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1 Introduction

After the initiative of constructing fuzzy differential equations sequentially
by Zadeh [1], Dubois et al. [2] and Kaleva [3], FDEs have been investigated
by numerous authors to attain its numerical and analytical approximations.
In recent times, many ways and means are being established to analyze and
simulate fuzzy differential equations. For instance, Euler type methods [4],
shooting method [5], fuzzy Picard method [6], fuzzy Laplace transform [7],
fuzzy Sumudu transform [8], Runge-Kutta method [9]-[10], fuzzy variational
iteration method [11], Adams predictor corrector [12], Taylor method [13],
modified Homotopy perturbation method [14], to name a few. Along with
these techniques, various papers are found where the latest methods, like
different artificial neural networks [15]-[16], are also carried out for the eval-
uation of FDEs.

Recently, artificial neural networks (ANNs) is being widely used to solve
linear and nonlinear ordinary and partial differential equations. It has gained
immense attention of researchers for its universal approximating capabilities
of initial and boundary value problems [17]-[19]. ANNs is considered to be
more advantageous than the other numerical methods as it has lesser num-
ber of model parameters and on increasing the sampling points it does not
go through any computational complexity. FLANN [20]-[21], multilayer per-
ceptron (MLP) [22] and radial basis function (RBF) networks [23] are three
different neural network structures that are mostly found in the literature.
Among these, FLANNs has got abundant interest, for the reason that it
involves polynomials functions for functional expansion and makes the struc-
ture simple.

Nonlinear FDEs are of significant importance, nowadays, as these en-
velop the nonlinearity and uncertainties of dynamical models, simultane-
ously. Therefore, successful scrutiny of these equations has augmented a
notable contribution in the literature. In this scenario, we endeavor to uti-
lize Chebyshev neural network to efficiently obtain the approximate solutions
of nonlinear nth order FDEs. It is a single layer orthonormal FLANNs, where
Chebyshev polynomials of second kind are chosen as the basis for the con-
struction of activation function. The convergence rate of FLANNs is faster
and has lesser computational complexity than MLP method. The rest of the
paper is arranged as follows: In Section 2, preliminaries of fuzzy set theory
are described briefly along with the explanation of nth order differentiability
of fuzzy-valued functions under gH-differentiability. Structural elaboration of
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ChNN is mentioned in Section 3. Section 4 illustrates general formulation of
proposed algorithm for nth order FDEs. Graphical results of some nonlinear
FDEs in comparison with the Runge-Kutta method, and error bars for each
example are investigated in Section 5. In addition, constructive conclusion
is drawn in Section 6 on the basis of the interpretations examined in Section 5.

2 Preliminary

This section contains brief description about fuzzy set theory and differen-
tiability of fuzzy-valued functions that are considerably important for the
remaining paper. The detailed definitions and properties of fuzzy set theory
are greatly found in [1]-[14].

2.1 Fuzzy Set Theory

Λf is said to be set of fuzzy numbers $, if $ : < → [0, 1] is normal,
fuzzy convex, upper semi continuous and compactly supported on < (real
line). Each $ can be represented by nonempty compact intervals as, [$]γ =
[$ (γ) , $ (γ)] that are said to be γ-level sets of $ for γ ∈ [0, 1]. Moreover,
$ (γ) and $ (γ) are non-decreasing lower function and non-increasing upper
function, respectively, such that both are bounded left continuous on (0, 1],
right continuous at γ = 0 and $ (γ) ≤ $ (γ). The length of the γ-level set
of $ is described as L [$ (γ)] = $ (γ)−$ (γ).
Let θ and ϑ be two fuzzy numbers, then gH-difference between these two
fuzzy numbers is defined as:

θ 	gH ϑ = ς =

{
(a) θ = ϑ+ ς

(b)ϑ = θ + (−1) ς

And in terminology of γ-level sets, for γ ∈ [0, 1]

