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Abstract—Compressed sensing deals with the recon-
struction of a high-dimensional signal from far fewer
linear measurements, where the signal is known to
admit a sparse representation in a certain linear space.
The asymptotic scaling of the number of measurements
needed for reconstruction as the dimension of the signal
increases has been studied extensively. This work takes
a fundamental perspective on the problem of inferring
about individual elements of the sparse signal given
the measurements, where the dimensions of the system
become increasingly large. Using the replica method, the
outcome of inferring about any fixed collection of signal
elements is shown to be asymptotically decoupled, i.e.,
those elements become independent conditioned on the
measurements. Furthermore, the problem of inferring
about each signal element admits a single-letter char-
acterization in the sense that the posterior distribution
of the element, which is a sufficient statistic, becomes
asymptotically identical to the posterior of inferring about
the same element in scalar Gaussian noise. The result
leads to simple characterization of all other elemental
metrics of the compressed sensing problem, such as the
mean squared error and the error probability for recon-
structing the support set of the sparse signal. Finally, the
single-letter characterization is rigorously justified in the
special case of sparse measurement matrices where belief
propagation becomes asymptotically optimal.

I. INTRODUCTION

The representation and reconstruction of sparse high-
dimensional signals from far fewer linear measurements
has received much attention in recent years. Donoho [1]
and Candés and Tao [2] showed that compressed sens-
ing (CS) based on convex programming is asymptot-
ically optimal in the sense that reconstruction can be
achieved using essentially as few measurements as any
other estimator would need. A large body of literature
has since emerged to address the theoretical limits as
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well as practical issues in CS. Most analytical treatises
on CS study the problem of how many noiseless or
noisy measurements are asymptotically sufficient for
reconstruction of the sparse (input) signal under some
given scalar metric, e.g., the mean squared error or the
probability or amount of errors for reconstructing the
support set of the sparse signal.

The goal of this paper is to address the following
fundamental question pertaining to noisy CS: What can
one infer about an individual element of the sparse
signal based on the measurements? To make progress, a
Bayesian framework for statistical inference with noisy
measurements is considered, where the input statistics
are assumed known to the estimator. For each input
element, it is clear that the posterior distribution of
the element conditioned on the measurements is a
sufficient statistic, so that the problem boils down to
characterizing this posterior. In fact, the posterior is
itself random, as it is a function of the measurements
and the measurement matrix. Evidently, for a system of
given size, the posterior of an individual element has a
complicated structure in general.

In this paper, we put forth a simple single-letter char-
acterization of the posterior of each individual element
conditioned on the measurements in a certain large-
system limit. It is shown that the asymptotic distribution
of the (random) posterior is surprisingly simple. In
fact, as the input dimensionality and the number of
measurements both increase, this posterior becomes
statistically identical to the posterior of a scalar Gaus-
sian channel' whose signal-to-noise ratio (SNR) can
be obtained by solving a fixed-point equation. Taking
another perspective, we can say that whatever one
can infer about an input element of the sparse signal
based on the measurements is asymptotically identical
to what one can infer about the same element if all
other input elements were zero, but the measurements

"Hence the term single-letter characterization.



were noisier. Another contribution of this work is to
show that the equivalent scalar Gaussian channels for
the input elements can be essentially decoupled. That
is, conditioned on the measurements, any fixed set of
input elements are asymptotically independent in the
large-system limit.

The single-letter characterization of the marginal
posterior distribution leads to a simple characterization
of all other elemental metrics of the CS problem, such
as the minimum mean-square error (MMSE), the error
probability, the entropy, etc. This result is convenient
for many practical purposes, for example, to determine
the number of measurements and the SNR required
for achieving a certain quality of reconstruction. We
note that the results in this paper also advance the
understanding of the fundamental nature of noisy CS
by describing a boundary between what is physically
possible and what is not. Another sharp characterization
of phase transition deals only with noiseless measure-
ments [3], [4]. The result in this paper is thus sharper
than many other results on noisy CS obtained using
the restricted isometry property developed in [S5]. There
have been several other works on the information-
theoretic performance bounds of CS, e.g., [6]-[11].
The unique asymptotic regime considered in this work
allows an exact characterization of the performance
of noisy CS. In fact the results here often offer a
better approximation for the performance of finite-size
systems than the existing bounds.

