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Reliability Analysis
Current surrogate modeling methods for time-dependent reliability analysis implement a
double-loop procedure, with the computation of extreme value response in the outer loop
and optimization in the inner loop. The computational effort of the double-loop procedure
is quite high even though improvements have been made to improve the efficiency of the
inner loop. This paper proposes a single-loop Kriging (SILK) surrogate modeling method
for time-dependent reliability analysis. The optimization loop used in current methods is
completely removed in the proposed method. A single surrogate model is built for the
purpose of time-dependent reliability assessment. Training points of random variables
and over time are generated at the same level instead of at two separate levels. The sur-
rogate model is refined adaptively based on a learning function modified from time-
independent reliability analysis and a newly developed convergence criterion. Strategies
for building the surrogate model are investigated for problems with and without stochas-
tic processes. Results of three numerical examples show that the proposed single-loop
procedure significantly increases the efficiency of time-dependent reliability analysis
without sacrificing the accuracy. [DOI: 10.1115/1.4033428]
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1 Introduction

Time-dependent reliability analysis computes the probability
that a system or component fulfills its intended function over a
time interval of interest without failures. Since it is related to sys-
tem performance degradation [1,2], lifetime cost estimation [1],
maintenance [3], lifetime testing [4], and system resilience [5],
time-dependent reliability analysis has gained a lot of attention
during the past decades. The biggest challenge in time-dependent
reliability analysis is how to efficiently and accurately perform
reliability analysis and account for the correlation of the response
over time during the analysis.

This paper focuses on component reliability, which has been
extensively studied in recent years. For instance, a PHI2 method
has been developed to compute the time-variant reliability by esti-
mating the upcrossing rate at each time instant [6]; Singh and
Mourelatos [7] proposed a composite limit-state function method
and investigated importance sampling [8], Markov Chain Monte
Carlo simulation (MCS) [9], subset simulation [10], and total
probability theory [11] for this estimation; Hagen and Tvedt
[12,13] proposed a parallel system approach to solve time-
dependent problems with binomial distributions; Li and Chen
developed a reliability analysis method for dynamic response
using a new probability density evolution approach [14]; Along
with these methods, Zhang and Du [15] derived analytical expres-
sions for the upcrossing rate of function generator mechanisms;
Du [16] proposed an envelope function method based on first-
order approximation; Hu and Du investigated the upcrossing rate
method [17], joint upcrossing rate method [18], and the first-order
sampling approach [19]; Wang and Wang [20,21] presented a
nested extreme value response method to estimate the time-
dependent reliability; and Jiang et al. [22] studied the strategy of
time-dependent reliability assessment through stochastic process
discretization.

From the above literature review, it is found that most of the
current methods rely on a first-order approximation of the limit
state, which is inaccurate for problems with nonlinear responses
and multimodal statistical properties. In that situation, surrogate
modeling-based methods become more promising than the meth-
ods based on linearization at the most probable point (MPP). In
terms of surrogate model-based time-dependent reliability analy-
sis, a representative method is the nested extreme value response
method proposed by Wang and Wang [20,21]. In the nested
method, the efficient global optimization (EGO) method [23] is
embedded in an extreme value surrogate model to identify the
extreme values. There are two loops in the nested method. The
inner loop is the identification of global extremes of the response
and the outer loop is used to build the extreme value surrogate
model. This method is then improved by Hu and Du [24] by
developing a mixed EGO method in the inner loop to improve the
efficiency of identifying the extreme values and implementing an
adaptive sampling approach in the outer loop to reduce the num-
ber of training points required to build the extreme value surrogate
model. Using adaptive sampling in the outer loop for the extreme
value, surrogate modeling has also been investigated by Wang
and Wang [25]. The surrogate modeling method for time-
dependent reliability analysis has also been studied by Schoefs
et al. [26] and Wang et al. [27] using polynomial chaos expansion.

Analyzing the current surrogate modeling methods for time-
dependent reliability analysis, it is found that current methods
implement a double-loop procedure. As discussed above, the outer
loop constructs the extreme value surrogate model for the latent
extreme value response of the limit state function as a function of
random variables and the inner loop performs the global optimiza-
tion for the limit state function over the time duration of interest
under given realization of the random variables. The double-loop
procedure has two main drawbacks: (1) The accuracy of global
optimization in the inner loop will affect the accuracy of the
extreme value surrogate model in the outer loop. (2) Identifying
the extreme value in the inner loop for problems with stochastic
processes over a long time period is computationally expensive
since the realization of the stochastic process may have numerous
peaks.
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This paper develops a SILK surrogate modeling method for
time-dependent reliability analysis, in order to overcome the
above drawbacks. The global optimizations in the inner loop of
current methods are completely removed in the proposed method.
It is shown that global optimization in surrogate model-based
time-dependent reliability analysis is not indispensable. The surro-
gate modeling strategy is investigated for problems with and with-
out stochastic processes, which makes the proposed method
applicable to general time-dependent reliability analysis problems
instead of a special group of problems. Thus, the contributions of
this paper are summarized as: (1) a novel perspective for surrogate
modeling-based time-dependent reliability analysis; (2) a strategy
for surrogate modeling for time-dependent reliability analysis
with stochastic processes; (3) a modified learning function for
training the surrogate model.

The rest of the paper is organized as follows. Section 2 provides
background concepts in time-dependent reliability analysis and
related surrogate modeling approaches. Section 3 presents the pro-
posed SILK surrogate method. Three numerical examples are
used to demonstrate the proposed method in Sec. 4. Concluding
remarks are provided in Sec. 5.

2 Background

2.1 Time-Dependent Reliability Analysis. Let X ¼ X1; X2;½
� � � ; Xn� be a vector of random variables, Y tð Þ ¼ Y1 tð Þ;½
Y2 tð Þ; � � � ; Ym tð Þ� be a vector of stochastic processes, and G tð Þ ¼
g X; Y tð Þ; tð Þ be the limit state function. The time-dependent prob-
ability of failure is given by

pf t0; teð Þ ¼ Prfg X; Y tð Þ; tð Þ > 0; 9t 2 t0; te½ �g (1)

where t0; te½ � is the time interval of interest, t0 is the initial time
instant, te is the last time instant, “ Prf�g ” is probability, and “ 9 ”
means “there exists.”

