,
and D. Wang. Automated Abstraction Refine-
ment for Model Checking Large State Spaces
Using SAT-based Conflict Analysis. In FMCAD,
2002.

N. Een, A. Mishchenko, and N. Sorensson. Applying
Logic Synthesis for Speeding Up SAT. In SAT07,
volume 4501 of LNCS, 2007.

Niklas Een and Niklas Sorensson. The MiniSat
Page. http://minisat.se.

Berkeley Logic Synthesis Group. ABC: A Sys-
tem for Sequential Synthesis and Verification.
http://www.eecs. berkeley.edu/ ~alanmi/abc/, v00127p.

A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative
Abstraction Using SAT-based BMC with Proof
Analysis. In ICCAD, 2003.

R. P. Kurshan. Computer-Aided-Verification of
Coordinating Processes. In Princeton Univ. Press,
1994.

B. Li and F. Somenzi. Efficient Abstraction
Refinement in Interpolation-Based Unbounded
Model Checking. In TACAS, 2006.

K. McMillan. Interpolation and SAT-based
Model Checking. In CAV, 2003.

K. McMillan and N. Amla. Automatic Abstraction
without Counterexamples. In TACAS, 2003.

D. Vroon P. Manolios. Efficient Circuit to CNF
Conversion. In SAT, 2007.

D. Wang, P. Jiang, J. Kukula, Y. Zhu, T. Ma, and
R. Damiano. Formal property verification by
abstraction refinement with formal, simulation
and hybrid engines. In DAC, 2004.