The techniques used to develop the results in this
paper are generally applicable to large linear systems,
including code-division multiple access (CDMA) sys-
tems, multiple-antenna channels, as well as CS systems,
where the distinct feature of the latter is the sparsity
of the input. In particular, the instrumental replica
method was invented to analyze macroscopic properties
of spin glasses in statistical mechanics [12]. Tanaka [13]
first used the replica mothod to analyze the optimal
error probability of CDMA with binary inputs. Guo
and Verdd [14], [15] generalized Tanaka’s result to
arbitrary inputs, which is applicable to sparse inputs
(see also [16]).2 A simple performance characterization
of the large linear system using a bank of scalar
channels was also developed in [15] for the first time.
Indeed one of the goals of this paper is to adapt the
main findings of [15] to the CS application, so that the
results can be easily applied in the new context. Further-
more, extensions to the previous results are presented,

In a contemporary work [17], Miiller used the replica method
technique to evaluate the performance of systems with many anten-
nas.

which include: 1) a formal statement of the asymptotic
decoupling of the posterior of the inputs, and 2) a
connection between the optimal performance and the
performance achieved by iterative belief propagation.
This latter connection has previously been established
in the CDMA context [18].

We note that a recent independent work by Rangan,
Fletcher and Goyal [10] also applies the results and
techniques of Guo and Verdu [15] to develop a similar
characterization of the performance of the maximum a
posteriori (MAP) estimator and several fast compressed
sensing algorithms, such as basis pursuit. In particular,
the MAP estimator is treated as the limit of a sequence
of conditional mean estimators studied in [15],%> which
is are referred to as MMSE estimators in [10], so
that the results in [15] can be used to obtain the
limiting performance of the MAP estimator. This paper
and [10] are thus related, although the focus of [10] is
the MAP estimator and several suboptimal estimators,
whereas this paper puts the emphasis on the posterior
distribution of the input elements, which is a sufficient
statistic. Both works, however, advocate the simple
characterization obtained via the replica method.

A final contribution of this paper is that we draw the
link between optimal detection and belief propagation
(BP) in the context of CS. The single-letter charac-
terization is rigorously justified in the special case of
sparse measurement matrices. It is found that sparse
measurement matrices perform just as well; and BP is
asymptotically optimal in case of sparse mesurement
matrix.

The remainder of the paper is organized as follows.
Section II describes the system model. A set of results
for the case of dense measurement matrices is presented
in Section III. The counterpart for the case of sparse
measurement matrices is shown in Section IV. In Sec-
tion V, we discuss the performance for a special type
of inputs. Section VI concludes the paper.

II. SYSTEM MODEL

Consider a (stochastically) sparse signal X in a
known N-dimensional space in the sense that a priori
most of the entries of its vector representation are zero.
Specifically, foreachn = 1,..., N, let the n-th entry of
X be X,, = B,U,, where B,, is Bernoulli with proba-
bility € to be 1, and U,, ~ Py, an arbitrary distribution
with E {U 2} = 1 and arbitrary expected value. The
distribution of X, is thus a mixture of Py and a point

3Such “hardening” techniques for achieving the MAP estimator
have been used by Tanaka [13] and also in [15] to deal with the
maximum-likelihood detector and the decorrelator.



mass at 0; we call X,, where B,, = 1 an active element.
Moreover, it is assumed that By,...,By,Uy,...,UyN
are mutually independent.

Suppose that M random linear measurements are
taken, where the m-th measurement Y;,, can be regarded
as an inner product of the signal and a measurement
vector [Sm1, Sm2, ..., Smn]. It is assumed that the
measurements are contaminated by additive noise, so
that Y,,, can be expressed as

N
Yo :,/]\'Zzlsmnxwrwm
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where W,,, ~ N(0,1) are independent and identically
distributed (i.i.d.) standard Gaussian form =1,..., M.
It is further assumed that the measurement vectors are
generated randomly, so that the weights .S,,, can be
regarded as i.i.d. with distribution Pg, which is of zero
mean and unit variance. It is easy to see that the average
SNR of each measurement is ~y.