The most commonly used method for solving Eq. (1) uses
Rice’s formula for upcrossing rate [28]. pf t0; teð Þ is estimated
using the upcrossing rate as [17]

pf t0; teð Þ ¼ 1� R t0ð Þexp

ðte

t0

vþ tð Þdt

( )
(2)

in which R t0ð Þ is the reliability at the initial time instant and vþ tð Þ
is the upcrossing rate at time instant t. vþ tð Þ is often estimated
using the first-order reliability method (FORM) based on Rice’s
formula [17].

The upcrossing rate method based on Rice’s formula is accurate
when the failure probability is low and FORM is accurate for
time-instantaneous reliability analysis. When FORM is not accu-
rate due to the nonlinear response of the system, surrogate
modeling-based method is a promising way.

2.2 Surrogate Modeling for Time-Dependent Reliability
Analysis. Current surrogate modeling methods for time-
dependent reliability analysis are mainly developed for problems
with limit-state functions G tð Þ ¼ g X; tð Þ. These methods are
based on the following probability equivalency [24]:

pf t0; teð Þ ¼ Prfg X; tð Þ > 0; 9t 2 t0; te½ �g ¼ Pr gmax Xð Þ > 0
� �

(3)

in which gmax Xð Þ is the extreme value response on t0; te½ �, for any
given X ¼ x, where x is a realization of random variables
X, gmax xð Þ is given by

gmax xð Þ ¼ max
t2 t0 ; te½ �

fg x; tð Þg; 8X ¼ x (4)

Since the extreme value response is an unknown function, a surro-
gate model ĝmax Xð Þ is built and the time-dependent reliability is

estimated based on that. The key issue is how to build ĝmax Xð Þ.
Due to the requirement of the extreme value responses, the time-
dependent reliability estimate based on Eqs. (3) and (4) is a
double-loop procedure, which is summarized as below.

� Outer loop: Build a surrogate model ĝmax Xð Þ.
� Inner loop: Identify gmax xð Þ for given X ¼ x (as shown in

Fig. 1).

Next, we will briefly review the surrogate modeling methods,
which implement the double-loop procedure.

2.2.1 Double-Loop Procedure With Independent Maxima.
The double-loop procedure with independent maxima refers to the
method presented in Ref. [20], which identifies the maxima inde-
pendently in the inner loop using the EGO method [23]. In the
rest of this paper, we call it the independent EGO method for the
sake of illustration. The basic idea of the independent EGO
method is summarized as follows:

� Outer loop: Generate training points xs ¼ x 1ð Þ;
�

x 2ð Þ; � � � ; x ntð Þ� for X and build a surrogate model ĝmax Xð Þ
based on x ið Þ and ĝmax x ið Þð Þ, i ¼ 1; 2; � � � ; nt.

� Inner loop: For each training point x ið Þ, build a surrogate

model ĝi tð Þ to identify ĝmax x ið Þð Þ independently.

2.2.2 Double-Loop Procedure With Simultaneous Maxima.
The double-loop procedure with simultaneous maxima, which is
also called the mixed EGO method in Ref. [24], refers to the
method that identifies the maxima simultaneously in the inner
loop. In the mixed EGO method, an adaptive sampling approach
is employed to reduce the number of training points required to

build the surrogate model, ĝmax Xð Þ in the outer loop. In the inner
loop, a surrogate model ĝ X; tð Þ is built to identify the extreme
values of all the training points simultaneously. Every time a new
training point is added in the outer loop, the surrogate model
ĝ X; tð Þ is updated in the inner loop to identify the corresponding
extreme value response of the new training point. The basic
framework of the mixed EGO method is summarized as

� Outer loop: Build a surrogate model ĝmax Xð Þ using the
adaptive sampling approach.

� Inner loop: Build a surrogate model ĝ X; tð Þ to identify
ĝmax x ið Þð Þ; 8i ¼ 1; 2; � � � ; nt, simultaneously.

2.2.3 Drawback Analysis of the Double-Loop Procedure. Even
if both the independent EGO and mixed EGO methods are more
accurate and efficient than the upcrossing rate methods, as dis-
cussed in Sec. 1, there are two main drawbacks (explained as
below) for all the double-loop procedure methods.

(1) Since the extreme values identified in the inner loop are
used to build the extreme value response ĝmax Xð Þ in the
outer loop, the accuracy of the identified extreme values
will affect the accuracy of predictions in the outer loop at
the untrained sample points, which will in turn affect the
accuracy of time-dependent reliability analysis.

(2) Current surrogate modeling method for time-dependent
reliability analysis is mainly developed for problems with
response function G tð Þ ¼ g X; tð Þ. These methods can be
extended to problems with stochastic processes by using
the Karhunen–Loeve (KL) expansion [29,30]. Although the
extension is easy and possible, the number of function

Fig. 1 Identification of extreme value response (gmaxðxÞ) for
given X 5 x
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(NOF) evaluations will increase significantly for problems
with stochastic processes over a long time interval of inter-
est. The reason is that there may be numerous peaks
(extremes) in the stochastic process, which creates a large
computation demand on the global optimization in the inner
loop.

In Sec. 3, we propose a single-loop procedure for time-
dependent reliability analysis, which completely removes the opti-
mization inner loop in the double-loop procedure.

3 Proposed SILK Method

3.1 Basic Principle of Surrogate Modeling for Time-
Dependent Reliability Analysis. The basic idea of SILK is to
build a single surrogate model ĝ X; tð Þ to perform time-dependent
reliability analysis, instead of using a double-loop procedure. The
main principle of SILK is explained as below.

The time-dependent probability of failure given in Eq. (3) can
be rewritten as follows based on the principle of MCS:

pf t0; teð Þ ¼ Prfg X; tð Þ > 0; 9t 2 t0; te½ �g ¼
XN

i¼1

It x ið Þð Þ=N (5)

where It x ið Þð Þ is the time-dependent failure indicator for given
X ¼ x ið Þ

It x ið Þð Þ ¼ 1; if g x ið Þ; t
� �

> 0; 9t 2 t0; te½ �
0; otherwise

; 8i ¼ 1; 2; � � � ; N

(

(6)

where “ 8 ” means “for all.”
After discretizing t0; te½ � into Nt time instants, the time-

dependent failure indicator can be rewritten as

It x ið Þð Þ ¼ 1; if any I g x ið Þ; t jð Þ
� �� �

¼ 1; 8j ¼ 1; 2; � � � ; Nt

0; otherwise

(

(7)

in which Nt is problem-dependent, typically the larger the better,

and I g x ið Þ; t jð Þ
� �� �

is given by

I g x ið Þ; t jð Þ
� �� �

¼
1; if g x ið Þ; t jð Þ

� �
> 0

0; otherwise

8<
: (8)

The above equations imply that the accuracy of time-dependent

reliability analysis is mainly affected by It x ið Þð Þ, which is actually

a one-dimensional classification problem for given X ¼ x ið Þ (as
shown in Eqs. (7) and (8)). As shown in Fig. 2, the accuracy of
the one-dimensional classification problem is mainly affected by
the accuracy near the crossing points [31,32]. Or in other words,
we may not really need the extreme value as shown in Fig. 1.