θ (γ)	gH ϑ (γ) =
[
min

{
θ (γ)− ϑ (γ) , θ (γ)− ϑ (γ)},

max
{
θ (γ)− ϑ (γ) , θ (γ)− ϑ (γ)}

]
Additionally, gH-difference can also be illustrated with respect to the

length of fuzzy numbers. Let, L [θ (γ)] and L [ϑ (γ)] be length of θ and ϑ,
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respectively, then

a) θ (γ)	gH ϑ (γ) =
[
θ (γ)− ϑ (γ) , θ (γ)− ϑ (γ)

]
if L [θ (γ)] ≥ L [ϑ (γ)]

b) θ (γ)	gH ϑ (γ) =
[
θ (γ)− ϑ (γ) , θ (γ)− ϑ (γ)

]
if L [θ (γ)] < L [ϑ (γ)]

2.2 Fuzzy-Valued Function

Any function µ̃ (λ) is said to be a fuzzy-valued function if µ̃ : < → Λf, for all
λ ∈ <, where Λf is the space of all fuzzy numbers on <.

2.3 Generalized Hukuhara Differentiability

The gH-differentiability of fuzzy-valued functions was initially introduced by
Bede et al. [24]. It has been followed by several authors for fuzzy differential
equations of initial and boundary value problems [4]-[7]. Subsequent to the
gH-difference, gH-differentiability of fuzzy-valued function is described as:
A continuous fuzzy-valued function χ̃ : (a, b)→ Λf is said to be
gH-differentiable at λ0 ∈ (a, b), if χ̃′gH (λ0) ∈ Λf exists, such that

χ̃′gH (λ0) = lim
h→0

χ̃ (λ0 + h)	gH χ̃ (λ0)

h
(2.1)

where h is such that (λ0 + h) ∈ (a, b). For the γ-level sets of χ̃ (λ) i.e.
χ (λ; γ) =

[
χ (λ; γ) , χ (λ; γ)

]
, it is said to be

gH-differentiable at λ, if χ (λ; γ) and χ (λ; γ) are differentiable i.e.

χ̃′gH (λ; γ) =

[
min

{
d

dλ
χ (λ; γ) ,

d

dλ
χ (λ; γ)

}
,max

{
d

dλ
χ (λ; γ) ,

d

dλ
χ (λ; γ)

}]
(2.2)

Concisely, χ̃ (λ) is said to be gH(i)-differentiable at λ i.e.

χ′gH (λ; γ) =

[
d

dλ
χ (λ; γ) ,

d

dλ
χ (λ; γ)

]
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if L [χ (λ; γ)] is increasing in (a, b) for γ ∈ [0, 1] and gH(ii)-differentiable
at λ and

χ′gH (λ; γ) =

[
d

dλ
χ (λ; γ) ,

d

dλ
χ (λ; γ)

]

if L [χ (λ; γ)] is decreasing in (a, b) for γ ∈ [0, 1]. Analogously, extending
the illustration of gH-differentiability for nth order derivative of χ̃ (λ), we
have,
A continuous fuzzy-valued function χ : (a, b) × Λf × · · · × Λf → Λf, with

χ̃′gH (λ) , · · · , χ̃(n−1)
gH (λ) ∈ Λf also be continuous functions, is said to be nth

order gH-differentiable atλ0, if χ̃
(n)
gH (λ0) ∈ Λf, ∀n ∈ ℵ (natural numbers),

χ̃
(n)
gH (λ0) = lim

h→0

χ̃
(n−1)
gH (λ0 + h)	gH χ̃

(n−1)
gH (λ0)

h
(2.3)

Sequentially, if χ̃ (λ) , χ̃′gH (λ) , . . . , χ̃
(n−1)
gH (λ) are gH(i)-differentiable, i.e.

L [χ (λ; γ)] ,L
[
χ′gH (λ; γ)

]
, . . . ,L

[
χ
(n−1)
gH (λ; γ)

]
are increasing in (a, b) for γ ∈

[0, 1], or, if χ̃ (λ) , χ̃′gH (λ) , . . . , χ̃
(n−1)
gH (λ) are gH(ii)-differentiable, i.e.