The statistical system model is completely described
by (N, M,e¢,~, Py, Ps), i.e., the dimension of the sig-
nal, the number of measurements, the sparsity, the SNR,
and the distributions of the nonzero inputs and measure-
ment coefficients. The performance of such a system
can of course be evaluated for arbitrary parameters, but
the result is often too complex to provide any insight.
In order to make progress, this paper considers the
following large-system limit: Fix (¢,~, Py, Ps) but let
N, M — oo with
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where 4 is a positive constant. Clearly, e N is the aver-
age number of active input elements so that y denotes
the limit of the average number of measurements per
active element.

For brevity, the vector of measurements described by
(1) can be expressed as

Y= ASX+W 3)

where W consists of independent standard Gaussian
entries, and with slight abuse of notation the (m,n)
entry of S is set to S,,,/v/M. In light of (2), it is
easy to see that each column of S has unit energy
in the large-system limit. We note in passing that the
noisy linear measurement model appears in numerous
other problems, including CDMA [15], multiple-input
multiple-output (MIMO) systems [17], and machine
learning [19].

The large-system limit evaluated in this paper ob-
viously differs from many other CS works, where
the number of measurements is often on the order

of the logarithm of the signal dimensionality, e.g.,
M = O(Klog N) where K is the cardinality of the
support set of the sparse signal (cf., [1], [7]). Having a
fixed ratio between the length of the signal (/V) and the
number of measurements (/) is mathematically conve-
nient. Studying this asymptotic regime provides equally
abundant insights as provided by other regimes, since
after all, the goal is to provide a good approximation
to systems of finite dimension (N, M) in practice.

IIT. DENSE MEASUREMENT MATRIX

The success of compressed sensing (CS) relies on
reliable reconstruction of the original sparse signal X
despite the noisy measurements. Typical results in the
existing CS literature address the {3 norm of the esti-
mation error for X [6], [7]. Some other results provide
scaling laws—typically what should the number of
measurements be in terms of the order of the length of
X for reliable reconstruction. In this work we provide
an accurate characterization of the performance in terms
of estimating each individual element of the vector X.

The model (3) has been studied in the large-system
limit [15] in the context of CDMA. Indeed the CS
model takes the same mathematical form as that of
CDMA, except that the prior distribution of the input
elements puts a large probability mass at 0. The general
result in [15] is applicable to such cases in the large-
system limit defined in Section II. In the following,
we first give an example of the consequence of the
general result in the special case where the sparse input
vector consists of i.i.d. Bernoulli random variables. We
then describe the main result of this paper for a dense
measurement matrix in full generality and discuss its
implications.

A. A Special Case: Bernoulli Inputs

The special case of Bernoulli inputs has been studied
in the CS literature, (cf., [8]). Consider the case where
the input elements X,, = B,, are Bernoulli with parame-
ter €. Detection of each element B, is thus a hypothesis
testing problem with two hypotheses corresponding to
B, =0 and B, = 1, respectively:

N
Hy: Y=\7 Y SB+W (4)
i=1,i#n

N
Hi: Y=\7 ) SBi+W+y751 (5
i=1,i#n
where S, is the n-th column of the measurement
matrix. There are two types of errors: misses and
false alarms. The following result characterizes the



fundamental trade-off between the probabilities of these
two types of errors for recovering each input element.
We emphasize that our claims are based on heuris-
tic yet well-accepted arguments (such as the replica
method [12], [13], [16]) from statistical mechanics.
Additionally, we note that Claim 1 follows directly from
Claim 2.

Claim 1: Let Bn denote the reconstruction of the
element B,. In the large-system limit (N,M — oo
with M /N — €p), the optimal trade-off between the
probabilities of the two types of errors are described
by the following formulas parameterized by ¢ € R:

P{B,=1|B, =0} =Q(t) £ \/12?/:0 e /2 du
(6)
P{B,=0|B, =1} =Q (y/n7 — t) (7

where 7 is some constant in (0, 1), which depends on
(€, i1,7y) but not on ¢.