Further analysis shows that Eq. (6) sometimes does not require
high accuracy near the crossing points. This is different from the
one-dimensional classification problem which requires accurate
classification at each sample point. The time-dependent failure
indicator function (Eq. (6)) can be accurately determined if there
exists a failed point on the trajectory and the sign of the failed
point is accurately classified no matter the signs of crossing points
are accurately classified or not. Equation (6) can be further
divided into the following two cases:

� Case 1: g x ið Þ; t
� �

� 0 for all the time instant over t0; te½ �. In

this case, the sign of surrogate model prediction ĝ x ið Þ; t jð Þ
� �

for all t jð Þ, j ¼ 1; 2; � � � ; Nt need to be accurately classified

to get an accurate estimate of It x ið Þð Þ.
� Case 2: There exists a time instant t� 2 t0; te½ � such that

g x ið Þ; t�
� �

> 0. In this case, if the sign of any ĝ x ið Þ; t�
� �

> 0
is correctly classified, Eq. (6) will be accurately estimated.

Based on the above analysis, the following function can be
defined:

It x ið Þð Þ ¼ 1; if ĝ x ið Þ; t jð Þ
� �

> 0 and the sign of ĝ x ið Þ; t jð Þ
� �

is correctly classified; 9j ¼ 1; 2; � � � ; Nt

0; if ĝ x ið Þ; t jð Þ
� �

� 0 and the sign of ĝ x ið Þ; t jð Þ
� �

is correctly classified; 8j ¼ 1; 2; � � � ; Nt

(
(9)

For all the sample points x ið Þ, if the prediction from the surrogate
model ĝ X; tð Þ can satisfy the conditions given in Eq. (9), the

value of It x ið Þð Þ can be accurately determined. Otherwise, ĝ X; tð Þ
needs to be refined until one of the conditions presented in Eq. (9)
is satisfied. Next, we will discuss how to determine whether the
conditions given in Eq. (9) are satisfied or not, and how to refine
ĝ X; tð Þ if none of the conditions is met.

3.2 Surrogate Modeling of ĝ X; tð Þ
3.2.1 Initial Surrogate Modeling of ĝ X; tð Þ. According to the

basic principle of SILK as discussed in Sec. 3.1, an initial surro-
gate model ĝ X; tð Þ needs to be constructed. Suppose nin initial
training points are generated (the samples of X and t are generated
together using Latin Hypercube Sampling approach [33] or

Hammersley sampling approach [34]), we then have the matrix of
training points as

xs ¼

x 1ð Þ
1 � � � x 1ð Þ

n t 1ð Þ

x 2ð Þ
1

. .
.

x 2ð Þ
n t 2ð Þ

� � . .
.

�

x
ninð Þ

1 � � � x
ninð Þ

n t ninð Þ

2
66666664

3
77777775

(10)

where x
jð Þ

i is the jth training point of the ith random variable.
The response function G tð Þ ¼ g X; tð Þ is then evaluated at these

training points. Based on the training points and the associated

responses, a surrogate model Ĝ tð Þ ¼ ĝ X; tð Þ is built using the
Kriging method reviewed in the appendix. For any untrained point
x; t½ �, the surrogate model prediction is

Fig. 2 Illustration of crossing points
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Ĝ tð Þ � N ĝ x; tð Þ; rĝ2 x; tð Þ
� �

(11)

in which N �; �ð Þ stands for normal distribution, and ĝ x; tð Þ and
rĝ2 x; tð Þ are the expected value and variance of the prediction,
which are obtained from Eqs. (A4) and (A5), respectively.

After discretizing t0; te½ � into Nt time instants, if Ĝ tð Þ ¼ ĝ X; tð Þ
is well trained, pf t0; teð Þ is obtained by

pf t0; teð Þ ¼
XN

i¼1

I max
j¼1; 2; ���;Nt

fĝ x ið Þ; t jð Þ
� �

g
	 


=N (12)

In Secs. 3.2.2 and 3.2.3, we will investigate how to determine
whether the surrogate model is well trained (stopping criterion of
training) and how to refine the surrogate model if it is not well
trained.

3.2.2 Stopping Criterion for Training. In order to determine
whether the surrogate model is well trained or not, for any given
X ¼ x ið Þ, we first need to determine whether the conditions given
in Eq. (9) are satisfied.

There are two types of conditions presented in Eq. (9). The first

condition checks the sign, whether ĝ x ið Þ; t jð Þ
� �

> 0 or

ĝ x ið Þ; t jð Þ
� �

� 0. The second condition checks whether the sign of

ĝ x ið Þ; t jð Þ
� �

> 0 or ĝ x ið Þ; t jð Þ
� �

� 0 is accurately determined or
not. In other words, the first condition performs the classification
and the second condition checks the accuracy of the classification.
The first condition can be easily checked based on the surrogate
model prediction. For the second condition, the widely used U
function defined in the adaptive Kriging Monte Carlo simulation
(AK-MCS) method [32] for time-independent reliability analysis
is employed.

If ĝ x ið Þ; t jð Þ
� �

> 0, the probability of making a mistake on the

sign of g x ið Þ; t jð Þ
� �

is given by

P1 ¼ U
0�

����ĝ x ið Þ; t jð Þ
� �����

rĝ x ið Þ; t jð Þ
� �

0
B@

1
CA

(13)

in which U �ð Þ is the cumulative density function of a standard nor-
mal variable.

If ĝ x ið Þ; t jð Þ
� �

� 0, the probability of making a mistake on the

sign of g x ið Þ; t jð Þ
� �

is given by

P2 ¼ 1� U
0þ jĝ x ið Þ; t jð Þ

� �
j

rĝ x ið Þ; t jð Þ
� �

 !