L [χ (λ; γ)] ,L
[
χ′gH (λ; γ)

]
, . . . ,L

[
χ
(n−1)
gH (λ; γ)

]
are decreasing in (a, b) for γ ∈

[0, 1], then

χ
(n)
gH (λ; γ) =

[
d(n−1)

dλ(n−1)
χ (λ; γ) ,

d(n−1)

dλ(n−1)
χ (λ; γ)

]
(2.4)

Additionally, if χ̃ (λ) is gH(i)-differentiable and χ̃′gH (λ) , . . . , χ̃
(n−1)
gH (λ)

are gH(ii)-differentiable, i.e. L [χ (λ; γ)] is increasing and L
[
χ′gH (λ; γ)

]
, . . .,

L
[
χ
(n−1)
gH (λ; γ)

]
are decreasing in (a, b) for γ ∈ [0, 1], or, if χ̃ (λ) is gH(ii)-

differentiable and χ̃′gH (λ) , . . . , χ̃
(n−1)
gH (λ) are gH(i)-differentiable, i.e. L [χ (λ; γ)]

is decreasing and L
[
χ′gH (λ; γ)

]
, . . . ,L

[
χ
(n−1)
gH (λ; γ)

]
are increasing in (a, b)
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for γ ∈ [0, 1], then [24],

χ
(n)
gH (λ; γ) =

[
d(n−1)

dλ(n−1)
χ (λ; γ) ,

d(n−1)

dλ(n−1)
χ (λ; γ)

]
(2.5)

3 Chebyshev Neural Network

The original goal of ANNs approach is that it solves the problems in the
same way as a human brain, for instance passing information in the reverse
direction and adjusting the network to reproduce that information. It is
greatly exercised in several areas of science and engineering such as system
identification, medical diagnosis, ocean modelling, geomorphology, etc. In
this section, we define the basic structural algorithm of proposed Chebyshev
neural network, which is a type of ANNs that has a single hidden layer [21].

Figure 1: Schematic structure of Chebyshev neural network
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3.1 Structure of Chebyshev Neural Network

Chebyshev neural network is a functional link artificial neural network, where
the Chebyshev polynomials of second kind are taken into account as basis
functions for the neural networks. The structural design of ChNN employed
for the present problem is shown in Fig.1 that depicts the network connec-
tions from a single input node to a functional expansion block and then to a
single output node. The neural model is configured with two parts, numer-
ical transformation and training process. In numerical transformation part,
each input data λ = (λ1, λ2, . . . , λh)

T is expanded to several terms using
Chebyshev polynomials of second kind T (λ). Expansion of functions with
truncated series of Chebyshev polynomials is highly encouraged as its ex-
pansions converge more rapidly than the other orthogonal polynomials. The
Chebyshev polynomials of second kind may be obtained by the following
recursive formula,

Figure 2: Comparison of lower approximate solution obtained by ChNN
versus Runge-Kutta method of Problem 5.1 for γ = 0.6
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Figure 3: Comparison of upper approximate solution obtained by ChNN
versus Runge-Kutta method of Problem 5.1 for γ = 0.6

Figure 4: Fuzzy solution of Problem 5.1 obtained by ChNN for λ = 0.009

Tp+1 (λ) = 2λTp (λ)−Tp−1 (λ) (3.1)

where T0 (λ) = 1, T1 (λ) = 2λ and Tp (λ) denotes pth Chebyshev poly-
nomial of second kind. In ChNN to get the result the dimension of the input
is increased through Chebyshev polynomial.
In the training process, network parameters are updated and an error func-
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Figure 5: Error bar plots of obtained solutions with error variations of Prob-
lem 5.1

Figure 6: Comparison of lower approximate solution obtained by ChNN
versus Runge-Kutta method of Problem 5.2 for γ = 0.6

tion is minimized using different algorithms. Here, error back propagation
algorithm is exercised to reduce the error and update weights, until the net-
work learns the training data. In this process gradient of an error function
with respect to the network parameters q is calculated. The hyperbolic tan-
gent function tanh (λ) is considered for the activation of the output function,
i.e.
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Figure 7: Comparison of upper approximate solution obtained by ChNN
versus Runge-Kutta method of Problem 5.2 for γ = 0.6