The trade-off described by (6) and (7) is surprisingly
simple. In fact, it is identical to the trade-off associated
with the following hypothesis testing problem:

H: Y=\/in+W (8)
Hy: Y =W )

where W ~ N(0,1) is standard Gaussian. That is
to say, the optimal performance of reconstructing the
element B,, based on a large number of measurements
is no different from that of recovering B,, based on a
scalar measurement contaminated by additive Gaussian
noise. The parameter n € (0, 1) acts as a degradation of
the SNR, and we refer to it as the energy efficiency or
simply the efficiency of the CS system. The efficiency is
determined in Section III-B. Note that the probabilty of
false alarms and the probability of misses are decreasing
and increasing functions of ¢, respectively. Moreover, if
one of the probabilities is driven to zero then the other
probability necessarily approaches one.

The role of the efficiency 7 is also quite simple. Let
n € {1,...,N} be fixed. For a moment consider a
model also expressed by (3) with the same statistics
except that all but the n-th entry of the input is
suppressed a priori, i.e., X, = 0 for all n’ # n.
Let X,, = B, still be Bernoulli with prameter €. A
sufficient statistic of (Y, S) for B, is obtained by
matched filtering with respect to the n-th column of
S, which can be expressed in the large-system limit
as Zn = /yBn + W with W ~ N(0,1) because
each column of S has unit energy asymptotically. Thus
detection of B,, can be regarded as a hypothesis testing
problem described by (8) and (9) with = 1. Therefore,

detecting B,, via CS is analogous to detecting this input
element with all other elements suppressed, but based
on a noisier observation (where the SNR is degraded
by a factor of 7).

Finally, we note that Claim 1 offers a more pre-
cise performance characterization than the information-
theoretic bounds developed by Aeron et al. [11], which
consider the same large-system limits.

B. Single-letter Characterization: General Inputs

For general inputs, the problem of reconstructing
each input element is more involved than the testing
of two hypotheses. We note that a sufficient statistic
of (Y,S) for the input element X,, is the posterior
distribution Py |y s(-|Y,S). If we were able to de-
scribe this posterior exactly, then everything would be
known about the quality of any kind of inference one
wishes to make about X,,. This is of course in general
an infeasible task because of the complicated structure
of the posterior, which is a function of Y and S.
Surprisingly, it turns out that the posterior admits a
simple characterization in the large-system limit, which
is described as a consequence of Claim 2 in [15] below.

An important role is played here by the MMSE
of estimating a signal through a Gaussian channel.
Specifically, we denote the MMSE for estimating an
arbitrary real-valued random variable X based on the
value of \/y X + W by

mmse(Py, ) = E {(X—E (XA X + W})Q} (10)

where W~ N(0,1) is standard Gaussian, and ~y
represents the SNR gain of the channel. Evidently,
mmse(Px,~y) is equal to the variance of X at v = 0
and vanishes monotonically as v — oo.

The following result is a single-letter characterization
of the compressed sensing problem modeled by (3) in
the large-system limit.

Claim 2: As far as inferring about X, is concerned,
in the large-system limit (N, M — oo with M/N —
eu), the observation of (Y,S) becomes statistically
equivalent to observing X, with additive Gaussian
noise of variance (ny)~! for some n € (0,1), or
equivalently, observing some Z, ~ N(/n7X,,1).
That is, conditioned on the actual value of X,, = «x,
the posterior distribution converges in distribution as
the system becomes large:

Pevs(-Y.8) 2 Pz (1Z). (D)

The parameter 7 satisfies the following fixed-point
equation

nl=1+ % mmse(Px, ny). (12)



In case of multiple solutions to (12), i is chosen as the
one that minimizes

€
I(X;,/nVX—FN)%—?'u(n— 1 —logn).

We first note that Py |z, (+|Z5) is a random probabil-
ity measure on R, which depends on Z,,. Formula (11)
states that the sequence of random probability measures
Px, v s(:|Y,S) converges to the probability measure
Px,|z.(-|Zy) in distribution. For concreteness, (11) is
equivalent to convergence of the cumulative distribution
functions (cdfs) in distribution, i.e.,

P{X, <z|Y,S}
LDy PIX, < 2|2}
ffoo exp [f%(Zn - mu)Q] dPx (u)

N ffooo exp [—%(Zn — \/ﬁu)Q] dPx (u)

for every x where the cdf Px(-) is continuous. Note that
here the conditional distribution functions Py, |z, (7|2)
are identical for all n = 1,...,N. For notational
convenience, let Py |7 be denoted by Py, from this
point on.