¼ U � jĝ x ið Þ; t jð Þ
� �

j
rĝ x ið Þ; t jð Þ
� �

 ! (14)

The above equations indicate that no matter ĝ x ið Þ; t jð Þ
� �

> 0 or

ĝ x ið Þ; t jð Þ
� �

� 0, the probability of making a mistake on the sign

of g x ið Þ; t jð Þ
� �

is given by [32]

Perror ¼ U �U x ið Þ; t jð Þ
� �� �

(15)

in which

U x ið Þ; t jð Þ
� �

¼

����ĝ x ið Þ; t jð Þ
� �����

rĝ x ið Þ; t jð Þ
� � (16)

It can be seen that the smaller the value of U x ið Þ; t jð Þ
� �

, the higher

the probability of making a mistake on the sign of g x ið Þ; t jð Þ
� �

(i.e., the higher the probability that the point is close to the cross-
ing point). It is recommended that we can assume that the sign of
a response is correctly determined based on the surrogate model

prediction if U x ið Þ; t jð Þ
� �

	 2, which corresponds to a probability
of making a mistake on the sign of 0.023 [32]. Based on this,
Eq. (9) is rewritten as

It x ið Þð Þ ¼ 1; if ĝ x ið Þ; t jð Þ
� �

> 0 and U x ið Þ; t jð Þ
� �

	 2; 9j ¼ 1; 2; � � � ; Nt

0; if ĝ x ið Þ; t jð Þ
� �

� 0 and U x ið Þ; t jð Þ
� �

	 2; 8j ¼ 1; 2; � � � ; Nt

(
(17)

Alternatively, if we define U0 x ið Þ; t jð Þ
� �

¼ ĝ x ið Þ; t jð Þ
� �

=rĝ x ið Þ; t jð Þ
� �

, Eq. (9) can be rewritten as

It x ið Þð Þ ¼
1; if U0 x ið Þ; t jð Þ

� �
	 2; 9j ¼ 1; 2; � � � ; Nt

0; if U0 x ið Þ; t jð Þ
� �

� �2; 8j ¼ 1; 2; � � � ; Nt

8<
: (18)

In this paper, Eq. (17) is used. For any given X ¼ x ið Þ, we can then determine whether there is a training point required on the trajectory
g x ið Þ; t
� �

, t 2 t0; te½ � to refine the surrogate model ĝ X; tð Þ based on another indicator defined as follows:

Umin x ið Þð Þ ¼
ue; if ĝ x ið Þ; t jð Þ

� �
> 0 and U x ið Þ; t jð Þ

� �
	 2; 9j ¼ 1; 2; � � � ; Nt

min
j¼1; 2; ���;Nt

fU x ið Þ; t jð Þ
� �

g; otherwise

8><
>: (19)

where ue is any number so that ue > 2.
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If Umin x ið Þð Þ > 2, it means that the trajectory g x ið Þ; t
� �

, t 2
t0; te½ � does not need to be trained. Otherwise, a new training point

is needed to refine the trajectory. The Umin x ið Þð Þ indicator is just

for one trajectory under given X ¼ x ið Þ. Next, we will discuss how
to connect this indicator with the stopping criterion of the surro-
gate modeling.

In order to connect Umin x ið Þð Þ with the overall surrogate model
training, in this work, a recently developed stopping criterion for
surrogate modeling-based time-independent reliability analysis
[35] is extended to the time-dependent reliability analysis. In
order to define the stopping criterion, we first partition the samples

x ið Þ; i ¼ 1; 2; � � � ; N into two groups, namely, group-one samples

xMCS
g1 and group-two samples xMCS

g2 . The group-one samples xMCS
g1

correspond to samples with Umin x ið Þð Þ 	 2 and xMCS
g2 are the rest

of samples. Based on this partition, Eq. (5) is rewritten as

pf t0; teð Þ ¼ Nf 1 þ Nf 2ð Þ=N (20)

where Nf 1 ¼
P

It xMCS
g1

� �
, Nf 2 ¼

P
It xMCS

g2

� �
, and It xMCS

g1

� �
and

It xMCS
g2

� �
are obtained using Eq. (6) based on the mean prediction

of the surrogate model ĝ X; tð Þ.
Since the group-one samples correspond to Umin x ið Þð Þ 	 2, it

can be assumed that Nf 1 is accurate. Due to the uncertainty in the

It xMCS
g2

� �
, there is uncertainty in Nf 2. Let the true value of Nf 2 be

N�f2 , the true time-dependent probability of failure is given by

p�f t0; teð Þ ¼ Nf 1 þ N�f2
� �

=N (21)

The percentage error of the current time-dependent failure proba-
bility estimate given in Eq. (20) is computed by

er ¼
jpf t0; teð Þ � p�f t0; teð Þj

p�f t0; teð Þ

 100% ¼

jNf 2 � N�f2 j
Nf 1 þ N�f2


 100% (22)

Let the number of samples in group two be N2. The true value of
Nf 2 (i.e., N�f2 ) can be any number in the range 0; N2½ �. The maxi-
mum percentage error of the failure probability estimate given in
Eq. (20) is estimated as

emax
r ¼ max

N�
f2
2 0;N2½ �

jNf 2 � N�f2 j
Nf 1 þ N�f2


 100%

( )
(23)

The training of ĝ X; tð Þ stops if emax
r < 5%. The above procedure

determines whether a surrogate model is well trained or not (i.e.,
stopping criterion). Next, we will investigate how to identify a

new training point to refine the surrogate model if the surrogate
model is not well trained.

3.2.3 Identification of New Training Point. If the stopping cri-
terion given in Eq. (23) is not satisfied, a potential new training
point needs to be identified to refine the surrogate model ĝ X; tð Þ.
Since Umin x ið Þð Þ corresponds to the point with the highest proba-

bility of making a mistake on the sign of g x ið Þ; t
� �

, we identify the

new training point by minimizing the Umin x ið Þð Þ. Similar strategy
has been implemented in surrogate model-based time-independent
reliability analysis in the AK-MCS method [32].

For each trajectory, we first identify the associated time instant
that corresponds to Umin x ið Þð Þ as follows:

tmin ið Þ ¼ arg min
j¼1; 2; ���;Nt

fU x ið Þ; t jð Þ
� �

g (24)

The new training point is then identified as

xt
new ¼ x iminð Þ; tmin iminð Þ

h i
(25)

where imin is obtained by

imin ¼ arg min
i¼1; 2; ���;N

fUmin x ið Þð Þg (26)

After the new training point is identified, the response function is
evaluated and ĝ X; tð Þ is trained again and the stopping criterion
given in Eq. (23) is checked for all iterations until the stopping
criterion is satisfied.