Figure 8: Fuzzy solution of Problem 5.2 obtained by ChNN for λ = 0.009

N (λ, q) = tanh (ξ) (3.2)

with input data λ = (λ1, λ2, . . . , λh)
T , parameters (weights) q and ξ be

the linear weighted sum of Chebyshev polynomials that can be expressed as,
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Figure 9: Error bar plots of obtained solutions with error variations of Prob-
lem 5.2

ξ =
m∑
j=1

ωjTj−1 (λ) (3.3)

where Tj−1 (λ) denote the (j − 1) th Chebyshev polynomial and ωj are
the weight vectors of the ChNN. Now, for modification of weights of ChNN
the principle of back propagation is given as

ωk+1
j = ωkj + ∆ωkj = ωkj +

(
−τ ∂E (λ, q)

∂ωkj

)
(3.4)

where E (λ, q) is the error function that is to be minimized, τ is learning
parameter that can have any value in [10−1, 10−3] and k is iteration step.

4 Formulation of ChNN for Nonlinear Nth Order Fuzzy
Differential Equation

In this section, we formulate the trial and error function of ChNN method
to approximate nonlinear nth order FDEs. Analytical and numerical investi-
gations of nth order FDEs are accomplished by various authors, for instance,
Jayakumar et al. [10] used Runge-Kutta method of order five to numerically
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solve nth order FDEs, Salahshour [25] proposed an integral form to exam-
ine analytical solutions of these equations, Ahmady [26] proposed piecewise
approximation method to discuss the solutions of nth order FDEs etc. Com-
paratively, ChNN for its less computational complexity, executes the appro-
priate analytical approximations more rapidly. In a nutshell, the following
attributes of ChNN has made it more efficient approximator than the other
existing methods:

• As learning proceeds, the weights vary and controls the strength of the
signals between neurons that it sends to the activation function.

• The passing process of weighted sum through a nonlinear activation
function proficiently bounds the values of the neurons so that the neural
network is not paralyzed by divergent neurons.

• Using gradient descent method, for training algorithm, changes the
weights of the network in such a manner that the error of lower and
upper functions is minimized, separately.

• Its process of expanding the functions in truncated series of Chebyshev
polynomials and insertions of neurons, completely discretizes each lower
and upper functions of FDE to an algebraic equation.

As a result, the intricacy of integrations, which exist in other methods in
case of nonlinear functions [14], become extinct. Let the considered nonlinear
FDE be of the form

ϕ̃
(n)
gH (λ) = f

(
λ, ϕ̃ (λ) , ϕ̃′gH (λ) , . . . , ϕ̃

(n−1)
gH (λ)

)
+ g (λ) (4.1)

with the initial conditions ϕ̃ (λ0) = u0, ϕ̃
′
gH (λ0) = u1, . . ., ϕ̃

(n−1)
gH (λ0) =

un−1, where ϕ̃ (λ) is a fuzzy-valued function,

f
(
λ, ϕ̃ (λ) , ϕ̃′gH (λ) , . . . , ϕ̃

(n−1)
gH (λ)

)
describes the nonlinear function of λ and

ϕ̃ (λ) , ϕ̃′gH (λ) , . . . , ϕ̃
(n−1)
gH (λ), g (λ)is the nonhomogeneous part of the equa-

tion and u0, u1,. . ., un−1 represent fuzzy numbers.
Now, let ϕ̃t (λ, q) be the trial solution with adjustable parameters q, then Eq.
(4.1) changes into

ϕ̃
(n)
tgH (λ, q) = f

(
λ, ϕ̃t (λ, q) , ϕ̃′tgH (λ, q) , . . . , ϕ̃

(n−1)
tgH (λ, q)

)
+ g (λ) (4.2)