The essence of the general result given by Claim 2 is
to characterize the posterior for each input element by
the simple posterior of a scalar Gaussian channel. This
principle is a special case of the general result originally
developed in [15], [16]. Thus there is no need for a
separate proof. An illustration of the result is shown
in Figure 1. A simple consequence of Claim 2 is the
following result on the elemental estimation error.

Corollary 1: The MMSE of estimating each input
element is mmse(Px,7n7y). The MMSE of estimating
the input vector X is mmse(Px,ny) per dimension.

From Claim 2, it is easy to see that, in the special case
where X,, = B,, the problem of inferring about X,
via CS is as characterized in Section III-A. Moreover,
the efficiency 7 can be determined from the fixed-point
equation (12), where the MMSE in this case admits the
following expression:

mmse(ed(1) + (1 —€)0(0),7)
62 /oo e2y\ﬁf'y 2
— - e 2z dy
V21 Jooo €9V 41—
C. Decoupling of Input Elements

(13)

(14)

=€

Oftentimes one is interested in inferring about all
or a subset of input elements. The question becomes
what is the joint posterior distribution of the input
elements given the measurements. The joint posterior is
in general very complex, but in the large-system limit,
the following decoupling result can be shown using the

replica method. The detailed proof is omitted here due
to space limitations.

Claim 3: Let the efficiency 7 be the same as deter-
mined by Claim 2. Consider an arbitrary but fixed num-
ber L of input elements (X,,,,...,X,,). As N, M —
oo with M/N — ep,

PX,LI,...,X,,LL\Y,E({BM e ,J}L‘Y,ﬁ)
L 15
£>1_[1[’)<\Z(='701'|Zm) ()

i=1
for all xy,...,xp, where Z,, = /1y Xp, + W; with
iid. W; ~N(0,1) and Py, is defined as in Claim 2.
We caution that the above asymptotic decoupling
concerns a constant number L of input elements and
cannot be extended to the joint posterior of all input
elements (their population N — o0). The decoupling
of the posterior suggests that the decision made on one
input element is asymptotically uncorrelated with that
on other elements, and so Claim 2 is a special case of
Claim 3. Finally, an illustration of decoupling for the
special case of sparse measurement matrices appears in
Figure 2.

IV. SPARSE MEASUREMENT MATRIX

Consider a scenario where the measurement matrix
is sparse so that each input element affects only a
small fraction of the measurements. The sparsity of the
measurement may be due to the nature of the system or
by design, for example to CS fast computation [20]. It
turns out that, under many circumstances, the preceding
decoupling results obtained using the replica method
can be proved rigorously. Moreover, in those cases,
belief propagation (BP) detection can be shown to be
asymptotically optimal in the sense that it can com-
pute the marginal posterior probability of each input
element.

For concreteness, we consider a sequence of ensem-
bles of measurement matrices indexed by the input
dimensionality /V. Let the number of measurements M
be a function of N such that M/N — eu as N — oo
(as in Section II). Let the matrix sparsity ¢ € (0,1)
satisfy ¢M — oo and ¢gM® — 0 for all ¢ < 1 (for
example, the sparsity can be ¢ = (log M) /M). For each
(N, M), a matrix S randomly drawn from the ensemble
would have the following statistics: All of its entries are
i.i.d. with probability 1 —gq to be set to 0, and otherwise
follow the distribution Pg, which is of zero mean, unit
variance, and finite fourth-order moment. The measure-
ment matrix is S = ﬁ(Smn), and so every column
has unit energy on average. Clearly, each input element
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For large systems, the posterior of any input X,, given the measurements Y = /7 SX + W and the measurement matrix S

is statistically identical to the posterior of X given Z = \/nyX + N, where 7 satisfies (12). In the graph, if the inputs X and X,, are

identical, then the statistics of X’ and X, are indistinguishable.

affects gM measurements on average, which becomes
large but increasingly sparse as M — oo. Under certain
circumstances, Claims 2 and 3 can be rigorously shown.
Hence the following result, whose proof is omitted due
to space limitations.