(a) Additional criterion for the selection of new training point
In addition to the above criterion for the selection of new
training points, in this paper, we also introduce another cri-
terion based on the correlation analysis between the poten-
tial new training points and the current training points.

Considering that the U function given in Eq. (16) is used to
check the conditions given in Eq. (17) and the new training point
is selected based on that, there may be clustering of the training
points when the surrogate model is not well trained (i.e.,
rĝ x ið Þ; t jð Þ
� �

are large and close to each other for different sam-
ples) [35]. The clustering of training points refers to the phenom-
enon that the selected training points are very close to each other.
When this phenomenon happens, the correlation matrix used in
the prediction of Kriging model will be ill-conditioned. In that
case, some of the clustered training points will have negligible
effect on the accuracy improvement of the surrogate model (i.e.,
some of the training points are not useful). An example of the
clustering of training points is given in example 2 in Sec. 4. In
order to avoid the clustering issue, we define a correlation condi-
tion for the refinement of the surrogate model.

Table 1 Procedure for identification of new training point

Step Description

1 Assume that the MCS samples as xðiÞ; i ¼ 1; 2; � � � ; N and discretize ½t0; te� into tðjÞ, j ¼ 1; 2; � � � ; Nt

2 For each xðiÞ; i ¼ 1; 2; � � � ; N
(a) Compute UðxðiÞ; tðjÞÞ and qmaxðtðjÞÞ ¼ maxfqðxðjÞtemp; xsÞg, 8j ¼ 1; 2; � � � ; Nt, where x

ðjÞ
temp ¼ ½xðiÞ; tðjÞ� and xs are current training points

(b) Identify indices id t ¼ find8j¼1; 2; ���;Nt fqmaxðtðjÞÞ 	 0:95g and let Unew ¼ U, where U is obtained from the last step

(c) Replace UnewðxðiÞ; tðid tÞÞ with a large number (i.e., 100)

(d) Obtain UminðxðiÞÞ by UminðxðiÞÞ ¼ minjfUnewðxðiÞ; tðjÞÞg and the associated time instants by tminðiÞ ¼ arg minj¼1; 2; ���;Nt
fUnewðxðiÞ; tðjÞÞg

(d) Check whether there exist a time instant tðjÞ such that ĝðxðiÞ; tðjÞÞ > 0 and UðxðiÞ; tðjÞÞ 	 2. If there exists such a tðjÞ,
we set UminðxðiÞÞ ¼ ue, where ue is any number larger than 2

End

3 Identify the new training point as ½xðiminÞ; tminðiminÞ�, where imin ¼ arg mini¼1; 2; ���;NfUminðxðiÞÞg
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Let the current training points be xs (Eq. (10)). The correlation
condition is defined as follows:

maxfq xt
new; xs

� �
g < 0:95 (27)

where q xnew; xsð Þ is computed by substituting the normalized
xt

new and xs into Eq. (A4). The above correlation constraint avoids
the situation that the new training point is too close to current
training points. Note that the above correlation condition is only
applied to new training points to make sure the new training
points are not clustered with current training points. An empirical
range is suggested for the correlation threshold as [0.95, 1] based
on our numerical examples. A high value of the threshold (i.e., 1)
implies a loose correlation condition. On the other hand, a low
value of threshold means a strict correlation condition.

Until now, we have discussed the basic idea for the refinement
of ĝ X; tð Þ. Table 1 gives a detailed procedure for the identification
of a new training point based on the conditions given in Eqs.
(24)–(27).

Note: In step 2 (c), Unew is replaced with a larger number due to
the application of correlation condition (Eq. (27)) to control the
distance between current training points and new training points.

The above training of the surrogate model and stopping criterion
are for problems without stochastic processes. The basic idea and
main procedures are applicable to problems with and without sto-
chastic processes. In Sec. 3.3, we will investigate the extension of
the proposed method to general problems with both random varia-
bles and stochastic processes.

3.3 Extension to Problems With Stochastic Processes. As
discussed in Sec. 2.1, the response function for problems with sto-
chastic processes is given by G tð Þ ¼ g X; Y tð Þ; tð Þ. In both the
double-loop procedure and SILK, stochastic processes Y tð Þ first
need to be represented as independent random variables using the
KL expansion [29]. For a stochastic process, Yi tð Þ, the KL expan-
sion is given by

Yi tð Þ ¼ lYi
tð Þ þ rYi

tð Þ
Xne

j¼1

ffiffiffiffi
kj

p
nj fj tð Þ (28)

in which lYi
tð Þ and rYi

tð Þ are the mean and standard deviation of
the stochastic process, nj, j ¼ 1; 2; � � � ; ne are independent ran-
dom variables, kj and fj tð Þ are the eigenvalues and eigenvectors of

Table 2 Procedure of identifying new training point for problems with stochastic processes

Step Description

1 Assume the MCS samples as xðiÞ and nðiÞ; i ¼ 1; 2; � � � ; N and discretize the interval ½t0; te� into tðjÞ, j ¼ 1; 2; � � � ; Nt

2 For each xðiÞ and nðiÞ; i ¼ 1; 2; � � � ; N

(a) Convert nðiÞ to yðtð1ÞÞ; yðtð2ÞÞ; � � � ; yðtðNtÞÞ
(b) Compute UðxðiÞ; yðtðjÞÞ; tðjÞÞ based on surrogate model ĝðX; Y; tÞ and Eq. (16), 8j ¼ 1; 2; � � � ; Nt, and qmaxðtðjÞÞ ¼ maxfqðxðjÞtemp; xsÞg

where x
ðjÞ
temp ¼ ½xðiÞ; yðtðjÞÞ; tðjÞ� and xs are current training points

(c) Identify indices id t ¼ find8j¼1; 2; ���;Nt
fqmaxðtðjÞÞ 	 0:95g and let Unew ¼ U, where U is obtained from the last step

(d) Replace UnewðxðiÞ; yðtðid tÞÞ; tðid tÞÞ with a large number (i.e., 100)
(e) Obtain UminðxðiÞ; nðiÞÞ by UminðxðiÞ; nðiÞÞ ¼ minjfUnewðxðiÞ; yðtðjÞÞ; tðjÞÞg and the associated time instants by

tminðiÞ ¼ argminjfUnewðxðiÞ; yðtðjÞÞ; tðjÞÞg
(f) Check whether there exists a time instant tðjÞ such that ĝðxðiÞ; yðtðjÞÞ; tðjÞÞ > 0 and UðxðiÞ; yðtðjÞÞ; tðjÞÞ 	 2. If there exists such a tðjÞ, set