In ChNN, ϕ̃t (λ, q), for the case of Eq. (4.1) is expressed as:
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ϕ̃t (λ, q) = ϕ̃ (λ0) + (λ− λ0) ϕ̃′ (λ0) + (λ− λ0)2 ϕ̃′′ (λ0) +

· · ·+ (λ− λ0)n N (λ, q) (4.3)

where the last term N (λ, q) is defined in Eq. (3.2) as the output of
ChNN, which contains the parameters that are to be modified, whereas all
the other remaining terms satisfy the initial conditions and do not con-
tain adjustable parameters. The γ-level set of trial solution ϕt (λ, q; γ) =[
ϕ
t
(λ, q; γ) , ϕt (λ, q; γ)

]
can be written as, for all γ ∈ [0, 1],

ϕ
t

(
λ, q; γ

)
= ϕ (λ0; γ) + (λ− λ0)ϕ′ (λ0; γ) + (λ− λ0)2 ϕ′′ (λ0; γ) +

· · ·+ (λ− λ0)n N
(
λ, q
)

(4.4)

ϕt (λ, q; γ) = ϕ (λ0; γ) + (λ− λ0)ϕ′ (λ0; γ) + (λ− λ0)2 ϕ′′ (λ0; γ) +

· · ·+ (λ− λ0)n N (λ, q) (4.5)

q and q are assigned merely to make a distinction between the parameters
of lower and upper functions, respectively, during the network training for
lower and upper functions, independently. Next, define the error function for
the considered FDE with input data λ = (λ1, λ2, . . . , λh)

T and parameters q
as:

Ẽ (λ, q) =
1

2

h∑
i=1

(
ϕ̃
(n)
tgH (λi, q)− f

(
λi, ϕ̃t (λi, q) , ϕ̃

′
tgH (λi, q) ,

. . . , ϕ̃
(n−1)
tgH (λi, q)

)
− g (λi)

)2
(4.6)

for i = 1, 2, 3, . . . and ∀γ ∈ [0, 1],

E
(
λ, q; γ

)
=

1

2

h∑
i=1

(
ϕ(n)

tgH

(
λi, q; γ

)
− f

(
λi, ϕt

(
λi, q; γ

)
, ϕ′

tgH

(
λi, q; γ

)
,

. . . , ϕ(n−1)
tgH

(
λi, q; γ

))
− g (λi)

)2
(4.7)
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E (λ, q; γ) =
1

2

h∑
i=1

(
ϕ
(n)
tgH (λi, q; γ)− f

(
λi, ϕt (λi, q; γ) , ϕ′tgH (λi, q; γ) ,

. . . , ϕ
(n−1)
tgH (λi, q; γ)

)
− g (λi)

)2
(4.8)

To update the weights, derivatives of E
(
λ, q; γ

)
and E (λ, q; γ) are taken

with respective to the weights ωj and ωj, accordingly, i.e.

∂E
(
λ, q; γ

)
∂ωj

=
∂

∂ωj

(
1

2

h∑
i=1

(
ϕ(n)

tgH

(
λi, q; γ

)
− f

(
λi, ϕt

(
λi, q; γ

)
, ϕ′

tgH

(
λi, q; γ

)
,

. . . , ϕ(n−1)
tgH

(
λi, q; γ

))
− g (λi)

)2)
(4.9)

and

∂E (λ, q; γ)

∂ωj
=

∂

∂ωj

(
1

2

h∑
i=1

(
ϕ
(n)
tgH (λi, q; γ)− f

(
λi, ϕt (λi, q; γ) , ϕ′tgH (λi, q; γ) ,

. . . , ϕ
(n−1)
tgH (λi, q; γ)

)
− g (λi)

)2)
(4.10)

Using Eqs. (4.9) and (4.10) in Eq. (3.4) and working out iteratively, the
weights ωj and ωj are modified until the network learns the data and mini-
mum error is obtained for lower and upper functions together. Throughout
this process, different values of τ ∈ [10−1, 10−3] are taken for each iteration.
The modified weights are then plugged into trial solutions i.e. in Eqs. (4.4)
and (4.5), to obtain the approximate solutions of lower and upper functions,
accordingly of fuzzy-valued function ϕ̃ (λ).