Theorem 1: Consider the system described by (3) in
the large-sparse-system limit, i.e., where N, M — oo
with M/N — €eu, gM — oo and ¢M® — 0, Va < 1.
Suppose the fixed-point equation (12) for the efficiency
7 has a unique solution, then for fixed (n1,...,nr),

Pan,---7Xn,L\Y7§(:E1’ e ,:L'L}Y,ﬁ)
L 16
£>l_IPX\Z(ﬂCi|Zm) (1o
i=1
for all xy,...,xr, where Z,, = \/nyx,, + W; with
iid Wi ~N(0,1) and Py is defined as in Claim 2.

We would like to point out that the decoupling result
is related to previous decoupling results for non-sparse
inputs due to Guo and Wang [18] and Montanari [21].

Note that the system (3) can be described using a
factor graph. In particular, the joint distribution of all
input elements and measurements can be factorized
to a product of one conditional distribution term for
each measurement and one prior distribution term for
each input element. The sparsity of the measurement
matrix is such that the factor graph is locally tree-like,
in the sense that as the system size becomes large,
the probability of having cycles shorter than any given
length vanishes. It is well known that BP computes
the exact marginal posterior probability distribution for
cycle-free graphs. After ¢ iterations, the output of BP
is a posterior distribution for X computed based on
all measurements within distance 2t — 1 of X} on the
factor graph, denoted by YS) [18]. With slight abuse
of notation, let P;(pk(ﬂYg), S) denote the output cdf
of BP, which is the approximate posterior of X given

Y,(:) and the measurement matrix S.

Theorem 2: Consider the same model and conditions
as in Theorem 1. For any number of iterations ¢, the
posterior obtained by BP converges:

PR (2| Y, S) = Py 2 (z|n(Y),S))

in probability in the large-sparse-system limit for some
function h(-) such that h(Y,(f),ﬁ) ~ N(vV/n®yz,1)
conditioned on X}, = x, where n®) is the result of the
following iterative formula

(77(“1))71 =1+ % mmse (PX,ﬁ(t)V) .

a7

with n(® = 0.

It is clear that the fixed point of (17) satisfies (12).
In light of Theorem 2, the posterior distribution in
large sparse systems can essentially be obtained by
BP in the special case where the solution to (12) is
unique. It turns out that the equation may have up
to three fixed points [13], [16]. In such cases, the
optimal performance achieved by any estimator is not
known to admit a single-letter characterization, but the
performance can be shown to be sandwiched between
the single-letter characterization with the smallest and
the largest of the fixed points.

To illustrate the decoupling effect given by Theo-
rem 1, we ran a CS reconstruction algorithm based
on BP [20]. As shown in Theorem 2, combining BP
with a sparse measurement matrix offers asymptotically
optimal estimation in addition to computational effi-
ciency [20]. Figure 2 illustrates that the posterior for
X given the observations (Y, .S) is invariant of the
posterior for Xs. The numerical results also illustrate
the decoupling effect described in Claim 3, although
it would be infeasible to simulate exact a posterior
estimation, owing to the prohibitive complexity.



Fig. 2. The graph shows the normalized histogram of p; =
P{X:1 = 1|Y,S} conditioned on the value of po = P{X, =
1|Y, S}. Without loss of genearality, the actual values of X and
X5 were both equal to 1. For each given value of P{X, = 1]Y, S},
the curve can be regarded as the probability density function of
P{X: = 1|Y,S}. The parameters are: the signal dimension
N = 500, the number of measurements M = 250, the sparsity
e = 0.1, the SNR per input element v = 10 dB, and identical
amplitude U, = 1 for all n. The sparse measurement matrix S
is such that Sy,, is —1 or +1, each with probability 0.02, and
otherwise 0.

V. THE UNAMBIGUOUS CASE

For relatively large SNR (we will discuss how large
shortly), the MMSE can be approximated as follows.
Consider a suboptimal estimator that first decides
whether the variable X takes zero value and then
estimates its value if X is believed to be nonzero.
Suppose the error probability of the first decision is
no greater than P, regardless of whether X is zero or
nonzero. The MMSE can be upper bounded:

mmse(Px,T") < P, + ¢ - mmse(Py,T) (18)

for every I' > 0, where the term F. upper bounds
the average error caused by mis-detection in the first
step (recall that E{U2} = 1), whereas the second
term approximates the error made when the variable
is correctly detected to be nonzero.