UminðxðiÞ; nðiÞÞ ¼ ue, where ue is any number larger than 2
End

3 Identify the new training point as ½xðiminÞ; nðiminÞ; tminðiminÞ�, where imin ¼ argmini¼1; 2; ���;NfUminðxðiÞ; nðiÞÞg, and convert nðiminÞ into yðiminÞ

based on Eq. (28) and tminðiminÞ. Obtain the new training point ½xðiminÞ; yðiminÞ; tminðiminÞ�

Table 3 Implementation procedure of SILK

Step Description

1 Perform KL expansion if stochastic processes are present in the problem

2 Generate initial training points xs (Eq. (10) or (28)) and evaluate the response at the training points
Set q ¼ 1 and xMCS ¼1

3 While q ¼ 1 or Covpf > 0:02 do
Set p ¼ 1

4 Generate N samples of X or X; n for problems with stochastic processes and add the generated samples into xMCS

5 While p ¼ 1 or emax
r > 0:05 do

p ¼ pþ 1

6 Construct surrogate model ĝðX; tÞ or ĝðX; Y; tÞ
7 Compute UminðxðiÞÞ or UminðxðiÞ; nðiÞÞ, i ¼ 1; 2; � � � ; NMCS, where NMCS is the number of samples in xMCS using the algorithms presented in

Table 1 or 2

8 Compute emax
r using Eq. (23)

9 Identify new training point ½xðiminÞ; tminðiminÞ� or ½xðiminÞ; yðiminÞ; tminðiminÞ� using procedures given in Table 1 or 2. Update the training points
End while

10 Compute pf ðt0; teÞ using surrogate model ĝðX; tÞ or ĝðX; Y; tÞ
11 Compute the coefficient of variation, Covpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pf ðt0; teÞÞ=ðpf ðt0; teÞÞ=NMCS

p
, where NMCS ¼ qN is the total number of MCS samples

q ¼ qþ 1
End while
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the covariance function of Yi tð Þ, and ne is the number of eigenvec-
tors used to represent the stochastic process.

After the KL expansion, the response function for problems
with stochastic processes becomes G tð Þ ¼ g X; n; tð Þ, where n is a
vector of random variables used to represent the stochastic proc-
esses. Based on the transformation of the response function, if the
double-loop procedure is applied to time-dependent reliability
analysis, an extreme value surrogate model ĝmax X; nð Þ needs to
be constructed. Since the number of random variables in n is usu-
ally very large (i.e., the terms in KL expansion will increase with
the time duration of interest), the dimension of ĝmax X; nð Þ is high.
Constructing a high-dimensional surrogate model usually requires
a large number of training points and is difficult for current surro-
gate modeling methods. In the proposed method, a surrogate
model is directly built for G tð Þ ¼ g X; Y tð Þ; tð Þ.

Similar to the procedure for problems with response function
ĝ X; tð Þ, nin initial training points are first generated for X, n, and
t. The training points of X, n, and t are then transformed into train-
ing points of X, Y, and t as follows:

x 1ð Þ n 1ð Þ t 1ð Þ

� � �

x ninð Þ n ninð Þ t ninð Þ

2
64

3
75! Eq: 28ð Þ !

x 1ð Þ y 1ð Þ t 1ð Þ

� � �

x ninð Þ y ninð Þ t ninð Þ

2
64

3
75
(29)

Based on the initial training points, an initial surrogate model
ĝ X; Y; tð Þ is built. In order to perform time-dependent reliability
analysis based on ĝ X; Y; tð Þ, N samples are first generated for X
and n using MCS, and t0; te½ � is discretized into Nt time instants.
The MCS samples of n are then converted into MCS samples of Y
based on Eq. (28) and the discretized time instants
t jð Þ; j ¼ 1; 2; � � � ;Nt. In order to determine the new training points
to refine ĝ X; Y; tð Þ, the procedure presented in Table 1 is modi-
fied for problems with stochastic processes. Table 2 gives the pro-
cedure of identifying a new training point for ĝ X; Y; tð Þ.

Similar to the problems without stochastic processes, the stop-
ping criterion in each iteration is computed using Eq. (22) and

Umin x ið Þ; n ið Þ
� �

, i ¼ 1; 2; � � � ; N. Since in the proposed method,

the surrogate model is constructed directly for ĝ X; Y; tð Þ instead
of ĝmax X; nð Þ, the dimensionality of ĝ X; Y; tð Þ is much lower
than that of ĝmax X; nð Þ. For example, suppose there are nX ran-
dom variables (X) and nY stochastic processes (Y tð Þ), the

Table 4 Results of example 1

Method NOF pf ðt0; tsÞ (
10�4) Error (%)

SILK 18.35 1.08 0.92
Rice [24] 1017 0 100
Independent EGO [24] 212 1.31 20.18
Mixed EGO [24] 69 1.09 0
MCS 5
 108 1.09 N/A

Fig. 3 A four-bar function generator mechanism

Table 5 Random variables of example 2

Variable (mm) Mean Standard deviation Distribution

L1 100 0.1 Normal
L2 55.5 0.1 Normal
L3 144.1 0.1 Normal
L4 72.5 0.1 Normal

Table 6 Results of example 2

Case he ¼ 0:85 deg Case he ¼ 0:9 deg

Method NOF pf ðt0; tsÞ Error (%) NOF pf ðt0; tsÞ Error (%)

SILK 23.13 0.1195 1.10 22.4 0.0553 1.78
Rice 8221 0.1315 11.25 8365 0.0546 3.02
Independent EGO 142 0.1132 4.23 113 0.0579 2.84
Mixed EGO 72 0.1140 3.55 74 0.0581 3.20
MCS 2
 108 0.1182 N/A 2
 108 0.0563 N/A

Fig. 4 Effect of correlation threshold on clustering of training
points: (a) without correlation threshold and (b) with correlation
threshold

Table 7 Effects of correlation threshold (case he50:9 deg)

Correlation threshold (qmax) 0.90 0.93 0.95 0.97 0.98 0.99 0.999

NOF 18.8 20.1 22.4 26.6 28.3 30.5 47.9
Error (%) 4.97 3.55 1.78 2.13 0.18 1.78 0.71
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dimension of ĝ X; Y; tð Þ is nX þ nY þ 1. If nn standard normal var-
iables (n) are used in the KL expansion of each stochastic process,
the dimension of ĝmax X; nð Þ will be nX þ nYnn þ 1, where nn is
problem dependent and will increase with time duration of inter-
est. The value of nn is usually larger than 5 and can go up to a
very large number (i.e., 1000). For example 3 presented in Sec. 4,
the dimensions of ĝ X; Y; tð Þ and ĝmax X; nð Þ are 5 and 10, respec-
tively. This property makes the proposed method applicable to
problems with and without stochastic processes.