5 Illustrative Examples

In this section, we have obtained the solutions of some nonlinear FDEs
for eleven equidistant input points (neurons) in [0, 1] and considered eleven
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weights together with ten Chebyshev polynomials of second kind for the
activation of ξ. Consequently, results are plotted in comparison with the
analytical solutions and Runge-Kutta method [10]. Exact solutions of each
governing problem are obtained using Mathematica. Moreover, the accuracy
of the algorithm is elaborated through error bar plots, which is displayed by
plotting the deviations of exact and approximated values, against the ap-
proximated values.
Since, the computational procedure is same for all the cases of
gH-differentiability, for brief exemplification here, we have just considered

L [ϕ (λ; γ)], L
[
ϕ′gH (λ; γ)

]
, . . ., L

[
ϕ
(n−1)
gH (λ; γ)

]
to be increasing. Therefore,

only the case of gH(i)-differentiability is deliberated in the following problems.

Problem 5.1. Consider Eq. (4.1) for n = 1, f (λ, ϕ̃ (λ)) = exp
(
−ϕ̃ (λ)2

)
and g (λ) = 0 with initial conditions ϕ (0; γ) = (0.75 + 0.25γ, 1.5− 0.5γ),
for all γ ∈ [0, 1]. The attained equation is found in [4] where its numeri-
cal solutions are tabulated and graphically represented on operating Euler
type methods. Here, we procure its analytical solutions on employing ChNN
method. Following the algorithm, enlightened in previous section, after few
iterations we attained the weights as,

q = {5.052× 10−1,−1.209× 10−1, 2.735× 10−2,−4.702× 10−3,

2.587× 10−4, 2.133× 10−4,−1.112× 10−4, 3.311× 10−5,

−6.771× 10−6, 9.058× 10−7,−6.129× 10−8}

for lower function and

q = {2.477× 10−1,−3.773× 10−2, 6.369× 10−3,−1.059× 10−3,

1.645× 10−4, 2.264× 10−5, 2.513× 10−6,−1.717× 10−7,

−4.900× 10−9, 2.881× 10−9,−2.661× 10−10}

for the upper function. On substituting the attained values of q, q, λ0 = 0
and the initial condition ϕ (0; γ) in Eqs. (4.4) and (4.5) the analytical so-
lution of the fuzzy function ϕ̃ (λ) is acquired. The solutions ϕ (λ; γ) and
ϕ (λ; γ) are depicted by Figs. 2 and 3, respectively, in comparison with the
Runge-Kutta method. Fig. 4 shows the fuzzy solution for λ = 0.009 and
different values of γ ∈ [0, 1]. Fig. 5 plots pointwise error variations between
exact solutions and approximated values of lower and upper functions, where
the negligible variation clarify the solutions to be in good agreement with the
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exact ones.

Problem 5.2. Next, take Eq. (4.1) for n = 2, f
(
λ, ϕ̃ (λ) , ϕ̃′gH (λ)

)
=

2ϕ̃ (λ) •
(
(ϕ̃ (λ))2 + λ

)
and g (λ) = 1 with initial conditions

ϕ (0; γ) = (0.2 + 0.1γ, 0.5− 0.2γ) and ϕ′gH (0; γ) = (0.1 + 0.1γ, 0.4− 0.2γ),
for all γ ∈ [0, 1]. The equation so obtained represents the Painlevé II dif-
ferential equation with fuzzy initial conditions. It is the second nonlinear
second order irreducible differential equation among the six Painlevé differ-
ential equations that are also known as Painlevé transcendents. Painlevé
differential equations are significantly exercised to illustrate different physi-
cal procedures [27]. In this endeavor, after employing few iterations of ChNN
algorithm, we attained the weights as,