Suppose the random variable U is lower bounded
by dpmin in its absolute value, i.e., |U| > dpin with
probability 1. We refer to this as the unambiguous case.
It is not difficult to see that

P, < e %min/?, (19)

This implies that the fixed-point equation can be ex-
pressed as

07 =14+ L mmse(Py,1y) + Le /2 (20)
7 s

Note that

Y mmse(Py, i) < 2 @1
I

“ 14y

which is much smaller than 1 if v < p or nu > 1
(or both). Furthermore, for large enough 77, the last
term in (20) is also much smaller than 1. Under these
circumstances, 7 ~ 1 by (20). It is clear that this is
typically the case if one chooses y > 1. Moreover, in
order for the approximation (18) to be accurate with
I" = n, one should also choose v > 1, which is again
easy to meet.

With enough measurements and SNR, the support
set of the sparse signal can be determined with high
fidelity. We have the following result as a special case.

Claim 4: Suppose for each n = 1,..., N, U, is
equally likely to be +1, i.e., X,, takes the values +1
with probability €/2 and 0 otherwise. If min(pu, puy) >
1, then the minimum probability of error for de-
tection of X, based on the measurements (Y ,.S)
is upper bounded by exp[—py/4], and the MMSE
of estimating the sparse signal is upper bounded by
e mmse(Py, nuy) 4+ e~"/2 per dimension. If U is not
binary but |U| > d;, with probability 1, then the error
probability is no larger than exp [— ,uydfnm / 4].

The bound is quite useful. Consider the following
example: Let N = 10,000 and € = 0.001 so that the
support set of the sparse signal is of cardinality 10
on average. Suppose the signal takes the value +1 if
nonzero. Consider an SNR of 0 dB and 500 measure-
ments in total (so that ;4 = 50). The resulting error
probability is no greater than e 12° ~ 3.7 x 1076 <
1/N. This suggests that one rarely makes any errors
in terms of estimating the support set of the sparse
signal. Furthermore, the MMSE for estimating X can
be obtained as 8.6 x 10~6 per dimension, which amounts
to 0.086 in total. Consider the alternative bound in [5],
which is no better than

& — 2> < 32log(N) /(1) =59 . (22)

This latter bound (22) does not prevent one from
making 5 errors in terms of estimating the support set
of the sparse signal, which is an error probability of
5 x 1074, It appears that the bound in [5] is pessimistic
when applied to the Bayesian framework—by roughly
two orders of magnitude in this case.

If Py is an arbitrary distribution, which is not nec-
essarily unambiguous, then the analysis can be more
complex. One can still obtain useful upper bounds on
the error probability if |U| is bounded away from 0
with high probability. If the values of X, flirt with O



with non-negligible probability, then it is generally im-
possible to be accurate in estimating the support set of
the sparse signal. Indeed, other authors (cf., Akcakaya
and Tarokh [7] and references therein) discuss the case
where the SNR must be increased if some signal values
are near zero.

VI. CONCLUSION

This paper describes a fundamental single-letter char-
acterization of the compressed sensing (CS) problem.
Also discussed is a result on the decoupling of the ele-
ments of the sparse signal. Belief propagation is shown
to often be asymptotically optimal in case of sparse
measurements. If the replica method is justifiable, then
using sparse measurement matrices performs as well as
using dense measurement matrices. This suggests that
for relatively large systems, one should prefer to use
sparse measurement matrices so that low-complexity
algorithms such as belief propagation can exploit the
sparsity of the measurement matrix without sacrificing
the estimation performance.

It is interesting to note that although this work con-
siders independent measurement noise, the implications
may apply to the case of quantization noise studied
in [22], [23]. This is because, for a given SNR, additive
independent Gaussian noise is often the worst case.
The replica method is also applicable to suboptimal
estimators [13], [15]. A possible direction of future
work is to study the performance of various other CS
algorithms in the literature, such as [24]-[27].
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