3.4 Implementation Procedure. We now summarize the
implementation procedure of SILK. Table 3 gives the main steps
of SILK by integrating Tables 1 and 2 into the implementation
framework.

Note that the Covpf criterion is chosen as 0.02 in this paper.
Other threshold values, such as 0.05, can be used as well accord-
ing to the requirement of the decision maker. This threshold is
used to account for the statistical uncertainty in MCS.

4 Numerical Examples

In this section, three numerical examples are used to demon-
strate the proposed method. Examples 1 and 2 do not have sto-
chastic process in the limit state function while example 3 has
both random variables and stochastic process. The NOF evalua-
tions and the percentage error of time-dependent failure probabil-
ity estimate of the proposed method (i.e., SILK) are compared
with the following four methods in the three examples.

� Rice: the upcrossing rate method based on the Rice’s formula
as reviewed in Sec. 2.1 and presented in Refs. [15] and [17]

� independent EGO: the double-loop procedure with independ-
ent EGO (Sec. 2.2.1) [20,21]

� mixed EGO: the double-loop procedure with mixed EGO
(Sec. 2.2.2) [24]

� MCS: the brute force MCS performed on the original limit-
state function

The percentage error of the time-dependent failure probability
estimate is computed by

e% ¼
����pf t0; teð Þ � pMCS

f t0; teð Þ
����.pMCS

f t0; teð Þ 
 100% (30)

where pMCS
f t0; teð Þ is the time-dependent failure probability esti-

mate obtained from MCS.

4.1 A Mathematical Example. A mathematical example
given in Eq. (31), which is adopted from Ref. [24], is used as our
first example

g X; tð Þ ¼ sin 2:5Xð Þcos tþ 0:4ð Þ2
h i.

X2 þ 4ð Þ (31)

where X is a random variable following a normal distribution
X � N 10; 0:52

� �
.

The time-dependent probability of failure over time interval
1; 2:5½ � is to be estimated and is defined as

pf t0; tsð Þ ¼ Prfg X; sð Þ > 0:014; 9s 2 1; 2:5½ �g (32)

We first solve this example using SILK. The time interval 1; 2:5½ �
is discretized into 100 time instants. Ten initial training points are

generated for X and t using the Hammersley sampling approach
[34]. The initial training points of X are generated in the interval
7:5; 12:5½ �. A Kriging model with a constant trend function is

used to build the initial surrogate model. The surrogate model
ĝ X; tð Þ is then refined using SILK. Table 4 gives the results com-
parison between SILK, Rice formula-based upcrossing rate
method, double-loop procedure with independent EGO, double-
loop procedure with mixed EGO, and MCS. Note that the NOF of
the proposed method is not an integer because SILK is run for 20
times and the average results are reported to reduce the uncer-
tainty in the MCS samples. The results of Rice, independent
EGO, and mixed EGO are taken from Ref. [24]. It shows that the
proposed SILK method is much more efficient than the other
methods. However, the accuracy of SILK is a little bit lower than
the mixed EGO method even though it satisfies the accuracy
requirement defined in Table 3 (emax

r � 0:05). Further analysis
shows that SILK requires 22 NOF to achieve the same accuracy
level as mixed EGO.

4.2 A Function Generator Mechanism. A function genera-
tor mechanism as shown in Fig. 3 is used as our second example.
This example is taken from Ref. [15].

The time-dependent probability of failure is given by [15]

pf h0; hsð Þ ¼ Prfw X; hð Þ � wd hð Þ > hep=180; 9h 2 97; 217½ �g
(33)

where X ¼ L1; L2; L3; L4½ �, he is failure threshold,
wd hð Þ ¼ 60p=180þ 60p=180 sin 0:75 h� 97ð Þp=180

� �
, and

w X; hð Þ is given by

w X; hð Þ ¼ 2arctan �K16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 þ K2
2 � K2

3

q	 
.
K3 � K2ð Þ

	 

(34)

Table 8 Effects of nin (case he50:9 deg)

nin 6 8 10 12 14 16

NOF 21.2 23.5 22.4 27.85 29.7 25.9
Error (%) 0.71 4.26 1.78 3.20 2.13 3.73

Table 9 Effects of Nt (case he50:9 deg)

Nt 20 40 60 80 100 120 140

NOF 28.5 22.3 22.7 21.7 22.4 23.6 22.5
Error (%) 5.33 0.18 3.37 0.53 1.78 1.07 0.53

Fig. 5 Corroded beam subjected to stochastic load

Table 10 Random variables of example 3

Variable Mean Standard deviation Distribution

ru (Pa) 2:4
 108 2
 107 Normal
a0 (m) 0.2 0.01 Normal
b0 (m) 0.04 4
 10�3 Normal
n1 0 100 Normal
n2 0 50 Normal
n3 0 98 Normal
n4 0 121 Normal
n5 0 227 Normal
n6 0 98 Normal
n7 0 121 Normal
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in which K1 ¼ �2L2L4 sin hp=180ð Þ, K2 ¼ 2L4 L1 � L2 cosð
hp=180ð ÞÞ, and K3 ¼ L2

1 þ L2
2 þ L2

4 � L2
3 � 2L1L2 cos hp=180ð Þ.

Table 5 gives the random variables of example 2.
We then perform time-dependent reliability analysis for this

example using SILK, rice, independent EGO, mixed EGO, and
MCS. Table 6 gives the results comparison of different methods
with two different failure thresholds (i.e., he ¼ 0:9 deg and
he ¼ 0:95 deg). Similar to example 1, the SILK method is run for
20 times and the average results are reported. The results indicate
that SILK is more efficient and accurate than the other methods.

(a) Parameter study
We also investigated the effects of the correlation threshold
given in Eq. (27) on the results of time-dependent reliability
analysis. Figure 4 shows the training points identified by
SILK with and without the correlation condition. It shows
that the correlation condition successfully avoids the clus-
tering of training points in SILK.