q = {5.381,−1.885, 8.701,−7.353, 5.072,−2.853, 1.305,

−0.471, 0.128,−2.369, 2.331× 10−3}

for lower function and

q = {1801.38,−2980.93, 3249.83,−2747.15, 1880.52,

−1051.68, 476.06,−169.861, 45.379,−8.180, 0.762}

for upper function. On substituting the above values of q, q, λ0 = 0
and the initial conditions ϕ (0; γ) and ϕ′gH (0; γ) in Eqs. (4.4) and (4.5) the
analytical solution of the fuzzy function ϕ̃ (λ) is attained. In Figs. 6 and
7 pictorial solutions of lower and upper functions, ϕ (λ; γ) and ϕ (λ; γ) are
shown in comparison with the Runge-Kutta method, correspondingly. Addi-
tionally, Fig. 8 represents fuzzy solution for λ = 0.35 and different values of
γ ∈ [0, 1]. In Fig. 9, where each point on the graph represents the calculated
solution together with the error variation bars, illustrates the accuracy of
proposed algorithm, because the error bars are barely visible.

6 Conclusions

In this work, we studied Chebyshev neural networks method for nonlinear
nth order fuzzy differential equations. Firstly, the nth order differentiability
of fuzzy-valued functions under the theory of gH-differentiability was elabo-
rated. Secondly, structural algorithm of ChNN was explained generally and
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later for the proposed FDEs. At last, for numerical illustration, we consid-
ered two examples of nonlinear FDEs. Thus, following facts are achieved
conclusively from the whole study,

• Dealing together with the nonlinearity and impreciseness of the func-
tions, the nonlinear FDEs are widely utilized for modelling different
aspects of biology and physics. The immediate, appropriate solutions
of these equations augment a great contribution in probing the dynam-
ical effects of existing parameters imprecisely. Hence, this endeavor
will provide a new efficient methodology to obtain the effective series
solutions of these models.

• Error minimization process in the Chebyshev neural network method
benefits to attain feasible solutions with more accuracy, which is ob-
served from the error bar graphs of discussed examples.

• ChNN discretizes all the functions and differential terms due to which
the differential equation converts into algebraic equations and hence
removes all the difficulties of integrating the terms, mainly in case of
nonlinearity.

• Inclusion of orthogonal polynomials as basis functions reduces the hid-
den layers, which as a result produces the output more rapidly as com-
pared to other multiple layer neural networks and thus lessens the com-
putational time.

• The computational complexity of ChNN can occur in the gradient pro-
cess of the error function, for the large number of neurons in addition
with the nonlinearity of the activation function. However, this step is
eased by using Mathematica.

• As compared to other methods, such as Euler type methods, Runge-
Kutta method, where in each iteration the increment parameter is not
modified according to minimization of the error, ChNN, modifies the
unknown weights through the error minimization process that highly
rectifies the solutions.

• In Runge-Kutta method numerical results are produced, hence for
each set of input, the whole program is constructed again, whereas
ChNN produces series solution, which is once constructed using mod-
ified weights can be utilized for any specified domain of the problem
under consideration.
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• After the whole manipulation, in Runge-Kutta method, the conver-
gence through the absolute error is calculated to check the accuracy,
which consume more time to run the whole program again, in the case
of diverging results, whereas the activation function of ChNN controls
the divergence of the parameters initially during the learning process.

• Approximated solutions so obtained using ChNN can then be used to
measure the solution of FDE at any arbitrary point within the interval
defined for the training points. For this reason, without any ambiguity
fuzzy solutions were attained for different values of λ, efficiently.

• The architecture of ChNN once established can be employed on FDEs
of any order n > 2, by simply increasing the order of expansion of the
trial solution for higher order.

• The undergone nonlinear examples have wide physical applications,
for instance quantum theory, mechanics, nonlinear waves, etc., thus,
the involvement of fuzzy theory overcomes the lack of precision of the
parameters and variables. In addition, view of the fact that the ChNN
models are good universal approximators to nonlinear functions, in
this attempt, solving nonlinear nth order fuzzy differential equations
have developed a new pace for the numerical investigations of fuzzy
differential equations.
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