We also performed SILK with different correlation threshold to
study the effect of correlation condition on the accuracy and effi-
ciency of time-dependent reliability analysis. Table 7 gives the
NOF and percentage error of SILK (average results of 20 runs)
with different values of correlation threshold for the he ¼ 0:9 deg
case. It shows that by controlling the correlation between new
training point and current training points, the efficiency can be
improved while the effect on the accuracy is minor if the threshold
is not set too low. Since the correlation is related to the distance
between the training points in Kriging surrogate model, it also
means controlling the distance between new and current training
points helps to avoid the clustering issue.

In addition to the correlation threshold, we studied the effects of
the number of initial training points and the number of discretization
points of the time interval on the accuracy and efficiency of time-
dependent reliability analysis. Tables 8 and 9 give the average results
of 20 runs of SILK with different values of nin and Nt. It shows that
the effect of nin and Nt on the results of time-dependent reliability
analysis is very small. However, very small values of nin and Nt may
result in large error of reliability analysis. A recommended value of
nin is given in Refs. [31] and [32] as nin ¼ nr þ 1ð Þ nr þ 2ð Þ=2,
where nr is the number of random variables. For the value of Nt, the
results indicate that the larger the better.

4.3 A Beam Subjected to Stochastic Load and Degradation.
A corroded beam (Fig. 5) subjected to stochastic load is adopted
from Ref. [24] as our third example.

The time-dependent probability of failure is given by

pf ¼ Prfg X; Y tð Þ; tð Þ > 0; 9t 2 0; 35½ �g (35)

where

g X; Y tð Þ; tð Þ ¼ F tð ÞL=4þ qsta0b0L2=8
� �
� a0 � 2ktð Þ b0 � 2ktð Þ2ru=4 (36)

in which qst ¼ 7:85
 104 N, k ¼ 5
 10�5 m=year, L ¼ 5 m, and
F tð Þ is a stochastic process modeled by [24]

F tð Þ ¼ 6500þ
X7

i¼1

ni

X7

j¼1

aij sin bijtþ cijð Þð Þ

0
@

1
A (37)

where ni, i ¼ 1; 2; � � � ; 7 are independent random variables, aij,
bij, cij, 8i, j¼ 1,2,…,7 are coeffiecients of the sine wave basis
functions. Details of Eq. (37) can be found in Ref. [24].

Table 10 gives the random variables of this example and Table
11 gives the results comparison of different methods. Similar con-
clusions can be obtained as examples 1 and 2. Thus SILK
achieves efficiency and accuracy in both problems with and with-
out stochastic processes.

5 Conclusion

For problems with nonlinear response, the MPP-based time-
dependent reliability analysis methods may have large error in the
reliability estimate due to linearization of response function at the
MPP. In that situation, a surrogate model-based method is more
promising. Current surrogate model methods for time-dependent
reliability analysis implement a double-loop procedure, which is
computationally expensive and unaffordable for problems with
stochastic processes over a long time period.

This paper develops a SILK surrogate model method for time-
dependent reliability analysis with and without stochastic proc-
esses. The proposed method generates training points and builds
the surrogate model for random variables, stochastic processes,
and time at the same level instead of at two levels. The global
optimization in current methods is completely removed in the pro-
posed method. The single-loop surrogate model is refined adap-
tively based on criteria developed according to the properties of
the time-dependent problem. Three numerical examples demon-
strated the effectiveness of the proposed method.

There are several advantages for the removal of the global opti-
mization loop (inner loop) in the time-dependent reliability analy-
sis. First, in the independent EGO and mixed EGO methods, the
NOF evaluations will increase with the number of initial samples
of random variables in the outer loop. In the SILK method, a sin-
gle surrogate model is trained and no global optimization is
required. The NOF of SILK method therefore will not increase
with the number of initial random variable samples. Second, the
removal of global optimization enables the surrogate model-based
time-dependent reliability analysis method to be applied to prob-
lems with stochastic processes and over a long time period.

Since the proposed method makes use of the Kriging surrogate
modeling method, it also has the limitations of the Kriging surro-
gate model. When the Kriging surrogate model cannot effectively
model the time-dependent problem or the limit-state functions are
highly nonlinear, it will result in the ineffectiveness of the pro-
posed method. The basic idea of the proposed method is general
and applicable with different types of surrogate models. Extension
of the proposed method to other kinds of surrogate models for
time-dependent reliability analysis may be investigated in future.
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Appendix: Kriging Surrogate Model

For an unknown function g xð Þ with inputs of x, the Kriging
model is given by [30,36]

ĝ xð Þ ¼ h xð ÞTtþ e xð Þ (A1)

where t ¼ t1; t2; � � � ; tp½ �T is a vector of unknown coefficients,

h xð Þ ¼ h1 xð Þ; h2 xð Þ; � � � ; hp xð Þ
� 
T

is a vector of regression func-

tions, h xð ÞTt is the trend of prediction, and e xð Þ is assumed to be
a Gaussian process with zero mean and covariance
Cov e xið Þ; e xjð Þ

� 

.

The covariance between two points xi and xj is given by

Table 11 Results of example 3

Method NOF pf ðt0; tsÞ (
10�2) Error (%)

SILK 24.6 3.02 0.33
Rice [24] 6501 2.85 5.94
Independent EGO [24] 496 3.27 7.92
Mixed EGO based [24] 283 2.99 1.32
MCS 3
 108 3.03 N/A
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Cov e xið Þ; e xjð Þ
� 
 ¼ r2

e R xi; xjð Þ (A2)

in which r2
e is the process variance and R �; �ð Þ is the correlation

function.
With ns training points, xi; g xið Þ½ �i¼1; 2; ���; ns

, the coefficients t
are obtained by

t ¼ HTR�1Hð Þ�1
HTR�1g (A3)

Where R is the correlation matrix with element, R xi; xjð Þ,

i; j ¼ 1; 2; � � � ; ns, H ¼ h x1ð ÞT; h x2ð ÞT; � � � ; h xnsð ÞT
h iT

, and

g ¼ g x1ð Þ; g x2ð Þ; � � � ; g xnsð Þ
� 
T.

For a new point x, the expected value of the prediction is given
by

ĝ xð Þ ¼ h xð ÞTtþ r xð ÞTR�1 g�Htð Þ (A4)

where r xð Þ ¼ R x; x1ð Þ; R x; x2ð Þ; � � � ; R x; xnsð Þ
� 


The mean square error of the prediction is given by [37]

MSE xð Þ¼ r2
ef1�r xð ÞTR�1r xð Þ

þ HTR�1r xð Þ�h xð Þ
� 
T

HTR�1Hð Þ�1
HTR�1r xð Þ�h xð Þ
� 


(A5)
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